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Abstract 
Plug-and-play (PnP) is a non-convex framework 
that combines ADMM or other proximal algo-
rithms with advanced denoiser priors. Recently, 
PnP has achieved great empirical success, espe-
cially with the integration of deep learning-based 
denoisers. However, a key problem of PnP based 
approaches is that they require manual parameter 
tweaking. It is necessary to obtain high-quality 
results across the high discrepancy in terms of 
imaging conditions and varying scene content. In 
this work, we present a tuning-free PnP proximal 
algorithm, which can automatically determine the 
internal parameters including the penalty parame-
ter, the denoising strength and the terminal time. 
A key part of our approach is to develop a pol-
icy network for automatic search of parameters, 
which can be effectively learned via mixed model-
free and model-based deep reinforcement learn-
ing. We demonstrate, through numerical and vi-
sual experiments, that the learned policy can cus-
tomize different parameters for different states, 
and often more effcient and effective than exist-
ing handcrafted criteria. Moreover, we discuss 
the practical considerations of the plugged denois-
ers, which together with our learned policy yield 
state-of-the-art results. This is prevalent on both 
linear and nonlinear exemplary inverse imaging 
problems, and in particular, we show promising 
results on Compressed Sensing MRI and phase 
retrieval. 

1. Introduction 
The problem of recovering an underlying unknown im-
age x ∈ RN from noisy and/or incomplete measured data 
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y ∈ RM is fundamental in computational imaging, in ap-
plications including magnetic resonance imaging (MRI) 
(Fessler, 2010), computed tomography (CT) (Elbakri & 
Fessler, 2002), microscopy (Aguet et al., 2008; Zheng et al., 
2013), and inverse scattering (Katz et al., 2014; Metzler 
et al., 2017b), to name a few. This image recovery task is 
often formulated as an optimization problem that minimizes 
a cost function, i.e., 

minimize D (x) + λR (x) , (1) 
x∈RN 

where D is a data-fdelity term that ensures consistency 
between the reconstructed image and measured data. R 
is a regularizer that imposes certain prior knowledge, e.g. 
smoothness (Osher et al., 2005; Ma et al., 2008), sparsity 
(Yang et al., 2010; Liao & Sapiro, 2008; Ravishankar & 
Bresler, 2010), low rank (Semerci et al., 2014; Gu et al., 
2017) and nonlocal self-similarity (Mairal et al., 2009; Qu 
et al., 2014), regarding the unknown image. The problem in 
Eq. (1) is often solved by frst-order iterative proximal algo-
rithms, e.g. fast iterative shrinkage/thresholding algorithm 
(FISTA) (Beck & Teboulle, 2009) and alternating direc-
tion method of multipliers (ADMM) (Boyd et al., 2011), to 
tackle the nonsmoothness of the regularizers. 

To handle the nonsmoothness caused by regularizers, frst-
order algorithms rely on the proximal operators (Beck & 
Teboulle, 2009; Boyd et al., 2011; Chambolle & Pock, 2011; 
Parikh et al., 2014; Geman, 1995; Esser et al., 2010) defned 
by 

� 1 � 
Proxσ2R(v) = argmin R(x) + kx − vk22 . (2)

2σ2 
x 

Interestingly, given the mathematical equivalence of the 
proximal operator to the regularized denoising, the proximal 
operators Proxσ2R can be replaced by any off-the-shelf 
denoisers Hσ with noise level σ, yielding a new framework 
namely plug-and-play (PnP) prior (Venkatakrishnan et al., 
2013). The resulting algorithms, e.g. PnP-ADMM, can be 
written as 

xk+1 = Proxσ2 R (zk − uk) = Hσk (zk − uk) , (3)
k 

zk+1 = Prox 1 D (xk+1 + uk) , (4) 
µk 

uk+1 = uk + xk+1 − zk+1, (5) 
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where k ∈ [0, τ) denotes the k-th iteration, τ is the terminal 
time, σk and µk indicate the denoising strength (of the 
denoiser) and the penalty parameter used in the k-th iteration 
respectively. 

In this formulation, the regularizer R can be implicitly de-
fned by a plugged denoiser, which opens a new door to 
leverage the vast progress made on the image denoising 
front to solve more general inverse imaging problems. To 
plug well-known image denoisers, e.g. BM3D (Dabov et al., 
2007) and NLM (Buades et al., 2005), into optimization al-
gorithms often leads to sizeable performance gain compared 
to other explicitly defned regularizers, e.g. total variantion. 
That is PnP as a stand-alone framework can combine the ben-
efts of both deep learning based denoisers and optimization 
methods, e.g. (Zhang et al., 2017b; Rick Chang et al., 2017; 
Meinhardt et al., 2017). These highly desirable benefts are 
in terms of fast and effective inference whilst circumvent-
ing the need of expensive network retraining whenever the 
specifc problem changes. 

