
Online False Coverage Rate Control

Supplement to “Online Control of the False Coverage
Rate and False Sign Rate” by Weinstein & Ramdas.

A. Proofs
Proof of Lemma 1. Recall that we wish to prove

E

 Si1θi /∈Ii∑
j≤T Sj︸ ︷︷ ︸
Ai

 ≤ E

[
αi∑
j≤T Sj

]
.

Without loss of generality, we can ignore the case when
Si = 0 almost surely for some i; in other words, if we
would never select θi, then Vi = 0 almost surely, and we
can just ignore the time instant i. Hence, we only consider
the case when at least one value of Xi leads to selection.

To derive a bound on E [Ai], consider the following thought
experiment. Let us hallucinate what selection decisions
would have occurred under a slightly different series of
observations, namely

X̃ := (X1, X2, . . . , Xi−1, X
∗, Xi+1, . . . , XT ),

where X∗ is any value that would have led to selection of θi,
which is a predictable choice, because it can be made based
on only the predictable selection rule §i. Let the sequence
of selection decisions made by the same algorithm on X̃ be
denoted S̃i, the levels be denoted α̃i, and the constructed
intervals be Ĩi. We then claim that

Ai ≡
Si1θi /∈Ii∑
j≤T Sj

=
Si1θi /∈Ii∑
j≤T S̃j

=: Ãi,

where we have intentionally altered only the denominator.
To see that the above equality holds, first note that if Si = 0,
then Ai = Ãi = 0. Then note that if Si = 1, then S̃i = Si
for all i. Indeed, because Xj = X̃j , for j ≤ i− 1, the first
i− 1 selection decisions are identical by construction; then
if Si = 1 (and S̃i = 1 by construction), then F i = F̃ i, and
so every future selection decision is also identical (and also
the constructed CIs, at levels αi). Hence,
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[
Ãi

] (a)

≤ E

[
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]
(b)
= E

[
1∑

j≤T S̃j
E
[
1θi /∈Ii

∣∣∣ F̃n\i]]
(c)

≤ E

[
αi∑
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]
(d)

≤ E

[
αi∑
j≤T Sj

]
,

where inequality (a) holds because Si ≤ 1, equality (b)

follows because 1∑
j≤T S̃j

is F̃n\i-measurable because S̃i =

1 by construction, inequality (c) holds by definition (2) of a
marginal CI, and inequality (d) holds because S̃j ≥ Sj for
all j by the monotonicity of selection rules. This completes
the proof of the lemma.

The above is a generalization of lemmas that have been
proved in the context of online FDR control by (Javanmard
& Montanari, 2018; Ramdas et al., 2017), since the selection
event {Si = 1} may or may not be associated with the
miscoverage event {θi /∈ Ii}, but in online FDR control, the
rejection event {Ri = 1} ≡ {Pi ≤ αi} is obviously directly
related to the false discovery event {Pi ≤ αi, i ∈ H0}. We
will later see that online FCR control captures online FDR
control as a special case.

Proof of Theorem 3. Note that the selection rule in Defini-
tion 2 can be rewritten as

Si(Xi, Ii) = 1 ⇐⇒ Xi ∈ {x : Ii(x, αi) ⊆ Kil for some l},
(9)

which defines a predictable selection rule because αi are
predictable. Thus, the procedure in Definition 2 is LORD-
CI for a predictable selection rule. Because the CI rules Ii
are monotone, and the αi output by the LORD-CI algorithm
are also monotone by construction, we conclude that the
selection rule (9) is also monotone according to condition
(4). Hence, the procedure in Definition 2 is now the LORD-
CI procedure for a predictable and monotone selection rule,
which controls the FCR by Theorem 2. The last step is
to observe that a false localization event implies a false
coverage event (but not necessarily the other way around),
and hence FLR(T ) ≤ FCR(T ) ≤ α.

B. Further discussion of conditional CIs
In this section we provide a more formal treatment of the
conditional approach. In this approach, a nominal (1− α)
conditional CI is constructed for each selection. Note that it
is often simpler to condition also on F i−1, that is, to design
the conditional CI so that for all a ∈ [0, 1],

Pr
{
θi /∈ Ii(Xi, a)

∣∣ F i−1, Si = 1
}
≤ a. (10)

We start with proving that constructing conditional CIs con-
trols the mFCR at level α.

Theorem 4. Constructing a (1 − α) conditional CI after
every selection ensures that ∀T ∈ N,mFCR(T ) ≤ α.

