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Abstract 
We aim to develop off-policy DRL algorithms 
that not only exceed state-of-the-art performance 
but are also simple and minimalistic. For stan-
dard continuous control benchmarks, Soft Actor-
Critic (SAC), which employs entropy maximiza-
tion, currently provides state-of-the-art perfor-
mance. We frst demonstrate that the entropy 
term in SAC addresses action saturation due to 
the bounded nature of the action spaces, with 
this insight, we propose a streamlined algorithm 
with a simple normalization scheme or with in-
verted gradients. We show that both approaches 
can match SAC’s sample effciency performance 
without the need of entropy maximization, we 
then propose a simple non-uniform sampling 
method for selecting transitions from the replay 
buffer during training. Extensive experimental 
results demonstrate that our proposed sampling 
scheme leads to state of the art sample effciency 
on challenging continuous control tasks. We 
combine all of our fndings into one simple al-
gorithm, which we call Streamlined Off Policy 
with Emphasizing Recent Experience, for which 
we provide robust public-domain code. 

1. Introduction 

Off-policy Deep Reinforcement Learning (RL) algorithms 
aim to improve sample effciency by reusing past experi-
ence. Recently a number of new off-policy Deep RL algo-
rithms have been proposed for control tasks with continu-
ous state and action spaces, including Deep Deterministic 
Policy Gradient (DDPG) and Twin Delayed DDPG (TD3) 
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(Lillicrap et al., 2015; Fujimoto et al., 2018). TD3, which 
introduced clipped double-Q learning, delayed policy up-
dates and target policy smoothing, has been shown to be 
signifcantly more sample effcient than popular on-policy 
methods for a wide range of MuJoCo benchmarks. 

The feld of Deep Reinforcement Learning (DRL) has 
also recently seen a surge in the popularity of maxi-
mum entropy RL algorithms. In particular, Soft Actor-
Critic (SAC), which combines off-policy learning with 
maximum-entropy RL, not only has many attractive the-
oretical properties, but can also give superior performance 
on a wide-range of MuJoCo environments, including on the 
high-dimensional environment Humanoid for which both 
DDPG and TD3 perform poorly (Haarnoja et al., 2018a;b; 
Langlois et al., 2019). SAC and TD3 have similar off-
policy structures with clipped double-Q learning, but SAC 
also employs maximum entropy reinforcement learning. 

In this paper, we aim to develop off-policy DRL algorithms 
that not only provide state-of-the-art performance but are 
also simple and minimalistic. We frst seek to understand 
the primary contribution of the entropy term to the per-
formance of maximum entropy algorithms. For the Mu-
JoCo benchmark, we demonstrate that when using the stan-
dard objective without entropy along with standard additive 
noise exploration, there is often insuffcient exploration due 
to the bounded nature of the action spaces. Specifcally, 
the outputs of the policy network are often way outside the 
bounds of the action space, so that they need to be squashed 
to ft within the action space. The squashing results in ac-
tions persistently taking on their maximal values, resulting 
in insuffcient exploration. In contrast, the entropy term in 
the SAC objective forces the outputs to have sensible val-
ues, so that even with squashing, exploration is maintained. 
We conclude that, for the MuJoCo environments, the en-
tropy term in the objective for Soft Actor-Critic principally 
addresses the bounded nature of the action spaces. 

With this insight, we propose the Streamlined Off Pol-
icy (SOP) algorithm, which is a minimalistic off-policy 
algorithm that includes a simple but crucial output nor-
malization. The normalization addresses the bounded na-
ture of the action spaces, allowing satisfactory exploration 
throughout training. We also consider using inverting gra-
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dients (IG) (Hausknecht & Stone, 2015) with the stream-
lined scheme, which we refer to as SOP IG. Both ap-
proaches use the standard objective without the entropy 
term. Our results show that SOP and SOP IG match the 
sample effciency and robust performance of SAC, includ-
ing on the challenging Ant and Humanoid environments. 

Having matched SAC performance without using entropy 
maximization, we then seek to attain state-of-the-art perfor-
mance by employing a non-uniform sampling method for 
selecting transitions from the replay buffer during training. 
Priority Experience Replay (PER), a non-uniform sampling 
scheme, has been shown to signifcantly improve perfor-
mance for the Atari games benchmark (Schaul et al., 2015), 
but requires sophisticated data structure for effcient sam-
pling. Keeping with the theme of simplicity with the goal 
of meeting Occam’s principle, we propose a novel and sim-
ple non-uniform sampling method for selecting transitions 
from the replay buffer during training. Our method, called 
Emphasizing Recent Experience (ERE), samples more ag-
gressively recent experience while not neglecting past ex-
perience. Unlike PER, ERE is only a few lines of code 
and does not rely on any sophisticated data structures. We 
show that when SOP, SOP IG, or SAC is combined with 
ERE, the resulting algorithm out-performs SAC and pro-
vides state of the art performance. For example, for Ant 
and Humanoid, SOP+ERE improves over SAC by 21% and 
24%, respectively, with one million samples. 