Whilst a PnP framework offers promising image recovery re-
sults, a major drawback is that its performance is highly sen-
sitive to the internal parameter selection, which generically 
includes the penalty parameter µ, the denoising strength 
(of the denoiser) σ and the terminal time τ . The body of 
literature often utilizes manual tweaking e.g. (Rick Chang 
et al., 2017; Meinhardt et al., 2017) or handcrafted crite-
ria e.g. (Chan et al., 2017; Zhang et al., 2017b; Eksioglu, 
2016; Tirer & Giryes, 2018) to select parameters for each 
specifc problem setting. However, manual parameter tweak-
ing requires several trials, which is very cumbersome and 
time-consuming. Semi-automated handcrafted criteria (for 
example monotonically decreasing the denoising strength) 
can, to some degree, ease the burden of exhaustive search of 
large parameter space, but often leads to suboptimal local 
minimum. Moreover, the optimal parameter setting differs 
image-by-image, depending on the measurement model, 
noise level, noise type and unknown image itself. These dif-
ferences can be noticed in the further detailed comparison in 
Fig. 1, where peak signal-to-noise ratio (PSNR) curves are 
displayed for four images under varying denoising strength. 

This paper is devoted to addressing the aforementioned 
challenge – how to deal with the manual parameter tuning 
problem in a PnP framework. To this end, we formulate the 
internal parameter selection as a sequential decision-making 
problem. To do this, a policy is adopted to select a sequence 
of internal parameters to guide the optimization. Such prob-
lem can be naturally ft into a reinforcement learning (RL) 
framework, where a policy agent seeks to map observations 
to actions, with the aim of maximizing cumulative-reward. 
The reward refects the to do or not to do events for the 
agent, and a desirable high reward can be obtained if the 
policy leads to a faster convergence and better restoration 

Figure 1. Compressed Sensing MRI using radial sampling pattern 
with 20% sampling rate, where PSNR curves of four medical 
images are displayed - using PnP-ADMM with different denoising 
strengths. Different images requires different denoising strengths 
to reach the optimal performance. 

accuracy. 

We demonstrate, through extensive numerical and visual 
experiments, the advantage of our algorithmic approach on 
Compressed Sensing MRI and phase retrieval problems. We 
show that the policy well approximates the intrinsic function 
that maps the input state to its optimal parameter setting. 
By using the learned policy, the guided optimization can 
reach comparable results to the ones using oracle parameters 
tuned via the inaccessible ground truth. An overview of 
our algorithm is shown in Fig. 2. Our contributions are as 
follows: 

1. We present a tuning-free PnP algorithm that can cus-
tomize parameters towards diverse images, which often 
demonstrates faster practical convergence and better 
empirical performance than handcrafted criteria. 

2. We introduce an effcient mixed model-free and model-
based RL algorithm. It can optimize jointly the dis-
crete terminal time, and the continuous denoising 
strength/penalty parameters. 

3. We validate our approach with an extensive range of 
numerical and visual experiments, and show how the 
performance of the PnP is affected by the parameters. 
We also show that our well-designed approach leads to 
better results than state-of-the-art techniques on com-
pressed sensing MRI and phase retrieval. 

2. Related Work 
The body of literature has reported several PnP algorithmic 
techniques. In this section, we provide a short overview of 
these techniques. 
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Figure 2. Overview of our tuning-free plug-and-play framework 
(taking CS-MRI problem as example). 

Plug-and-play (PnP). The defnitional concept of PnP was 
frst introduced in (Danielyan et al., 2010; Zoran & Weiss, 
2011; Venkatakrishnan et al., 2013), which has attracted 
great attention owing to its effectiveness and fexibility to 
handle a wide range of inverse imaging problems. Follow-
ing this philosophy, several works have been developed, 
and can be roughly categorized in terms of four aspects, 
i.e., proximal algorithms, imaging applications, denoiser 
priors, and the convergence. (i) proximal algorithms in-
clude half-quadratic splitting (Zhang et al., 2017b), primal-
dual method (Ono, 2017), generalized approximate message 
passing (Metzler et al., 2016b) and (stochastic) accelerated 
proximal gradient method (Sun et al., 2019a). (ii) imaging 
applications have such as bright feld electronic tomography 
(Sreehari et al., 2016); diffraction tomography (Sun et al., 
2019a); low-dose CT imaging (He et al., 2018); Compressed 
Sensing MRI (Eksioglu, 2016); electron microscopy (Sree-
hari et al., 2017); single-photon imaging (Chan et al., 2017); 
phase retrieval (Metzler et al., 2018); Fourier ptychogra-
phy microscopy (Sun et al., 2019b); light-feld photography 
(Chun et al., 2019); hyperspectral sharpening (Teodoro et al., 
2018); denoising (Rond et al., 2016); and image processing – 
e.g. demosaicking, deblurring, super-resolution and inpaint-
ing (Heide et al., 2014; Meinhardt et al., 2017; Zhang et al., 
2019a; Tirer & Giryes, 2018). 