Proof. From the definition of a conditional CI it follows
immediately that

E [Vi | Si = 1] = E [Iθi /∈Ii | Si = 1]

= Pr{θi /∈ Ii | Si = 1}
≤ α.
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Together with the fact that E [Vi | Si = 0] = 0, we have

E [Vi | Si] ≤ α a.s.,

and hence,

E

[∑
i

Vi

]
=
∑
i

E [Vi] =
∑
i

E [SiVi]

=
∑
i

E [SiE [Vi | Si]] ≤
∑
i

E [αSi]

= α
∑
i

E [Si] = αE

[∑
i

Si

]
.

Rearranging the first and last displays above yields the de-
sired result.

Constructing conditional CIs at the nominal level ensures
also that FCR is controlled. As a matter of fact, even the con-
ditional expectation of FCP given that at least one selection
is made,

pFCR(T ) := E

[
FCP(T )

∣∣∣∣∣
T∑
i=1

Si > 0

]
,

is controlled when using conditional CIs. We call the above
the positive FCR, in analogy to the positive FDR (Storey,
2003).

Theorem 5. Constructing a (1 − α) conditional CI after
every selection ensures that

pFCR(T ) ≤ α ∀T ∈ N.

Proof. Consider any sequence (s1, . . . , sT ) ∈ {0, 1}T such
that

∑
i si > 0. We have

E
[∑

i Vi∑
i Si

∣∣∣∣ S1 = s1, . . . , ST = sT

]
=

1∑
i si

E

[∑
i
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]

=
1∑
i si

E
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1∑
i si
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Pr{θi /∈ Ii | S1 = s1, . . . , ST = sT }

(a)
=

1∑
i si
·∑

{i≤T :si=1}

Pr{θi /∈ Ii | S1 = s1, . . . , Si−1 = si−1, Si = 1}

≤ 1∑
i si

∑
{i≤T :si=1}

α

= α,

where equality (a) uses the fact that the selection decisions
(Si+1, . . . , ST ) are independent of Xi given (S1, . . . , Si)
because the selection rules {Sj} are predictable. The origi-
nal claim follows by taking expectation over the conditional
distribution of S1, . . . , ST given that

∑T
i=1 Si > 0.

We immediately conclude that with conditional (1− α) CIs
we also have

FCR(T ) = pFCR(T ) ·Pr

{
T∑
i=1

Si > 0

}
≤ pFCR(T ) ≤ α.

B.1. An inconsistency of conditional CIs

We mentioned two main points of criticism regarding the
conditional approach. One was the potential difficulties in
actually computing conditional CIs in general. The second
point was incompatibility of conditional CIs when solv-
ing a localization problem, for example, when constructing
follow-up CIs after multiple hypothesis testing. In this sub-
section we look more carefully into the latter.

In realistic situations where our (online) model might be
applicable, it is almost always the case that the researcher
has in mind a question of primary importance and one (or
more) of secondary importance. In the motivating example
from the Introduction, the management might be interested
first in knowing the sign of the parameters θi (say positive
or nonpositive), but would also like to supplement with con-
fidence limits each parameter whose sign was classified. In
general, it is common practice to answer the question of pri-
mary interest by running a multiple comparisons procedure,
for example a multiple hypothesis testing rule or, as would
apply to our example, a multiple sign-classification rule.
Because the follow-up question is posed only if the first
question was answered (e.g., we want a CI only if we were
able to classify the sign), the conditional approach might
appear as natural to use at the second stage. Nevertheless,
the purpose of this section is to demonstrate that construct-
ing conditional CIs after running a multiple comparisons
procedure might lead to contradictions. Moreover, if one
insists on conditional CIs, the price of “resolving” these
incompatibilities might be a serious loss in power.

Before proceeding, we would like to explain why we
view the issue of incompatibility as problematic. Con-
sider for simplicity the offline setting and suppose that
Xi ∼ N(θi, 1). Suppose that a level-α FSR procedure
yielded a subset of parameters θi whose signs are classified
as positive or non-positive. For example, this subset may
include θ2 and θ5, with the sign of θ2 classified as positive,
and the sign of θ5 classified as nonpositive. Trivially, then,
the (somewhat artificial) CIs given by (0,∞) for θ2 and
(−∞, 0] for θ5—and similarly for all other θi whose sign
was classified—control the FCR at α. In other words, there
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Figure 3. Conditional CIs following LORD++ selection. The left
panel shows the 76 conditional 90% CIs originally constructed for
rejected nulls. In the middle panel we kept only the 24 intervals
that do not cover zero. The right panel shows these 24 intervals
again (solid lines), but now along with their re-adjusted version
(dashed lines). 2/3 of the re-adjusted conditional CIs again cross
zero.

exists at least one (trivial) CI protocol that controls the FCR
and is consistent with the FSR procedure, in the sense that
if the sign of θi was classified as positive (nonpositive) then
the followup CI contains only positive (nonpositive) values.
We therefore find it hard to justify a situation where one
applies some valid FSR protocol, and follows up with CIs
that provably control the FCR at the same level but 50% of
them cross zero.

