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Abstract

The reproducibility debate has caused a renewed
interest in changing how one reports uncertainty,
from p-value for testing a null hypothesis to a
confidence interval (CI) for the corresponding pa-
rameter. When CIs for multiple selected param-
eters are being reported, the analog of the false
discovery rate (FDR) is the false coverage rate
(FCR), which is the expected ratio of number of
reported CIs failing to cover their respective pa-
rameters to the total number of reported CIs. Here,
we consider the general problem of FCR control
in the online setting, where one encounters an
infinite sequence of fixed unknown parameters
ordered by time. We propose a novel solution
to the problem which only requires the scientist
to be able to construct marginal CIs. As special
cases, our framework yields algorithms for online
FDR control and online sign-classification proce-
dures that control the false sign rate (FSR). All of
our methodology applies equally well to predic-
tion intervals, having particular implications for
selective conformal inference.

1. Introduction
While statisticians are trained to be aware of multiple test-
ing issues, temporal multiplicity—when decisions need to
be made one at a time, rather than in a batch—is often
easy to miss. Let us examine the following simplified situ-
ation. Consider a team at a pharmaceutical company who
test a new drug every week. In week t, a new drug is under
inspection, and to assess its treatment effect θt, the team con-
ducts a new randomized clinical trial with new participants.
Suppose that the data, such as the normalized empirical dif-
ference in means between the treatment and control groups,
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can be summarized by the observation Xt ∼ N(θt, 1), in-
dependent of all the previous observations {Xi}i<t.

Now consider the following selection rule: if Xt < 3, then
the analysts simply ignore drug t. If Xt > 3, then the
team reports the two-sided 99% marginal interval Xt±2.58
for θt to the management, who may then decide to run a
much larger second phase clinical trial since the CI does
not contain 0. This may initially seem like an innocuous
situation: each drug is different and has a different treatment
effect θt, the data Xt is always fresh and independent of the
data for other drugs, and the decision for whether or not to
construct the CI for θt (and the interval itself, if constructed)
is dependent only on Xt and independent of all other Xi.

Nonetheless, the combination of multiplicity and selection
is a cause for concern already in the offline setting, as was
insightfully pointed out by Benjamini & Yekutieli (2005).
In the online case, when there is an infinite sequence of
parameters, it is even easier to construct an example where
ignoring selection has undesirable consequences. Indeed,
consider the special case where θt = 0 for all t, in other
words, every tested drug is equivalent to a placebo. We
could equivalently assume that θt ∈ {−0.1,+0.1}, i.e.,
each drug is either slightly worse or better than the placebo.
Then, every single CI that is reported to the management
is incorrect, since Xt ± 2.58 does not contain zero when
Xt > 3. Because (an infinite number of) selections will
occur with probability one, the fraction of non-covering
CIs—the false coverage proportion, FCP—will equal one.
Of course, the second phase of the trial may correct these
errors, but at the cost of time, money and faith in the analyst.

In the example above, the problem is that the CI is reported
only if Xt is large. Indeed, Xt ± 2.58 includes θt with
probability 0.99 unconditionally or even conditionally on
which CIs were reported up to time t− 1, but not including
time t itself; we refer to such an interval as a “marginal”
CI (and define it formally in Section 3). By contrast, a
conditional CI would satisfy

Pr{θt ∈ CI | θt is selected} ≥ 1− α; (1)

constructing a conditional CI at each step will rectify the sit-
uation and it controls the FCR at any time T (see Section B
in supplement). This conditional solution is conceptually
simple but has two main drawbacks. First, it is impossible to
ensure that a reported CI never includes zero. This is demon-
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strated in Section 5 and in Section B.1 of the supplement.
Second, constructing a conditional CI may be a prohibitive
task depending on how complicated the selection event and
the (unconditional) distribution of Xi are.

In this paper, we will propose a solution for online FCR
control that is very different from the aforementioned con-
ditional approach. Informally, in order to achieve FCR
control at level α, instead of constructing (1 − α) condi-
tional CIs, we construct (1 − αi) marginal CIs for some
αi < α. The algorithm to set the αi is inspired by recent
advances in the online false discovery rate (FDR) control
literature, specifically the LORD algorithm by Javanmard &
Montanari (2018) and its uniform improvement by Ramdas
et al. (2017). The new online FCR procedure works in much
more generality than the simple example described above,
for example when θi are multi-dimensional, the data is not
necessarily Gaussian, the selection events are complicated,
and so on—cases in which constructing a conditional CI
may be substantially harder if at all possible.

Even more importantly, by constructing marginal instead
of conditional CIs, we leave open the possibility to use the
candidate CI itself as a criterion for selection (the decision
whether or not to report the CI). For example, the rule may
entail constructing the candidate marginal CI only if it does
not include values of opposite signs. Thus, returning to the
motivating example, this would allow the team of statisti-
cians to ensure that each reported CI is conclusive about
the direction of the treatment effect, while the FCR is con-
trolled. With such situations in mind, we can instantiate our
procedure with sign-determining CIs, resulting in an online
adaptation of the ideas of Weinstein & Yekutieli (2014). Ev-
ery such sign-determining CI procedure corresponds to an
online sign-classification procedure that controls the false
sign rate (FSR). As a special case, we show that for some
recent online testing procedures, supplementing rejections
based on two-sided p-values with directional decisions suf-
fices to control the FSR.