Moreover, (iii) denoiser priors include BM3D (Heide et al., 
2014; Dar et al., 2016; Rond et al., 2016; Sreehari et al., 
2016; Chan et al., 2017), nonlocal means (Venkatakrishnan 
et al., 2013; Heide et al., 2014; Sreehari et al., 2016), Gaus-
sian mixture models (Teodoro et al., 2016; 2018), weighted 
nuclear norm minimization (Kamilov et al., 2017), and deep 
learning-based denoisers (Meinhardt et al., 2017; Zhang 
et al., 2017b; Rick Chang et al., 2017). Finally, (iv) theo-
retical analysis on the convergence include the symmetric 
gradient (Sreehari et al., 2016), the bounded denoiser (Chan 
et al., 2017) and the nonexpansiveness assumptions (Sree-
hari et al., 2016; Teodoro et al., 2018; Sun et al., 2019a; Ryu 
et al., 2019; Chan, 2019). 

Differing from these aspects, in this work we focus on the 
challenge of parameter selection in PnP, where a bad choice 
of parameters often leads to severe degradation of the results 

(Romano et al., 2017; Chan et al., 2017). Unlike existing 
semi-automated parameter tuning criteria (Wang & Chan, 
2017; Chan et al., 2017; Zhang et al., 2017b; Eksioglu, 2016; 
Tirer & Giryes, 2018), our method is fully automatic and is 
purely learned from the data, which signifcantly eases the 
burden of manual parameter tuning. 

Automated Parameter Selection. There are some works 
that considering automatic parameter selection in inverse 
problems. However, the prior term in these works is re-
stricted to certain types of regularizers, e.g. Tikhonov reg-
ularization (Hansen & Ołeary, 1993; Golub et al., 1979), 
smoothed versions of the ` p norm (Eldar, 2008; Giryes et al., 
2011), or general convex functions (Ramani et al., 2012). To 
the best of our knowledge, none of them can be applicable 
to the PnP framework with sophisticated non-convex and 
learned priors. 

Deep Unrolling. Perhaps the most confusable concept to 
PnP in the deep learning era is the so-called deep unrolling 
methods (Gregor & LeCun, 2010; Hershey et al., 2014; 
Wang et al., 2016; Yang et al., 2016; Zhang & Ghanem, 
2018; Diamond et al., 2017; Metzler et al., 2017a; Adler & 
Oktem, 2018; Dong et al., 2018; Xie et al., 2019), which 
explicitly unroll/truncate iterative optimization algorithms 
into learnable deep architectures. In this way, the penalty 
parameters (and the denoiser prior) are treated as trainable 
parameters, meanwhile the number of iterations has to be 
fxed to enable end-to-end training. By contrast, our PnP 
approach can adaptively select a stop time and penalty 
parameters given varying input states, though using the 
off-the-shelf denoiser as prior. 

Reinforcement Learning for Image Recovery. Although 
Reinforcement Learning (RL) has been applied in a range 
of domains, from game playing (Mnih et al., 2013; Silver 
et al., 2016) to robotic control (Schulman et al., 2015), only 
few works have successfully employed RL to the image 
recovery tasks. Authors of that (Yu et al., 2018) learned 
a RL policy to select appropriate tools from a toolbox to 
progressively restore corrupted images. The work of (Zhang 
et al., 2019b) proposed a recurrent image restorer whose 
endpoint was dynamically controlled by a learned policy. 
In (Furuta et al., 2019), authors used RL to select a sequence 
of classic flters to process images gradually. The work 
of (Yu et al., 2019) learned network path selection for image 
restoration in a multi-path CNN. In contrast to these works, 
we apply a mixed model-free and model-based deep RL 
approach to automatically select the parameters for the 
PnP image recovery algorithm. 

3. Tuning-free PnP Proximal Algorithm 
In this work,we elaborate on our tuning-free PnP proximal 
algorithm, as described in (3)-(5). This section describes in 
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detail our approach, which contains three main parts. Firstly, 
we describe how the automated parameter selection is driven. 
Secondly, we introduce our environment model, and fnally, 
we introduce the policy learning, which is guided by a mixed 
model-free and a model-based RL. 

