
Supplementary Material

1. Data and Code Availability
All code, including code for all simulations and code used
to generate the VAEC dataset, is available on GitHub. The
dataset can be downloaded from DataSpace.

2. Architecture and Training Procedure for
Visual Analogy Dataset

For the visual analogy dataset from Hill et al. (2019), we
used an architecture and training procedure modeled as
closely as possible on those used in the original paper, so
as to facilitate a direct comparison between their model and
ours (essentially the original model, with the addition of
TCN).

The model architecture consisted of a feedforward encoder,
a recurrent network, and a linear scoring layer. After re-
sizing the images from 160 × 160 to 80 × 80, they were
passed to the feedforward encoder, which consisted of 4
convolutional layers, each with 32 kernels of size 3× 3, and
a stride of 2, resulting in a feature map of size 5× 5× 32.
This feature map was then flattened to produce the image
embedding. We then applied either TCN or batch normaliza-
tion to the embeddings, and passed the embeddings for each
candidate analogy (consisting of 3 source images, 2 target
images, and a candidate answer) to the recurrent network.
The recurrent network was a simple RNN, with 64 hidden
units. The final hidden state of the RNN for each candidate
analogy was then passed through a linear layer to generate
a score for the analogy.

The scores for all candidate analogies were passed through a
softmax layer, and the network was trained to maximize the
probability of the correct answer, using a cross entropy loss.
We also employ the training method (’Learning Analogies
by Contrasting’) advocated by Hill et al. (2019) for all
simulations with this dataset. Each network was trained
with a batch size of 32 over 3 full epochs with the entire
training set of 600, 000 analogy problems (we found that
all networks reached a clear asymptote by this point in
training). We used the ADAM optimizer (Kingma & Ba,
2014) with a learning rate of 1e−4. For the feedforward
encoder, all weights were initialized using Kaiming normal
initialization (He et al., 2015). For the recurrent network and
linear scoring layer, weights were initialized using Xavier
normal initialization (Glorot & Bengio, 2010). All biases
were initialized to zero. All simulations for this dataset were
performed using PyTorch (Paszke et al., 2017).

3. Training Time
In the work presented here, we have focused on the extent
to which our proposed approach, TCN, improved the ability
of neural networks to extrapolate. However, a more com-
mon reason for employing normalization techniques in deep
learning is to accelerate training (Ioffe & Szegedy, 2015;
Bjorck et al., 2018). We therefore also investigated whether
TCN can provide a similar benefit in terms of training time.

Figure S1. Training loss time courses for models trained with tem-
poral context normalization (TCN) or batch normalization. Each
line reflects an average of 8 runs.

Figure S2. Training loss time courses for models trained with layer
or no normalization. Each line reflects an average of 8 runs.

https://github.com/taylorwwebb/learning_representations_that_support_extrapolation
https://dataspace.princeton.edu/jspui/handle/88435/dsp01b8515r30h


Supplementary Material

Table S1. Analysis of the TCN model on the Translation Extrapolation regime of the VAEC dataset, separated by individual dimensions
of variation. Results show accuracy in each region, including the training region (Region 1), averaged over 8 trained networks (± the
standard error of the mean).

REGION 1 (TRAINING) REGION 2 REGION 3 REGION 4 REGION 5 REGION 6
SIZE 97.5 ± 1.9 81.1 ± 5.3 79.8 ± 8.4 79.4 ± 8.7 80.7 ± 10.0 77.0 ± 11.0
BRIGHTNESS 99.0 ± 0.6 97.4 ± 1.6 97.1 ± 1.2 93.4 ± 2.1 90.0 ± 4.6 87.0 ± 8.0
LOCATION (X) 99.9 ± 0.1 55.4 ± 12.2 43.9 ± 9.6 47.5 ± 9.6 50.7 ± 10.2 37.3 ± 7.2
LOCATION (Y) 100.0 ± 0.0 74.3 ± 9.7 73.2 ± 11.7 64.8 ± 11.3 61.4 ± 10.5 56.5 ± 9.9

Figures S1 and S2 compare training loss time courses on the
Translation Extrapolation regime of the VAEC dataset. Each
figure shows training loss averaged across all 8 runs for a
particular technique. We find that models trained with both
TCN and batch normalization (Figure S1) converge consid-
erably faster than models trained with layer normalization
or no normalization at all (Figure S2; note the difference in
scale of the X axes). We conclude from these results that,
in addition to providing a benefit in terms of extrapolation,
TCN also provides a training speedup comparable to that
enabled by batch normalization.

4. Analysis of Performance Separated by
Individual Dimensions of Variation

The VAEC dataset contains analogy problems in which ob-
jects vary in terms of their size, brightness, or location. To
determine whether some of these dimensions were more
challenging than others, we analyzed performance in each
dimension separately. Table S1 shows the results of this
analysis. Extrapolation was strongest for the brightness di-
mension. This may be because this dimension is already
represented in the input in a manner that captures the linear
structure of the dimension (as a real number). By contrast,
our model struggled most with the location dimension. This
may be due in part to the convolutional layers in the feed-
forward encoder, which discard information about location
by design. This suggests that one path for improving ex-
trapolation beyond the present results might be to augment
the encoder with a scheme for representing spatial location,
such as that advocated by Liu et al. (2018).