The following point is critical: while a procedure control-
ling FCR can be used to derive a procedure controlling FSR
or FDR, the converse is not true. Indeed, there are a slew
of procedures for offline and online FDR control, but most
of these have no analog for the CI problem. We are aware
of only one general procedure for offline FCR control (Ben-
jamini & Yekutieli, 2005), and in this paper we propose the
first and only existing procedure for online FCR control.

The rest of this paper is organized as follows. Section 2 sets
up the problem formally and introduces necessary notation.
A new online procedure that adjusts marginal confidence in-
tervals, is presented in Section 3. In Section 4 we show how
our marginal CI procedure can be used to solve a general
online localization problem, and study the special case of
the online sign-classification problem. Simulation results

that also compare the marginal approach and the conditional
approach, are reported in Section 5. We conclude with a
brief discussion in Section 6, where we mention how all
of our results also hold for prediction intervals for unseen
responses. Most proofs appear in the supplement.

2. Problem Setup
Let θ1, θ2, . . . be a fixed sequence of fixed unknown param-
eters, where the domain Θi of θi is arbitrary, but common
examples include R or Rd. Let 2Θi denote the set of all mea-
surable subsets of Θi, in other words it is any acceptable
confidence set for θi. In our setup, at each time step i, we
observe an independent observation (or summary statistic)
Xi ∈ Xi, where the distribution of Xi depends on θi (and
possibly other parameters). For example, when Θi = R
we may have Xi ∼ N(θi, 1). Let Si : Xi → {0, 1} denote
the selection rule, that indicates whether or not the user
wishes to report a confidence set for θi. Also, denote by
Si := Si(Xi) the indicator for selection, where Si = 1
means that the user will report a confidence set for θi. Let
the filtration (increasing sequence of sigma-fieldss) formed
by the selection decisions be denoted by

F i := σ(S1, S2, . . . , Si).

Next, let Ii : Xi × [0, 1]→ 2Θi be the rule for constructing
the confidence set for θi, the second argument allowing to
take as an input a “confidence level”. We denote Ii :=
Ii(Xi, αi). Thus, Ii = Ii(Xi, αi) may be a marginal or
a conditional (1 − αi) confidence set for θi as discussed
later, but in general it is no more than a mapping from
Xi × [0, 1] as described above. For simplicity, in the rest of
the paper we refer to Ii as a confidence interval (CI) like
it would usually be if Θi = R, but with the understanding
that everything discussed in this paper applies to the more
general case of arbitrary confidence sets. The above rules
are all required to be predictable, meaning

Si, Ii, αi are F i−1-measurable,

and we write Si, Ii, αi ∈ F i−1. Of course, the instanti-
ated random variables Ii = Ii(Xi, αi), Si = Si(Xi) both
depend on Xi. However, the rules Si, Ii, αi must be F i−1-
measurable, hence specified before observing Xi.

Using the terminology above, we now define an online
selective-CI procedure. In the rest of the paper we omit
the term “selective”, but this is done only for the sake of
readability. Thus, an online CI protocol proceeds as follows:

1. At time i, first commit to αi,Si, Ii ∈ F i−1.

2. Then, observe Xi, and decide whether or not θi is
selected for coverage by setting Si = Si(Xi).

3. Report Ii = Ii(Xi, αi) if Si = 1. Then, increment i,
and go back to step 1.
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We remark that we could have also defined the filtration
as F̃ i := σ(X1, . . . , Xi) and all algorithms/proofs would
still go through; we use F̃ i because it may be more difficult
to construct a useful CI using the conditional distribution
Xi|F̃ i than using Xi|F i if the Xis are dependent (there is
less residual randomness in the former); under independence
ofXis, this would not be a concern. Note that Si can depend
on Ii because both are predictable, and hence Si can depend
on Ii—for example, we can select a parameter for coverage
based on whether or not Ii looks “favorable”, a point to
which we will return in later sections.

To evaluate the errors made by an online CI protocol, let
the unobservable false coverage indicator be denoted Vi :=
Si1θi /∈Ii . The false coverage proportion up to time T is
defined as the ratio of the number of miscovering reported
intervals to the total number of reported intervals:

FCP(T ) :=

∑
i≤T Vi∑
i≤T Si

,

where 0/0 = 0 per standard convention (i.e., if no intervals
are constructed, then the false coverage proportion is triv-
ially zero). The false coverage rate (FCR) and the modified
FCR are defined, respectively, as

FCR(T ) = E

[∑
i≤T Vi∑
i≤T Si

]
, mFCR(T ) =

E
[∑

i≤T Vi

]
E
[∑

i≤T Si

] .
The main objective of this paper is to develop and compare
algorithms for specifying Ii and αi such that FCR or mFCR
control is guaranteed at any time, that is,

FCR(T ) ≤ α ∀T ∈ N, or mFCR(T ) ≤ α ∀T ∈ N.

We will later observe that procedures that control the FCR
can also be used to control other error metrics of interest.

3. The LORD-CI algorithm
By a marginal (unconditional) CI rule Ii, we mean that

Pr
{
θi /∈ Ii(Xi, a)

∣∣ F i−1
}
≤ a for any a ∈ [0, 1], (2)

where the probability is taken only over randomness in Xi

(conditional on F i−1), because the rule Ii is predictable.
Importantly, we use the term ‘marginal’ because a condi-
tional CI would have further conditioned on Si = 1.