It is worth mentioning that our method is generic, and can 
be applicable to PnP methods derived from other proximal 
algorithms, e.g. forward backward splitting, as well. The 
reason is that these are distinct methods, they share the same 
fxed points as PnP-ADMM (Meinhardt et al., 2017). 

3.1. RL Formulation for Automated Parameter 
Selection 

This work mainly focuses on the automated parameter selec-
tion problem in the PnP framework, where we aim to select 
a sequence of parameters (σ0, µ0, σ1, µ1, · · · , στ−1, µτ −1) 

τto guide optimization such that the recovered image x is 
close to the underlying image x. We formulate this prob-
lem as a Markov decision process (MDP), which can be 
addressed via reinforcement learning (RL). 

We denote the MDP by the tuple (S, A, p, r), where S is the 
state space, A is the action space, p is the transition function 
describing the environment dynamics, and r is the reward 
function. Specifcally, for our task, S is the space of opti-
mization variable states, which includes the initialization 
(x0, z0, u0) and all intermedia results (xk, zk, uk) in the op-
timization process. A is the space of internal parameters, 
including both discrete terminal time τ and the continuous 
denoising strength/penalty parameters (σk, µk). The transi-
tion function p : S ×A 7→ S maps input state s ∈ S to its 
outcome state s0 ∈ S after taking action a ∈ A. The state 
transition can be expressed as st+1 = p(st, at), which is 
composed of one or several iterations of optimization. On 
each transition, the environment emits a reward in terms of 
the reward function r : S ×A 7→ R, which evaluates actions 
given the state. Applying a sequence of parameters to the 
initial state s0 results in a trajectory T of states, actions 
and rewards: T = {s0, a0, r0, · · · , sN , aN , rN }. Given a 

γtrajectory T , we defne the return r as the summation of t 
discounted rewards after st, 

N −tX 
γ r = γt0 

r(st+t0 , at+t0 ), (6)t 
t0=0 

where γ ∈ [0, 1] is a discount factor and prioritizes earlier 
rewards over later ones. 

Our goal is to learn a policy π, denoted as π(a|s) : S 7→ A 
for the decision-making agent, in order to maximize the 
objective defned as 

γJ (π) = Es0∼S0,T ∼π [r ] , (7)0 

where E represents expectation, s0 is the initial state, and 
S0 is the corresponding initial state distribution. Intuitively, 

the objective describes the expected return over all possible 
trajectories induced by the policy π. The expected return on 
states and state-action pairs under the policy π are defned 
by state-value functions V π and action-value functions Qπ 

respectively, i.e., 

γV π (s) = ET ∼π [r |s0 = s] , (8)0 
γQπ (s, a) = ET ∼π [r |s0 = s, a0 = a] . (9)0 

In our task, we decompose actions into two parts: a dis-
crete decision a1 on terminal time and a continuous deci-
sion a2 on denoising strength and penalty parameter. The 
policy also consists of two sub-policies: π = (π1, π2), a 
stochastic policy and a deterministic policy that generate 
a1 and a2 respectively. The role of π1 is to decide whether 
to terminate the iterative algorithm when the next state is 
reached. It samples a boolean-valued outcome a1 from a 
two-class categorical distribution π1(·|s), whose probability 
mass function is calculated from the current state s. We 
move forward to the next iteration if a1 = 0, otherwise 
the optimization would be terminated to output the fnal 
state. Compared to the stochastic policy π1, we treat π2 

deterministically, i.e. a2 = π2(s) since π2 is differentiable 
with respect to the environment, such that its gradient can 
be precisely estimated. 

3.2. Environment Model 

In RL, the environment is characterized by two components: 
the environment dynamics and reward function. In our task, 
the environment dynamics is described by the transition 
function p related to the PnP-ADMM. Here, we elucidate 
the detailed setting of the PnP-ADMM as well as the reward 
function used for training policy. 

Denoiser Prior. Differentiable environment makes the 
policy learning more effcient. To make the environment 
differentiable with respect to π2 

1, we take a convolutional 
neural network (CNN) denoiser as the image prior. In prac-
tice, we use a residual U-Net (Ronneberger et al., 2015) 
architecture, which was originally designed for medical im-
age segmentation, but was founded to be useful in image 
denoising recently. Besides, we incorporate an additional 
tunable noise level map into the input as (Zhang et al., 2018), 
enabling us to provide continuous noise level control (i.e. 
different denoising strength) within a single network. 

Proximal operator of data-fdelity term. Enforcing con-
sistency with measured data requires evaluating the proxi-
mal operator in (4). For inverse problems, there might exist 
fast solutions due to the special structure of the observation 
model. We adopt the fast solution if feasible (e.g. closed-
form solution using fast Fourier transform, rather than the 

1π1 is non-differentiable towards environment regardless of the 
formulation of the environment. 
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general matrix inversion) otherwise a single step of gradient 
descent is performed as an inexact solution for (4). 