Let us now return to the motivating story of the Introduction,
which we will here accompany with a simulation for illustra-
tion. Thus, we set α = 0.1 and draw m = 10, 000 parame-
ters independently such that θi = (−1)i · 0.001 (effectively
“null”) with probability 0.8, and θi = 2 with probability 0.2.
These represent the ground truth for the treatment effects
of the first m drugs. The observations, which we assume
arrive independently one at a time, are Xi ∼ N(θi, 1). In
the Introduction a CI was reported onceXi exceeded a fixed
threshold. Suppose now that the statisticians are interested
first in classifying the sign of a parameter as positive (“treat-
ment effective”) or nonpositive (“treatment ineffective”),
and then follow up with CIs for those parameters whose
sign was classified. To answer the first question, and being
aware of multiplicity issues, the team decides to run the
LORD++ testing procedure on two-sided p-values, where
for each rejection they classify the sign as positive or non-
positive according as Xi is positive or nonpositive. This
resulted in 76 selections in our simulation run, and makes
sense as a criterion for whether to report an interval or
not, because we know from the results of the current paper
that the FSR is controlled. Furthermore, remember that, as
shown in Section C, constructing the LORD-CI symmetric
interval for each selected parameter, ensures at the same

time control of the FCR and that none of the constructed
CIs includes values of opposite signs. This is an output the
management will, arguably, be content with seeing, at least
in the sense that each reported CI is conclusive about the
direction of the effect of the corresponding drug (because
the intervals do not cross zero).

Instead, suppose that the statisticians will actually construct
a 90% conditional CI for each selected parameter. Now,
because we use conditional CIs, it is impossible to ensure
that a constructed interval includes values of only one sign
(that is, does not cross zero)—this is true no matter what
choice we make for the conditional CI rule. Here we used
the conditional CI of Weinstein et al. (2013) which inverts
shortest acceptance regions. The left panel of Figure 3
shows the 76 constructed 90% conditional CIs. We know
that this strategy controls the FCR (in our single realiza-
tion of the experiment 14.5% of the constructed intervals
are non-covering), but, less conveniently, there are also 52
(about 68%!) of these that cross zero. Hence, the team of
statisticians will first have to reconcile the fact that on the
one hand, each selected parameter can be safely classified
for sign (as far as FSR is controlled), and on the other hand
some intervals still include both positive and negative values.
In any case—even if this incompatibility is overlooked—the
management should certainly complain about the CIs that
cross zero (because these are ambiguous about the direction
of the effect of the corresponding drug). Trying to rectify
the situation, they may ask to remove all CIs that do cross
zero; unfortunately, doing this they would generally lose
FCR control. The middle panel of Figure 3 shows the sub-
set of (original) conditional CIs which do not cross zero;
almost half of these (45.8%) do not cover their parameter.
Nevertheless, the statisticians might propose at this stage to
still keep only the CIs that do not cross zero, but re-adjust
them for the fact that further selection took place, by con-
structing again conditional CIs with an appropriate cutoff.
This will admittedly restore FCR control: the right panel
of Figure 3 shows the re-adjusted CIs with dashed lines,
and the proportion of such intervals that fail to cover their
parameter drops again to 0.125. The problem is that some
of the re-adjusted CI cross zero again (in fact, a much higher
proportion than that in the first place), taking us back to the
previous stage. If we were now to repeat the process by
discarding the new 16 re-adjusted CIs that cross zero, we
would be left with only 8 selections before even adjusting
the CIs again. In other words, we are already down from the
76 sign-determining LORC-CI intervals to no more than 8 if
we use conditional CIs. In general, this cycle could continue
until there are very few parameters to report a CI for (maybe
none). We should remark at this point that using a condi-
tional CI that has better sign-determining properties, like
the two options in Weinstein et al. (2013), could improve
the results for the conditional approach, that is, we might
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end up with more reported CIs. However, as we remarked
before, the phenomenon in its essence remains regardless of
the choice of the conditional CI.