In what follows, an algorithm is a sequence of mappings
from past selection decisions to confidence levels, i.e. from
(S1, . . . , Si−1) to αi. By definition, such an αi is F i−1-
measurable, hence a procedure that constructs a marginal
confidence interval at level (1 − αi) whenever Si = 1,
is an online CI protocol. We will refer to such a proce-
dure as a marginal online CI protocol/procedure. A trivial

marginal online CI protocol can be obtained by taking any
fixed sequence of αi such that the series

∑∞
i=1 αi ≤ α; this

procedure is referred to as alpha-spending by Foster & Stine
(2008) in the context of online hypothesis testing, and it
controls the familywise error rate, which in our context is
the probability of even a single miscoverage event. Nat-
urally, this is a much more stringent notion of error, and
the resulting selected CIs will be excessively wide. The
question we will address below is the following: is there a
nontrivial algorithm to set the αi so that FCR is controlled?

3.1. mFCR control for arbitrary selection rules

Our first result identifies a sufficient condition on an al-
gorithm to imply mFCR control. For this, associate any
algorithm with an estimate of the false coverage proportion,

F̂CP(T ) :=

∑
i≤T αi

(
∑
i≤T Si) ∨ 1

.

We may then define the following procedure.

Definition 1 (LORD-CI procedure). A LORD-CI procedure
is any online protocol that constructs marginal (1 − αi)
confidence intervals, where αi ∈ F i−1 are defined in a
predictable fashion to maintain the invariant

∀T ∈ N, F̂CP(T ) ≤ α. (3)

Any LORD-CI procedure has the following guarantee.

Theorem 1. Given an arbitrary sequence of selection
rules made by the user, any LORD-CI procedure enjoys
mFCR(T ) ≤ α, ∀T ∈ N.

Proof. By definition of a false coverage event, we have

E

∑
i≤T

Vi

 = E

∑
i≤T

SiIθi /∈Ii

 (a)

≤
∑
i≤T

E [Iθi /∈Ii ]

=
∑
i≤T

E
[
E
[
Iθi /∈Ii

∣∣ F i−1
]] (b)

≤
∑
i≤T

E [αi]

= E

∑
i≤T

αi

 (c)

≤ αE

∑
i≤T

Si

 ,
where inequality (a) holds because Si ≤ 1, inequality (b) by
the definition (2) of a (1− αi) marginal CI, and inequality
(c) by the invariance (3). Rearranging the first and last
expression yields the desired result.

If one really insisted on requiring FCR control as opposed
to mFCR control, we provide a guarantee for a subclass of
“monotone” selection rules, as introduced below.
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3.2. Monotonicity of algorithms, CIs and selection rules

The symbol � is used to compare vectors coordinatewise,
so (v) � (w) means that vi ≥ wi for all i.

An online FCR algorithm is called monotone if for any
two vectors (s1, . . . , si−1) � (s̃1, . . . , s̃i−1), we have
αi(s1, . . . , si−1) ≥ αi(s̃1, . . . , s̃i−1). Equivalently, an on-
line FCR algorithm is monotone if

αi ≥ α̃i whenever (S1, . . . , Si−1) � (S̃1, . . . , S̃i−1),

where α̃i is the level produced by the online FCR algo-
rithm, when presented with the history of selection decisions
(S̃1, . . . , S̃i−1). A CI rule I is called monotone if

I(x, a2) ⊆ I(x, a1) for all a1 < a2 and x ∈ X .

Monotonicity is satisfied for most natural (even non-
equivariant) CI constructions, and thus we do not view this
as a restriction. Irrespective of whether the online FCR
algorithm and CI rule are monotone, we say that a selection
rule Si is monotone if

Si ≥ S̃i whenever (S1, . . . , Si−1) � (S̃1, . . . , S̃i−1), (4)

where, as before, S̃i is used to denote the selection decision
at time i, for the same observation Xi, but for a different
history (S̃1, . . . , S̃i−1).

As a simple special case, if each rule Si is independent of
F i−1, then such a selection rule is trivially monotone, even
if the underlying online FCR algorithm is not. In other
words, if the final decision Si = Si(Xi) is based only on
Xi and on none of the past decisions, then such a rule is
monotone. For example, setting Si = 1Xi>3 for every i is
a trivial monotone selection rule.

3.3. FCR control for monotone selection rules

We can offer the following guarantee for the nontrivial class
of monotone selection rules.

Theorem 2. Given an arbitrary sequence of monotone se-
lection rules (4) chosen by the user, any LORD-CI pro-
cedure that maintains the invariant (3) has the guarantee
∀T ∈ N,FCR(T ) ≤ α.

Proof. By definition of FCR(T ), we have

FCR(T ) = E

[∑
i≤T Vi∑
j≤T Sj

]
=
∑
i≤T

E

[
Si1θi /∈Ii∑
j≤T Sj

]

≤
∑
i≤T

E

[
αi∑
j≤T Sj

]
,

(5)

where the inequality follows by Lemma 1 below. Thus, we
see that

FCR(T ) ≤ E

[∑
i≤T αi∑
j≤T Sj

]
≤ α,

where the last inequality holds due to invariant (3).