Transition function. To reduce the computation cost, we 
defne the transition function p to involve m iterations of 
the optimization. At each time step, the agent thus needs to 
decide the internal parameters for m iterates. We set m = 5 
and the max time step N = 6 in our algorithm, leading to 
30 iterations of the optimization at most. 

Reward function. To take both image recovery perfor-
mance and runtime effciency into account, we defne the 
reward function as 

r(st, at) = ζ(p(st, at)) − ζ(st) − η. (10) 

The frst term, ζ(p(st, at)) − ζ(st), denotes the PSNR incre-
ment made by the policy, where ζ(st) denotes the PSNR of 
the recovered image at step t. A higher reward is acquired 
if the policy leads to higher performance gain in terms of 
PSNR. The second term, η, implies penalizing the policy 
as it does not select to terminate at step t, where η sets the 
degree of penalty. A negative reward is given if the PSNR 
gain does not exceed the degree of penalty, thereby encour-
aging the policy to early stop the iteration with diminished 
return. We set η = 0.05 in our algorithm2. 

3.3. RL-based policy learning 

In this section, we present a mixed model-free and model-
based RL algorithm to learn the policy. Specifcally, model-
free RL (agnostic to the environment dynamics) is used 
to train π1, while model-based RL is utilized to optimize 
π2 to make full use of the environment model3. We ap-
ply the actor-critic framework (Sutton et al., 2000), that 
uses a policy network πθ(at|st) (actor) and a value network 
V π(st) (critic) to formulate the policy and the state-value φ 
function respectively. For convenience, we follow (Huang 
et al., 2019) that uses residual structures similar to ResNet-
18 (He et al., 2016) as the feature extractor in the policy 
and value networks, followed by fully-connected layers and 
activation functions to produce desired outputs4. The policy 
and the value networks are learned in an interleaved man-
ner. For each gradient step, we optimize the value network 
parameters φ by minimizing � � 

1 
Lφ = Es∼B,a∼πθ (s) (r(s, a) + γV π(p(s, a)) − Vφ

π(s))2 ,
φ̂2 

(11) 

where B is the distribution of previously sampled states, 
practically implemented by a state buffer. This partly serves 

2The choice of the hyperparameters m, N and η is discussed 
in the suppl. material. 

3π2 can also be optimized in a model-free manner. The com-
parison can be found in the Section 4.2. 

4Details of networks are given in the suppl. material. 

Table 1. Comparisons of different CNN-based denoisers: we show 
the results of (1) Gaussian denoising performance (PSNR) un-
der noise level σ = 50; (2) the CS-MRI performance (PSNR) 
when plugged into the PnP-ADMM; (3) the GPU runtime (ms) of 
denoisers when processing an image with size 256 × 256. 

Performance DnCNN MemNet UNet 
DENOISING PERF. 27.18 27.32 27.40 

PNP PERF. 25.43 25.67 25.76 
TIMES 8.09 64.65 5.65 

as a role of the experience replay mechanism (Lin, 1992), 
which is observed to ”smooth” the training data distribution 
(Mnih et al., 2013). The update makes use of a target value 
network V π, where φ̂ is the exponentially moving average 

φ̂ 
of the value network weights and has been shown to stabilize 
training (Mnih et al., 2015). 

The policy network has two sub-policies, which employs 
shared convolutional layers to extract image features, fol-
lowed by two separated groups of fully-connected layers 
to produce termination probability π1(·|s) (after softmax) 
or denoising strength/penalty parameters π2(s) (after sig-
moid). We denote the parameters of the sub-polices as θ1 

and θ2 respectively, and we seek to optimize θ = (θ1, θ2) 
so that the objective J(πθ) is maximized. The policy net-
work is trained using policy gradient methods (Peters & 
Schaal, 2006). The gradient of θ1 is estimated by a likeli-
hood estimator in a model-free manner, while the gradient 
of θ2 is estimated relying on backpropagation via environ-
ment dynamics in a model-based manner. Specifcally, for 
discrete terminal time decision π1, we apply the policy 
gradient theorem (Sutton et al., 2000) to obtain unbiased 
Monte Carlo estimate of Oθ1 J(πθ) using advantage func-
tion Aπ(s, a) = Qπ(s, a) − V π (s) as target, i.e., 

Oθ1 J(πθ) =Es∼B,a∼πθ (s) [Oθ1 log π1(a1|s) Aπ(s, a)] . 
(12) 