C. An illustration of the Modified
Quasi-Conventional (MQC) marginal CI
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Figure 4. The Modified Quasi-Conventional (MQC) CI rule of
Weinstein & Yekutieli (2014). Solid lines are lower and upper end-
points of the MQC CI for each observation value x. Dotted lines
are lower and upper endpoints of the usual two-sided CI. It can
be seen that the MQC interval excludes values of opposite signs
earlier, that is at a smaller x value, than the usual two-sided CI.
The parameter ψ ∈ (0.5, 1) controls how early sign-determination
occurs, and here ψ = 0.7 is used. The unusual constant shape of
the MQC in the neighborhood of zero does not matter because in-
tervals that cross zero are anyway discarded in a sign-determining
selective-CI procedure.

D. Selective conformal inference
Conformal prediction is a general nonparametric technique
for producing marginally valid prediction intervals under
almost no regularity assumptions on the data generating
process beyond exchangeability of the data. A simple
version of the setup can be explained as follows. Let
(X1, Y1), . . . , (Xn, Yn) be drawn i.i.d. from some joint dis-
tribution PXY = PX × PY |X , which are supported on the
domain X × Y , where for simplicity let Y = R. Given a
test point Xn+1 drawn i.i.d. from PX , our task is to provide
a prediction interval for the unobserved Yn+1.

Conformal prediction begins by hallucinating a value y,
to form a new dataset (X1, Y1), . . . , (Xn, Yn), (Xn+1, y).
One may then train any regression algorithm f : X → Y
on this set of n + 1 points to obtain f̂ , and calculate the
n + 1 in-sample residuals ri = Yi − f̂(Xi) for i ∈ [n]

and rn+1 = y − f̂(Xn+1). We then “reject” y if rn+1 is

in the largest α-quantile of all n + 1 residuals. We then
repeat this whole process for every possible y ∈ Y . The
final prediction interval I(Xn+1, α) consists of all those ys
that we did not reject. The intuition is that when y = Yn+1,
then all n+ 1 residuals are exchangeable, and so the rank of
rn+1 among r1, . . . , rn+1 is uniform. Hence the probability
of rejecting y = Yn+1 and excluding it from the interval,
equals the probability that rn+1 is in the largest α-quantile
of r1, . . . , rn+1, which is at most α. The formal guarantee
is that In+1 := I(Xn+1, α) is marginally valid:

Pr{Yn+1 /∈ I(Xn+1, α)} ≤ α,

where the probability is taken over all (n+ 1) draws from
PXY . Remarkably, this guarantee holds with no assump-
tions on the distribution PXY or on the regression algorithm
f (these may affect the length of the intervals, but not their
validity). However, a conditional conformal guarantee is
in general impossible, meaning that if we do not make any
distributional assumptions and we would like a guarantee
of the form

Pr{Yn+1 /∈ I(Xn+1, α)|Xn+1 = x} ≤ α

to hold for any x, then the corresponding conditional con-
formal interval I(Xn+1, α) must have infinite length. The
impossibility of fully conditional conformal prediction was
pointed out by Vovk (2012), elaborated further by Lei &
Wasserman (2014) and Barber et al. (2020).

The relationship of the above discussion to the current paper
is as follows. There was nothing in particular that restricted
the setup of the current paper to confidence intervals for
parameters θi based on observations Xi. The setup just
as easily covers prediction intervals for outcomes Yi based
on features Xi. To understand the implications, suppose
we were to observe a sequence Xn+1, . . . , Xn+m, . . . of
test points drawn i.i.d. from PX , and we do not wish to
cover all of the corresponding Y s but just some subset of
them. Then, one may construct marginally valid prediction
intervals (at predictable levels αi using LORD-CI) for an
adaptively selected subset of Xis, and this paper provides
an FCR control guarantee on those selected intervals.

Hence, even though conditional conformal inference is im-
possible, our works implies that “selective conformal infer-
ence” is possible. There is no contradiction here: an FCR
guarantee is weaker than a conditional guarantee. Also, the
FCR guarantee cannot really be used to get a conditional
guarantee; indeed, if one was to only select Xi for coverage
if it is in a very small ε-ball around a given point x (to ap-
proximate the conditional coverage guarantee), then such
selections would be very infrequent, and the αi used would
be very close to zero, resulting in an exceedingly wide in-
terval. As ε→ 0, we would also see αi → 0, and thus the
length of the selected interval would become infinite.
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We end this section by remarking that nothing was particular
to conformal prediction intervals; the FCR guarantees would
also apply to any other marginally-valid prediction intervals.
Further, there was also nothing particular to the online set-
ting; indeed, such FCR control can also be guaranteed in
the offline setting.