The critical step in the above argument is the invocation of
the following central lemma (proved in Appendix A).

Lemma 1. Given an arbitrary sequence of monotone selec-
tion rules, we have

E

[
Si1θi /∈Ii∑
j≤T Sj

]
≤ E

[
αi∑
j≤T Sj

]
.

Intuitively, the statement of the above lemma is obvious if
the expectation could be taken separately in the numera-
tor, as if it were independent of the denominator, because
E [Si1θi /∈Ii ] ≤ E [1θi /∈Ii ] ≤ αi by construction (2). The
proof, included in the supplement, demonstrates that mono-
tonicity allows us to formally perform such a step. Lemma 1
is a generalization of lemmas that have been proved in the
context of online FDR control by Javanmard & Montanari
(2018); Ramdas et al. (2017; 2018); Tian & Ramdas (2019),
since the selection event {Si = 1} may or may not be asso-
ciated with the miscoverage event {θi /∈ Ii}, but in online
FDR control, the rejection event {Ri = 1} ≡ {Pi ≤ αi}
is obviously directly related to the false discovery event
{Pi ≤ αi, i ∈ H0}. Indeed, we will later see that online
FCR control captures online FDR control as a special case.

3.4. An explicit monotone online FCR algorithm

An uncountable number of procedures satisfy the conditions
of Theorems 3 and 2. To provide one concrete example
of a monotone update rule that satisfies (3), we adapt the
LORD++ online FDR algorithm (Javanmard & Montanari,
2018; Ramdas et al., 2017) in order to set the sequence
{αi}. LORD++ was originally designed to maintain an in-
variant resembling (3) in the context of multiple hypothesis
testing, i.e., when Si = 1 amounts to rejection of the i-th
null hypothesis. In the absence of p-values, our algorithm
instead substitutes rejection events by arbitrary selection
events (Si = 1). We refer to the aforementioned adaptation
of LORD++ to the context of CIs as the LORD-CI algo-
rithm/procedure. Whenever we refer to LORD-CI, we mean
the online protocol as given in the algorithm box below.

In Algorithm 1, {γi}∞i=1 is a deterministic nonincreasing
sequence of positive constants summing to one, that is spec-
ified in advance; 0 ≤ W0 ≤ α is a prespecified constant;
{Si} is a sequence of arbitrary predictable selection rules;
and {Ii} is a sequence of marginal CIs, that is, each Ii has
the property (2). On implementing Protocol 1, set γi = 0
whenever i ≤ 0 (this happens for j = 1). It is easy to verify
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that αi (see line 7 in Protocol 1) is monotone, because it has
an additional nonnegative term in the summation with every
new selection. One may also verify that {αi} satisfies the
invariant (3), because

∑
i αi is always less than (

∑
i Si)α.

Algorithm 1 A monotone instantiation of LORD-CI
Input : sequence {Xi} observed sequentially; prespeci-

fied deterministic sequence {γi} summing to one;
constant W0 ∈ (0, α); arbitrary selection rules
{Si}; marginal CI rules {Ii}.

Output :online FCR-adjusted selective CIs
t← 1 // tracks time
for j = 1, 2, ... do

while Si(Xi) = 0 do
t← t+ 1 // θt is not selected, increment time

end
τj ← t // time of the j-th selection
αt ← γtW0 + (α−W0)γt−τ1 + α

∑
{k:τk<t,τk 6=τ1}

γt−τk
Report It = It(Xt, αt)
t← t+ 1

end

The slightly complicated form of αi above really boils
down to the definition of FCP or FCR. In fact, if their de-
nominators were replaced by 1 +

∑
i≤T Si, and the same

was done for F̂CP, then the above rule would simplify to
αt ← α

∑
{k:τk<t} γt−τk ≡ α

∑j−1
k=1 γt−τk . Intuitively,

each selection ‘earns’ the analyst an extra error budget of α
and this newly earned budget is spread across future times
using the sequence {γi}. Thus, at time t, the current round’s
error budget αt is determined by summing the separate
amount that each past earning contributed towards time t.

4. Selections that depend on the candidate CIs
In the LORD-CI procedure, the sequence of the Si and the
sequence of the Ii are both arbitrary, and these may be
specified independently of each other. In this section we
demonstrate how tying the selection rule to the CI rule, by
letting the (candidate) marginal CI determine whether θi
is selected or not, can lead to many instantiations of the
LORD-CI procedure that are of practical interest.

Informally, the idea is as follows. Suppose that we made
some choice in advance for the marginal CI rule. Suppose
also that we have in mind a criterion for what constitutes a
“good” reported CI. For example, when Θi ≡ R, a “good”
CI might be one that excludes zero. Then at each step i,
upon observing Xi, we pretend that we were to construct
Ii = I(Xi, αi) where αi are set by the LORD-CI algo-
rithm, but we only actually report it if it is “good”. By
design, then, we only report “good” intervals. Note that
because Ii is predictable, choosing to report an interval only
if it is “good” is a predictable selection rule. Therefore

we may use LORD-CI to determine levels of coverage and
immediately be guaranteed FCR control. This is formalized
in Definition 2 below. We remark that these ideas have ap-
peared in Weinstein & Yekutieli (2014), but their treatment
is rather informal, and theirs is not an online procedure.