For continuous denoising strength and penalty parameter 
selection π2, we utilize the deterministic policy gradient 
theorem (Silver et al., 2014) to formulate its gradient, i.e., 

Oθ2 J(πθ) =Es∼B,a∼πθ (s) [Oa2 Q
π(s, a)Oθ2 π2(s)] , 

(13) 

where we approximate the action-value function Qπ(s, a) 
by r(s, a) + γV π(p(s, a)) given its unfolded defnition. φ 

Using the chain rule, we can directly obtain the gradient of 
θ2 by backpropagation via the reward function, the value 
network and the transition function, in contrast to relying on 
the gradient backpropagated from only the learned action-
value function in the model-free DDPG algorithm (Lillicrap 
et al., 2016). 
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Table 2. Comparisons of different policies used in PnP-ADMM 
algorithm for CS-MRI on seven widely used medical images under 
various acceleration factors (x2/x4/x8) and noise level 15. We 
show both PSNR and the number of iterations (#IT.) used to induce 
results. * denotes to report the best PSNR over all iterations (i.e. 
with optimal early stopping). The best results are indicated by 
orange color and the second best results are denoted by blue color. 

×2 ×4 ×8 
POLICIES PSNR #IT. PSNR #IT. PSNR #IT. 

handcrafted 30.05 30.0 27.90 30.0 25.76 30.0 
handcrafted∗ 30.06 29.1 28.20 18.4 26.06 19.4 
fxed 23.94 30.0 24.26 30.0 22.78 30.0 
fxed∗ 28.45 1.6 26.67 3.4 24.19 7.3 
fxed optimal 30.02 30.0 28.27 30.0 26.08 16.7 
fxed optimal∗ 30.03 6.7 28.34 12.6 26.16 30.0 
oracle 30.25 30.0 28.60 30.0 26.41 30.0 
oracle∗ 30.26 8.0 28.61 13.9 26.45 21.6 

model-free 28.79 30.0 27.95 30.0 26.15 30.0 
Ours 30.33 5.0 28.42 5.0 26.44 15.0 

4. Experiments 
In this section, we detail the experiments and evaluate our 
proposed algorithm. We mainly focus on the tasks of Com-
pressed Sensing MRI (CS-MRI) and phase retrieval (PR), 
which are the representative linear and nonlinear inverse 
imaging problems respectively. 

4.1. Implementation Details 

Our algorithm requires two training processes for: the de-
noising network and the policy network (and value network). 
For training the denoising network, we follow the common 
practice that uses 87,000 overlapping patches (with size 
128 × 128) drawn from 400 images from the BSD dataset 
(Martin et al., 2001). For each patch, we add white Gaussian 
noise with noise level sampled from [1, 50]. The denoising 
networks are trained with 50 epoch using L1 loss and Adam 
optimizer (Kingma & Ba, 2014) with batch size 32. The 
base learning rate is set to 10−4 and halved at epoch 30, 
then reduced to 10−5 at epoch 40. 

To train the policy network and value network, we use the 
17,125 resized images with size 128×128 from the PASCAL 
VOC dataset (Everingham et al., 2014). Both networks are 
trained using Adam optimizer with batch size 48 and 1500 
iterations, with a base learning rate of 3 × 10−4 for the 
policy network and 10−3 for the value network. Then we 
set these learning rates to 10−4 and 3 × 10−4 at iteration 
1000. We perform 10 gradient steps at every iteration. 

For the CS-MRI application, a single policy network is 
trained to handle multiple sampling ratios (with x2/x4/x8 
acceleration) and noise levels (5/10/15), simultaneously. 
Similarly, one policy network is learned for phase retrieval 
under different settings. 

4.2. Compressed sensing MRI 

The forward model of CS-MRI can be mathematically 
described as y = Fpx + ω, where x ∈ CN is the un-
derlying image, the operator Fp : CN → CM , with 
M < N , denotes the partially-sampled Fourier transform, 
and ω ∼ N (0, σnIM ) is the additive white Gaussian noise. 

1The data-fdelity term is D(x) = ky −Fpxk2 whose prox-2 
imal operator is given in (Eksioglu, 2016). 

Denoiser priors. To show how denoiser priors affect the 
performance of the PnP, we train three state-of-the-art CNN-
based denoisers, i.e. DnCNN (Zhang et al., 2017a), Mem-
Net (Tai et al., 2017) and residual UNet (Ronneberger et al., 
2015), with tunable noise level map. We compare both the 
Gaussian denoising performance and the PnP performance5 

using these denoisers. As shown in Table 1, the resid-
ual UNet and MemNet consistently outperform DnCNN 
in terms of denoising and CS-MRI. It seems to imply a 
better Gaussian denoiser is also a better denoiser prior for 
the PnP framework6. Since UNet is signifcantly faster than 
MemNet, we choose UNet as our denoiser prior. 