5. Learned Representations
To better understand how TCN facilitated extrapolation,
we also analyzed the latent representations learned by the
networks. In our network architecture, each image in a se-
quence, xt, was processed by a feedforward encoder, yield-
ing a low-dimensional embedding, zt, that was then passed
to a recurrent network. We focused our analysis on these
learned low-dimensional embeddings.

We performed principal component analysis (PCA) on the
learned image embeddings for networks trained on the vi-

sual analogy task. PCA was performed separately for the
images in each of the training and test regions. For networks
trained with TCN, we also applied TCN to the embeddings
(using the embeddings for the other images in an analogy
problem as context) before performing PCA. For networks
trained with batch normalization, we applied batch normal-
ization to the embeddings before performing PCA.

We found that a large amount of variance was captured by
the first principal component (PC) for all networks. The
first PC accounted for an average of 80% of the variance
for networks trained with TCN, an average of 62% of the
variance for networks trained with batch normalization, and
an average of 90% of the variance for networks trained with
no normalization. Though this may seem surprising, given
that the objects in the visual analogy task varied along four
dimensions, it can be explained by the fact that, for any given
analogy problem, objects only varied along one dimension.
Thus, the task can be effectively solved by mapping the
objects in an analogy problem to a single dimension, treating
the values in irrelevant dimensions as constants.

For each image embedding, we plotted the value of the first
PC against the values of the four underlying dimensions of
variation. For networks trained with either TCN or batch
normalization, we restricted each plot to embeddings from
analogy problems in which objects varied along the corre-
sponding dimension (e.g. when plotting the first PC against
the size of the object, we restricted the plot to embeddings
from analogies in which the size of the object varied). For
networks trained without normalization, the learned em-
beddings did not depend in any way on the other objects
in an analogy problem, so this restriction was not applied
when plotting the embeddings for networks trained without
normalization.

Additionally, for networks trained with TCN or batch nor-
malization, we applied the corresponding form of normaliza-
tion (either TCN or batch normalization) to the underlying
values themselves. We did this because we were primar-
ily interested in the way in which the learned embeddings
captured the relative values of the objects, rather than their
absolute values. For networks trained without normalization,
we used the absolute values, since there was no correspond-
ing normalization procedure to perform.



Supplementary Material

The results of this analysis are shown in Figures S3 - S8.
The results shown reflect the learned embeddings from the
best performing network (as determined by average accu-
racy in all test regions) with each technique, but the results
were qualitatively similar in all networks. In the training
region (Figure S3), for networks trained with TCN, the
values along the first PC of the learned embeddings closely
tracked a linear function of the underlying values, mirror-
ing the linear structure of the dimensions themselves. By
contrast, for networks trained with batch normalization, the
relationship between the first PC and underlying values only
weakly matched a linear fit. For networks trained without
normalization, there was a non-monotonic relationship be-
tween the first PC and the underlying values, suggesting
that other principal components were likely necessary to
accurately represent the values of the objects.

Moreover, for networks trained with TCN, the representa-
tions learned in the training region showed a considerable
degree of similarity to the representations in the test regions
(Figures S4 - S8; note that the orientation of the linear fits in
each region is arbitrary, given that the PCA was performed
separately in each region). By contrast, for networks trained
with batch normalization or no normalization, there is a
greater degree of variability between the representations
in each of the training and test regions. For instance, the
non-monotonic function observed in the training region for
networks trained without normalization is completely absent
in the test regions.

In summary, networks trained with TCN learned a represen-
tation that more closely matched the linear structure of the
underlying dimensions, and that was better preserved across
the test regions, likely resulting in the improved capacity for
extrapolation observed in these networks.

References
Bjorck, N., Gomes, C. P., Selman, B., and Weinberger,

K. Q. Understanding batch normalization. In Advances in
Neural Information Processing Systems, pp. 7694–7705,
2018.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256, 2010.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026–1034,
2015.

Hill, F., Santoro, A., Barrett, D. G., Morcos, A. S.,
and Lillicrap, T. Learning to make analogies by con-

trasting abstract relational structure. arXiv preprint
arXiv:1902.00120, 2019.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Liu, R., Lehman, J., Molino, P., Such, F. P., Frank, E.,
Sergeev, A., and Yosinski, J. An intriguing failing of
convolutional neural networks and the coordconv solution.
In Advances in Neural Information Processing Systems,
pp. 9605–9616, 2018.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. 2017.



Supplementary Material

Figure S3. PCA results in Region 1 (training). Y axis represents value along 1st PC. X axis represents value along underlying dimension
of variation (location, size, or brightness). Gray line represents the average of all points for each unique value along the X axis. Red line
represents a linear fit.



Supplementary Material

Figure S4. PCA results in Region 2.



Supplementary Material

Figure S5. PCA results in Region 3.



Supplementary Material

Figure S6. PCA results in Region 4.



Supplementary Material

Figure S7. PCA results in Region 5.



Supplementary Material

Figure S8. PCA results in Region 6.