In what follows, whenever we use a CI rule, it is assumed
to be monotone. Again, we do not view this as a restriction.

4.1. From coverage to localization

Suppose that for each i we have a collection
Ki1, . . . ,KiLi ∈ 2Θi of pre-specified disjoint sub-
sets of Θi. Being able to say that θi ∈ Kil for exactly one
l ∈ {1, . . . , Li} qualifies as having “localized” the signal.1

On observing Xi, we must either localize θi by specifying
which of 1, . . . , Li it belongs to, or refrain from making
any claim at all about θi. The natural notion of error for a
given procedure is a false localization rate (FLR),

FLR := E
[

#false localizations made
#localizations made

]
.

As we will see below, the false localization rate generalizes
the false discovery rate.

Definition 2 (LORD-CI for localization). Let Ii : Xi ×
[0, 1] → 2Θi be an arbitrary pre-specified monotone
marginal CI rule for i = 1, 2, . . . , and define Si as follows:

Si =


1, if Ii = Ii(Xi, αi) is a subset of exactly

one of Ki1, . . . ,KiLi

0, otherwise
.

Then LORD-CI for localization is the online CI protocol
that applies LORD-CI to the above selection rule, and when
Si = 1, it outputs the unique ji ∈ [Li] with Ii ⊆ Kiji .

Theorem 3. The LORD-CI for localization procedure (Def-
inition 2) satisfies FLR(T ) ≤ α for any T .

Next we consider some special cases of localization and
their implications; Table 1 summarizes the different notions
introduced in the ensuing subsections.

4.2. Composite hypothesis testing with FDR control

Suppose that we have a sequence of composite null hy-
potheses to test, Hi

0 : θi ∈ Θ0i, i = 1, 2, . . . , where
Θ0i ⊆ Θi. For any online testing procedure, let Ri :=
1(Hi

0 is rejected) and define

FDR(T ) := E
[

#{i ≤ T : Ri = 1, θi ∈ Θ0i}
#{i ≤ T : Ri = 1}

]
,

1If the sets are not disjoint a-priori, one may either create a new
set for the intersection, or generalize the definition of localization
to allow for the reporting of multiple sets.
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Localization Error metric Procedure
point null testing FDR Definition 1
composite null testing FDR Definition 3
sign-classification FSR Definition 4

Table 1. Summary of localization problems considered. The first
column indicates the type of the localization problem, the sec-
ond column is the specialized FLR, and the third column is the
corresponding instantiation of LORD-CI.

which reduces to the usual definition of the FDR when Θi

include a single value, i.e., when testing point null hypothe-
ses. We can use the procedure of Definition 2 to devise an
online testing protocol that controls the FDR.

Definition 3 (LORD-CI for composite testing). Consider
an arbitrary marginal CI rule Ii for θi. We reject the ith
composite null hypothesis and set Ri = 1, if and only if

Ii(Xi, αi) ∩Θ0i = ∅, (6)

where αi is set by the LORD-CI procedure using Si = Ri.

The above procedure comes with the following guarantee.

Corollary 1. The LORD-CI procedure for composite testing
(Definition 3) enjoys FDR(T ) ≤ α for any T .

Before proceeding, we would like to point out a connection
to existing online testing protocols. We can define a p-value
for testing Hi

0 by Pi := sup{α : Ii(Xi, α) ∩ Θ0i 6= ∅},
where Ii is any monotone CI for θi. Indeed, if θi ∈ Θ0i,
then for any t ∈ [0, 1] we have

Prθi{Pi ≤ t} ≤ Prθi{Ii(Xi, t) ∩Θ0i = ∅}
≤ Prθi{θi /∈ Ii(Xi, t)} ≤ t.

Therefore, we can apply an existing online FDR protocol
using the above p-value. Note that while the computation
of the p-value above might not be trivial, we are really
only required at each step to check if Pi ≤ αi, which is
equivalent to rejecting when Ii(Xi, t)∩Θ0i = ∅. In fact, if
we use the same CI rules and the same algorithm to set the αi
as in the CI procedure employed in Definition 3, we obtain
exactly the composite testing procedure of Definition 3.

4.3. Sign-classification with FSR control

Sometimes we would like to ask about the direction of the
effect rather than test a two-sided null hypothesis. As ar-
gued in e.g. Gelman et al. (2012) and Gelman & Tuerlinckx
(2000), this often makes a more sensible question than ask-
ing whether a parameter is equal to zero. In fact, even statis-
ticians that use a two-sided test of a point null hypothesis,
tend to supplement—perhaps with a leap of faith—a rejec-
tion of the null with a claim about the sign of the parameter
(Goeman et al., 2010, call this post hoc inference of the sign).

In Section 1, the management might be interested primar-
ily in identifying which drugs have a positive/non-positive
treatment effect (significantly better/worse than placebo).
Throughout this subsection suppose that Θi ≡ Θ ⊆ R,
Xi ≡ X and that Xi ∼ f(xi; θi) for some common likeli-
hood function f : X ×Θ→ [0,∞), so that a common CI
rule can be used at all times—note that a CI rule depends on
the likelihood function only, not on the true value of θi—and
we call this situation the “common likelihood” case.