Comparisons of different policies. We start by giving 
some insights of our learned policy by comparing the per-
formance of PnP-ADMM with different polices: i) the hand-
crafted policy used in IRCNN (Zhang et al., 2017b); ii) the 
fxed policy that uses fxed parameters (σ = 15, µ = 0.1); 
iii) the fxed optimal policy that adopts fxed parameters 
searched to maximize the average PSNR across all testing 
images; iv) the oracle policy that uses different parameters 
for different images such that the PSNR of each image is 
maximized and v) our learned policy based on a learned 
policy network to optimize parameters for each image. We 
remark that all compared polices are run for 30 iteration 
whilst ours automatically choose the terminal time. 

To understand the usefulness of the early stopping mecha-
nism, we also report the results of these polices with optimal 
early stopping7. Moreover, we analyze whether the model-
based RL benefts our algorithm by comparing it with the 
learned policy by model-free RL whose π2 is optimized us-
ing the model-free DDPG algorithm (Lillicrap et al., 2016). 

The results of all aforementioned policies are provided in 
Table 2. We can see that the bad choice of parameters (see 
“fxed”) induces poor results, in which the early stopping is 
quite needed to rescue performance (see “fxed∗”). When 
the parameters are properly assigned, the early stopping 
would be helpful to reduce computation cost. Our learned 

5We exhaustively search the best denoising strength/penalty 
parameters to exclude the impact of internal parameters. 

6Further investigation of this argument can be found in the 
suppl. material. 

7It should be noted some policies (e.g. ”fxed optimal” and ”or-
acle”) requires to access the ground truth to determine parameters, 
which is generally impractical in real testing scenarios. 
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Table 3. Quantitative results (PSNR) of different CS-MRI methods on two datasets under various acceleration factors f and noise levels 
σn. The best results are indicated by orange color and the second best results are denoted by blue color. 

DATASET f σn 
TRADITIONAL DEEP UNROLLING PNP 

RecPF FCSA ADMMNet ISTANet BM3D-MRI IRCNN Ours 

Medical7 

×2 
5 
10 
15 

32.46 31.70 
29.48 28.33 
27.08 25.52 

33.10 34.58 
31.37 31.81 
29.16 29.99 

33.33 
29.44 
26.90 

34.67 
31.80 
29.96 

34.78 
32.00 
30.27 

×4 
5 
10 
15 

28.67 28.21 
26.98 26.67 
25.58 24.93 

30.24 31.34 
29.20 29.71 
27.87 28.38 

30.33 
28.30 
26.66 

31.36 
29.52 
27.94 

31.62 
29.68 
28.43 

×8 
5 
10 
15 

24.72 24.62 
23.94 24.04 
23.18 23.36 

26.57 27.65 
26.21 26.90 
25.49 26.23 

26.53 
25.81 
25.09 

27.32 
26.44 
25.53 

28.26 
27.35 
26.41 

MICCAI 

×2 
5 
10 
15 

36.39 34.90 
31.95 30.12 
28.91 26.68 

36.74 38.17 
34.20 34.81 
31.42 32.65 

36.00 
31.39 
28.46 

38.42 
34.93 
32.81 

38.57 
35.06 
33.09 

×4 
5 
10 
15 

33.05 32.30 
30.21 29.56 
28.13 26.93 

34.15 35.46 
32.58 33.13 
30.55 31.48 

34.79 
31.63 
29.35 

35.80 
32.99 
30.98 

36.11 
33.07 
31.42 

×8 
5 
10 
15 

28.35 28.71 
26.86 27.68 
25.70 26.35 

30.36 31.62 
29.78 30.54 
28.83 29.50 

31.34 
29.86 
28.53 

31.66 
30.16 
28.72 

32.64 
30.89 
29.65 

Table 4. Quantitative results of different PR algorithms on four 
CDP measurements and varying amount of Possion noise (large α 
indicates low sigma-to-noise ratio). 

α = 9 α = 27 α = 81 
Algorithms PSNR PSNR PSNR 

HIO 35.96 25.76 14.82 
WF 34.46 24.96 15.76 
DOLPHIn 29.93 27.45 19.35 
SPAR 35.20 31.82 22.44 
BM3D-prGAMP 40.25 32.84 25.43 
prDeep 39.70 33.54 26.82 
Ours 40.33 33.90 27.23 

policy leads to fast practical convergence as well as excellent 
performance, sometimes even outperforms the oracle policy 
tuned via inaccessible ground truth (in ×2 case). We note 
this is owing to the varying parameters across iterations 
generated automatically in our algorithm, which yield extra 
fexibility than constant parameters over iterations. Besides, 
we fnd the learned model-free policy produces suboptimal 
denoising strength/penalty parameters compared with our 
mixed model-free and model-based policy, and it also fails 
to learn early stopping behavior. 