When considering a sign-classification procedure, we will
aim to control—in analogy to the FDR—the expected ratio
of number of incorrect directional decisions to the total num-
ber of directional decisions made. Throughout this paper, to
make a directional decision means to classify θi > 0 (posi-
tive) or θi ≤ 0 (non-positive); because zero is included on
one side, this can be considered a weak sign-classification
(although the definition is not symmetric, zero can be just
as well be appended to the positive side instead of the nega-
tive side). Hence, a sign-classification protocol is an online
procedure that outputs

Di =


1, if θi classified as positive
−1, if θi classified as non-positive
0, if no decision on the sign of θi is made

.

Borrowing a term from Stephens (2016), we define the false
sign rate (FSR) as

FSR(T ) :=

E
[

#{i ≤ T : (θi ≤ 0, Di = 1) or (θi > 0, Di = −1)}
#{i ≤ T : Di = 1 or Di = 1}

]
.

In the realistic situation where there are no parameters that
equal zero exactly, this coincides with the definitions of
Benjamini et al. (1993). A natural procedure to consider
is applying any online FDR protocol to test the hypotheses
that θi = 0, and then classify each rejection according to the
sign of an unbiased estimate of θi. So, for example, when
θi = E [Xi], a rejected null with Xi > 0 entails Di = 1.
We will see later that applying LORD++ to the usual two-
sided p-values indeed works, however FSR control is not
automatically guaranteed, i.e., this requires a proof.

We rely again on the procedure of Definition 2 to devise
a sign-classification protocol that controls the FSR. Thus,
suppose that we have an arbitrary (common) marginal CI
rule I(·, ·). Now specialize the prescription in Definition 2
by taking Li ≡ 2, Ki1 ≡ (−∞, 0],Ki2 ≡ (0,∞). In
words, this is the LORD-CI procedure that reports Ii =
I(Xi, αi) whenever it includes either only positive or only
non-positive values. This instantiation of the procedure in
Definition 2 is central enough to merit a separate definition.

Definition 4 (Sign-determining LORD-CI procedure). Sup-
pose that we are in the “common likelihood” case, and let
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I : X × [0, 1] → 2Θ be any marginal confidence interval.
Assume that for any parameter θi there is a correspond-
ing “null” value θ0i ∈ Θ. The sign-determining LORD-CI
procedure associated with I is defined to be the LORD-CI
procedure that utilizes the selection rules

Si =


1, if {τ − θ0i : τ ∈ I(x, αi)} ⊆ (0,∞) or

{τ − θ0i : τ ∈ I(x, αi)} ⊆ (−∞, 0]

0, otherwise
,

(7)
and constructs Ii = I(Xi, αi) if Si = 1.

For simplicity, assume from now on that θ0i ≡ 0. In
that case the sign-determining LORD-CI procedure con-
structs Ii = I(Xi, αi) if and only if this interval is sign-
determining, meaning that it includes only positive or only
nonpositive values.

Returning to the FSR problem, apply now the CI procedure
from Definition 4 with an arbitrary choice of I, and set

Di =


1, if Si = 1 and Ii ⊆ (0,∞)

−1, if Si = 1 and Ii ⊆ (−∞, 0]

0, if Si = 0

. (8)

Then we have the following result:

Corollary 2. The sign-classification procedure given by (8),
enjoys FSR(T ) ≤ α for any T .

Remark 1. It is easy to see that we could drop the assump-
tion on monotonicity of the CI rules in this section, and still
be guaranteed control of the respective modified error rates,
for example mFDR in Subsection 4.2 and mFSR in Subsec-
tion 4.3 (which would now be implied by mFCR control for
the corresponding CI procedure).

Notice that any marginal CI rule defines a sign-determining
LORD-CI procedure. As such, the choice of the marginal
CI determines both the power as a sign-classification pro-
cedure and the shape/length of the corresponding intervals.
Ideally, the sign-determining LORD-CI procedure would
construct a large number of CIs, and at the same time ensure
that the lower endpoint for a positive interval is as far away
from zero as possible (similarly, the upper endpoint for a
nonpositive interval is as far away from zero as possible).
As demonstrated with the two elementary choices of the
marginal CI given below, these goals are conflicting in gen-
eral (see also Benjamini et al., 1998). For the rest of this
section assume Xi ∼ N(θi, 1), though the constructions
that follow can be extended beyond the normal case.

1. I is the usual two-sided CI, I(x, α) = (x− zα/2, x+
zα/2). It can be verified that the sign-determining
LORD-CI procedure with this choice for I, selects
exactly the set of parameters rejected by the LORD++

online FDR procedure using the two-sided p-values

Pi = 2(1− Φ(|Xi|)).

A reported CI has length 2zαi/2. It is worth mention-
ing that, on interpreting this as a sign-classification
procedure through (8), corollary 2 would hold even if
Di = −1 is interpreted as declaring that θi < 0 instead
θi < 0, because the interval is open.

2. I is the “one-sided” interval given by

I(x, α) =


(x− zα, x+ zα), if 0 < |x| < zα

(0, x+ zα), if x > zα

(x− zα, 0], if x < −zα
.

The sign-determining LORD-CI procedure now selects
exactly the set of parameters rejected by the LORD++
online FDR procedure using the one-sided p-values

Pi = 1− Φ(|Xi|),

hence is much more powerful as a sign-classification
procedure. However, the length of the constructed
intervals is unbounded, since they take the form
(0, Xi+zαi

) or (Xi−zαi
, 0]. More seriously, reported

intervals must touch zero, thus failing to address our
follow-up question on how big the effect is.