Comparisons with state-of-the-arts. We compare our 
method against six state-of-the-art methods for CS-MRI, 
including the traditional optimization-based approaches 
(RecPF (Yang et al., 2010) and FCSA (Huang et al., 2010)), 
the PnP approaches (BM3D-MRI (Eksioglu, 2016) and IR-
CNN (Zhang et al., 2017b)), and the deep unrolling ap-
proaches (ADMMNet (Yang et al., 2016) and ISTANet 
(Zhang & Ghanem, 2018)). To keep comparison fair, for 
each deep unrolling method, only single network is trained 

to tackle all the cases using the same dataset as ours. Table 
3 shows the method performance on two set of medical im-
ages, i.e. 7 widely used medical images (Medical7) (Huang 
et al., 2010) and 50 medical images from MICCAI 2013 
grand challenge dataset8. The visual comparison can be 
found in Fig. 3. It can be seen that our approach signifcantly 
outperforms the state-of-the-art PnP method (IRCNN) by 
a large margin, especially under the diffcult ×8 case. In 
the simple cases (e.g. ×2), our algorithm only runs 5 it-
erations to arrive at the desirable performance, in contrast 
with 30 or 70 iterations required in IRCNN and BM3D-MRI 
respectively. 

4.3. Phase retrieval 

The goal of phase retrieval (PR) is to recover the underlying 
image from only the amplitude, or intensity of the output of 
a complex linear system. Mathematically, PR can be defned 
as the problem of recovering a signal x ∈ RN or CN from 

22measurement y of the form y = |Ax| + ω, where the 
measurement matrix A represents the forward operator of 
the system, and ω represents shot noise. We approximate it 
with ω ∼ N (0, α2|Ax|2). The term α controls the sigma-
to-noise ratio in this problem. 

We test algorithms with coded diffraction pattern (CDP) 
(Cands et al., 2015). Multiple measurements, with different 
random spatial modulator (SLM) patterns are recorded. We 
model the capture of four measurements using a phase-only 
SLM as (Metzler et al., 2018). Each measurement opera-
tor can be mathematically described as Ai = FDi, i ∈ 
[1, 2, 3, 4], where F can be represented by the 2D Fourier 

8https://my.vanderbilt.edu/masi/ 

https://8https://my.vanderbilt.edu/masi
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RecPF FCSA ADMMNet ISTANet BM3D-MRI IRCNN Ours GroundTruth 

22.57 22.27 24.15 24.61 23.64 24.16 25.28 PSNR 

18.74 19.23 20.48 21.37 20.62 20.91 22.02 PSNR 

24.89 24.47 26.85 27.90 26.72 27.74 28.65 PSNR 

Figure 3. CS-MRI reconstruction results of different algorithms on medical images. (best view on screen with zoom). 

HIO WF DOLPHIn SPAR BM3D-prGAMP prDeep Ours GroundTruth 

14.40 15.52 19.35 22.48 25.66 27.72 28.01 PSNR 

15.10 16.27 19.62 22.51 23.61 24.59 25.12 PSNR 

Figure 4. Recovered images from noisy intensity-only CDP measurements with seven PR algorithms. (Details are better appreciated 
on screen.). 

transform and Di is diagonal matrices with nonzero ele-
ments drawn uniformly from the unit circle in the complex 
planes. 

We compare our method with three classic approaches (HIO 
(Fienup, 1982), WF (Candes et al., 2014), and DOLPHIn 
(Mairal et al., 2016)) and three PnP approaches (SPAR 
(Katkovnik, 2017), BM3D-prGAMP (Metzler et al., 2016a) 
and prDeep (Metzler et al., 2018)). Table 4 and Fig. 4 
summarize the results of all competing methods on twelve 
images used in (Metzler et al., 2018). It can be seen that 
our method still leads to state-of-the-art performance in this 
nonlinear inverse problem, and produces cleaner and clearer 
results than other competing methods. 

5. Conclusion 
In this work, we introduce RL into the PnP framework, 
yielding a novel tuning-free PnP proximal algorithm for 
a wide range of inverse imaging problems. We underline 
the main message of our approach the main strength of our 
proposed method is the policy network, which can customize 
well-suited parameters for different images. Through nu-
merical experiments, we demonstrate our learned policy 
often generates highly-effective parameters, which even of-
ten reaches to the comparable performance to the “oracle” 
parameters tuned via the inaccessible ground truth. 
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