Instead of insisting on maximizing power or minimizing
length, we can choose a marginal CI that is a compromise
between the two choices of I presented above. For example,
the MQC interval of Weinstein & Yekutieli (2014) deter-
mines the sign earlier than the two-sided interval but not as
early as the “one-sided” interval. In turn, it leads to more
power than LORD++ applied to two-sided p-values (inter-
preted as a sign-classification procedure), and at the same
time it separates from zero for sufficiently large x. Figure 4
in Appendix C is taken from Weinstein & Yekutieli (2014)
and shows the endpoints of this CI for α = 0.1.

Section 5 demonstrates the potential gain in power due to
using the MQC interval.

5. Simulation
We carry out experiments where online confidence inter-
vals are constructed under different (predictable) selection
schemes. Setting α = 0.1, in each of N = 10, 000 simula-
tions we draw m = 10, 000 parameters i.i.d. from a mixture

θi =

{
0.5δ10−3 + 0.5δ−10−3 , w.p. 0.9

1 +Wi, w.p. 0.1
,

where Wi ∼ Pois(1). The mass at ±10−3 represents the
“null” component (essentially zero), while the “nonnulls”
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are drawn so that large effects are rare. We then draw the
observations Xi ∼ N(θi, 1). In our implementation, the
LORD-CI algorithm always uses the sequence of αi of the
LORD++ procedure (Ramdas et al., 2017) with W0 = α/2,
γ(j) = 0.0722 log(j∨2)

je
√

log j , as in the experiments of Javanmard
& Montanari (2018); Ramdas et al. (2017). For a conditional
CI we used the construction from Weinstein et al. (2013,
Section 2) obtained by inverting shortest acceptance regions.

In the first simulation a CI is constructed when |Xi| > 3.
Figure 1 shows conditional CIs versus LORD-CI intervals
for a single realization. The conditional CIs are considerably
shorter than LORD-CI; in particular, the conditional CIs re-
semble the marginal two-sided 90% interval for large obser-
vations. LORD-CI appears conservative with FCP = 0.043
as compared to about 0.1 for conditional. Both the condi-
tional and LORD-CI intervals may cross zero, as shown in
the plot. in fact, as many as 53% of the conditional CIs cross
zero, and 38% of LORD-CI intervals cross zero. Note that
the lower endpoint of the CI is monotone non-decreasing for
the conditional intervals, but not for LORD-CI. The condi-
tional intervals seem preferable in this situation (and indeed
this is a situation where it is easy to construct a conditional
interval if so desired, but this should be thought of as rare).

The second simulation example illustrates a situation where
we are interested first in detecting the sign of the parameters,
and second in supplementing a directional decision with
confidence bounds. Parameters are selected relying on the
sign-determining LORD-CI procedure of Section 4, that is,
θi is selected whenever the candidate LORD-CI interval ex-
cludes zero. We are free to choose the (monotone) marginal
CI used with the LORD-CI algorithm: the symmetric two-
sided marginal CI amounts to selecting according to the
LORD++ testing protocol utilizing two-sided p-values, and
supplementing each selection with a decision on the sign
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Figure 1. LORD-CI vs. conditional CIs, selection above a fixed
threshold. The figure shows constructed intervals as vertical seg-
ments, conditional CIs in red and LORD-CI in black. Black dashed
line is the identity line, and the yellow dashed lines represent the
endpoints of the marginal (unadjusted) 90% interval.

according to the sign of Xi. Instead, to increase power, we
can use a marginal CI that itself has early sign determina-
tion, as explained in Section 4. We implemented both, first
equipping the sign-determining LORD-CI procedure with
the symmetric interval, and second with the MQC interval
of Weinstein & Yekutieli (2014). The latter always selects
at least as many parameters as the former. In both cases, the
constructed CIs are (by design) compatible with the primary
decision on the sign, i.e., none of the CIs includes values
of opposite signs. As in the first simulation, we constructed
also conditional CIs as a competitor to our method.

Table 2 displays averages over the N rounds as a summary
of the simulation. Except for the FCR for LORD-CI inter-
vals being excessively small, the results are in line with our
expectations. Figure 2 displays adjusted LORD-CI marginal
CIs along with conditional CIs for the selected parameters,
for a single realization of the experiment. MQC resulted in
a 13% increase in the number of parameters selected.

Symmetric MQC
LORD-CI cond. LORD-CI cond.

FCR 0.03 0.1 0.032 0.1
mFCR 0.031 0.1 0.032 0.1
E
∑

i Si 133.5 133.5 154.4 154.4
E

∑
i Si·Ai∑

i Si
1 0.533 1 0.527

Table 2. Summary for the second simulation example. In the
headline, “Symmetric” and “MQC” indicate what marginal CI
equips the LORD-CI procedure. In the last row, Ai is the indicator
for the event that the reported CI is sign-determining.

3.0 3.5 4.0 4.5 5.0 5.5 6.0

0
2

4
6

8
10

x

θ

FCP = 0.031
FCP = 0.094

3.0 3.5 4.0 4.5 5.0 5.5 6.0

0
2

4
6

8
10

x

θ

FCP = 0.042
FCP = 0.083

Figure 2. LORD-CI vs. conditional CIs, selection by the sign-
determining LORD-CI procedure. The figure shows constructed
intervals as vertical segments: conditional CIs in red, LORD-CI in
black. Black dashed line is the identity line, and the yellow (diag-
onal, light) dashed lines represent the endpoints of the marginal
(unadjusted) 90% interval. Left: selection utilizes the usual sym-
metric interval. Right: selection utilizes the MQC interval.
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The conditional CIs are significantly shorter than LORD-CI
for large observations. However, the conditional intervals
may cross zero. In fact, more than half (51.2%) of the
conditional CIs include both positive and negative values.
As mentioned in the introduction, in many applications it
would be desirable to report CIs that do not cross zero, and in
that sense LORD-CI has here a clear advantage. In practice,
one might be tempted to remove the conditional CIs that
include zero; of course, with this strategy we lose FCR
control—in our example, the FCP would increase to 0.2
if we kept only the intervals excluding zero. An elaborate
discussion is included in Section B.1.

6. Discussion
In a multiplicity problem, a sequence of unknown param-
eters θi, i ≤ m ∈ N ∪ {∞} is considered simultaneously,
and for each we observe dataXi that is informative about θi.
The main task is usually to use the observations to localize
“interesting” parameters in the sequence, while controlling
in some specified sense the rate of erroneous localizations.

In realistic situations, it is often the case that: (i) the Xi

arrive one by one, and we have to make decisions on the fly;
(ii) we are concerned with more complicated problems than
testing a sequence of point null hypotheses. For example,
we might want to know which θi are bigger than 10 and
which are smaller than −5, as opposed to simply testing
whether θi > 0; and (iii) there is a follow-up question to the
primary one, e.g., if a drug can be declared to improve by at
least 10%, we would also like to know also how large the
improvement is at most.

We offer methodology to address all of the concerns in the
list above. The basic tool is an online algorithm for adjusting
the levels of selective marginal CIs so that we have control
over the false coverage rate for any predictable selection
rule. We show how to instantiate our online CI procedure to
provide answers to items 2 and 3 in the list above: adapted
to the example above, we would offer an online procedure
that reports only CIs that are either contained in (10,∞) or
contained in (−∞,−5), while ensuring that FCR ≤ α at
any point in time. The power of the online FCR procedure
as a localization rule, and the shape/length of the reported
CIs, is determined by the choice of the underlying marginal
CI rule being used. The CI rules are allowed to be arbitrary
in this paper, and we offered some insights on their interplay
with FSR control. The methodology itself applies to any
observation space X and any parameter space Θ.

We note that except for LORD++, we do not think that
FCR analogs exist for other known online FDR procedures
such as alpha-investing (Foster & Stine, 2008), generalized
alpha-investing (Aharoni & Rosset, 2014), or the recent
“adaptive” algorithms like SAFFRON (Ramdas et al., 2018)

or ADDIS (Tian & Ramdas, 2019).

From a practical viewpoint, the procedure of Definition 2
may have important implications. While we did not mention
this explicitly in Section 4.1, Li and the sets Kil may more
generally be predictable rather than fixed (the guarantees
on FLR control will not change). This allows considerable
flexibility because by choosing these adaptively, the statis-
tician is able to change the type of decision made at each
time step. For example, at t = 1 she may be interested in
testing a null hypothesis, at t = 2 in classifying the sign
of θt, and at t = 3 in constructing an interval that includes
only values bigger than, say, 0.5. Thus, one might say
that the LORD-CI algorithm really controls the ‘false
decision rate’, where the type of decision can itself be
determined online. This observation is particularly useful
in applied large-scale experimentation where the aim of
each experiment is usually different, and a joint error rate
may be otherwise hard to define (and control).

We end this article with an important remark. Keeping
with historical treatment of multiple testing problems, it felt
natural to write this article in terms of parameters and CIs,
but our entire methodology for FCR control goes through
seamlessly for prediction intervals as well. For instance,
consider a regression problem where we are given a training
dataset (X tr

j , Y
tr
j ) ∼ PX × PY |X and a sequence of test

points Xi ∼ PX at which we may want to make predictions.
We may treat the unknown Yi in the same way as we treated
the unknown θi in this paper. On observing Xi, we may
decide whether we wish to report a prediction interval Ii
for Yi or not (and this decision Si could be based on the
previous selection decisions F i−1 and on Ii). As long as
for each i, we can construct marginally valid intervals, i.e.,

Pr
{
Yi ∈ Ii(Xi, αi)

∣∣ F i−1
}
≤ αi,

then the FCR (or other variants) for the selected prediction
intervals will be controlled exactly as in the case of selected
confidence intervals.

The above insight has particularly important ramifications
for conformal prediction, which is a way of constructing
distribution-free marginal predictive intervals (Vovk et al.,
2005; Shafer & Vovk, 2008). Indeed, it is also well known
that distribution-free conditional inference is impossible
(Vovk, 2012; Lei & Wasserman, 2014; Barber et al., 2020).
Our constructions allow for distribution-free selective infer-
ence of black-box prediction intervals. This is a reasonable
middle ground between fully marginal inference (standard
conformal) and fully conditional inference (impossible). To
avoid introducing an entirely new problem in the discussion,
we include a few more details for the interested reader in
Section D of the supplement.
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