The contributions of this paper are thus threefold. First, 
we uncover the primary contribution of the entropy term 
of maximum entropy RL algorithms for the MuJoCo en-
vironments. Second, we propose a streamlined algorithm 
which does not employ entropy maximization but never-
theless matches the sampling effciency and robust perfor-
mance of SAC for the MuJoCo benchmarks. And third, we 
propose a simple non-uniform sampling scheme to achieve 
state-of-the art performance for the MuJoCo benchmarks. 
We provide public code for SOP+ERE for reproducibility 
1 . 

2. Preliminaries 

We represent an environment as a Markov Decision Process 
(MDP) which is defned by the tuple (S, A, r, p, γ), where 
S and A are continuous multi-dimensional state and action 
spaces, r(s, a) is a bounded reward function, p(s0|s, a) is 
a transition function, and γ is the discount factor. Let s(t) 
and a(t) respectively denote the state of the environment 
and the action chosen at time t. Let π = π(a|s), s ∈ 
S, a ∈ A denote the policy. We further denote K for the di-
mension of the action space, and write ak for the kth com-

1https://github.com/AutumnWu/ 
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ponent of an action a ∈ A, that is, a = (a1, . . . , aK ). 

The expected discounted return for policy π beginning in 
state s is given by: 

∞X 
γtVπ (s) = Eπ[ r(s(t), a(t))|s(0) = s] (1) 

t=0 

Standard MDP and RL problem formulations seek to max-
imize Vπ (s) over policies π. For fnite state and action 
spaces, under suitable conditions for continuous state and 
action spaces, there exists an optimal policy that is deter-
ministic (Puterman, 2014; Bertsekas & Tsitsiklis, 1996). In 
RL with unknown environment, exploration is required to 
learn a suitable policy. 

In DRL with continuous action spaces, typically the pol-
icy is modeled by a parameterized policy network which 
takes as input a state s and outputs a value µ(s; θ), where 
θ represents the current parameters of the policy network 
(Schulman et al., 2015; 2017; Vuong et al., 2018; Lillicrap 
et al., 2015; Fujimoto et al., 2018). During training, typ-
ically additive random noise is added for exploration, so 
that the actual action taken when in state s takes the form 
a = µ(s; θ) + � where � is a K-dimensional Gaussian ran-
dom vector with each component having zero mean and 
variance σ. During testing, � is set to zero. 

2.1. Maximum Entropy Reinforcement Learning 

Maximum entropy reinforcement learning takes a different 
approach than Equation (1) by optimizing policies to max-
imize both the expected return and the expected entropy 
of the policy (Ziebart et al., 2008; Ziebart, 2010; Todorov, 
2008; Rawlik et al., 2013; Levine & Koltun, 2013; Levine 
et al., 2016; Nachum et al., 2017; Haarnoja et al., 2017; 
2018a;b). 

In particular, the maximum entropy RL objective is: 

∞X 
Vπ(s) = γtEπ[r(s(t), a(t)) 

t=0 

+λH(π(·|s(t)))|s(0) = s] 

where H(π(·|s)) is the entropy of the policy when in state 
s, and the temperature parameter λ determines the rela-
tive importance of the entropy term against the reward. 
For maximum entropy DRL, when given state s the pol-
icy network will typically output a K-dimensional vector 
σ(s; θ) in addition to the vector µ(s; θ). The action se-
lected when in state s is then modeled as µ(s; θ) + � where 
� ∼ N(0, σ(s; θ)). 

Maximum entropy RL has been touted to have a number 
of conceptual and practical advantages for DRL (Haarnoja 
et al., 2018a;b). For example, it has been argued that the 
policy is incentivized to explore more widely, while giving 
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up on clearly unpromising avenues. It has also been argued 
that the policy can capture multiple modes of near-optimal 
behavior, that is, in problem settings where multiple actions 
seem equally attractive, the policy will commit equal prob-
ability mass to those actions. In this paper, we show for 
the MuJoCo benchmarks that the standard additive noise 
exploration suffces and can achieve the same performance 
as maximum entropy RL. 

3. The Squashing Exploration Problem 

3.1. Bounded Action Spaces 

Continuous environments typically have bounded action 
spaces, that is, along each action dimension k there is a 

minminimum possible action value a and a maximum pos-k 
maxsible action value a . When selecting an action, the ac-k 

tion needs to be selected within these bounds before the 
action can be taken. DRL algorithms often handle this by 
squashing the action so that it fts within the bounds. For 
example, if along any one dimension the value µ(s; θ) + � 

max maxexceeds a , the action is set (clipped) to a . Alter-
natively, a smooth form of squashing can be employed. 

min maxFor example, suppose a = −M and a = +M fork k 
some positive number M , then a smooth form of squash-
ing could use a = M tanh(µ(s; θ) + �) in which tanh() 
is being applied to each component of the K-dimensional 
vector. DDPG (Hou et al., 2017) and TD3 (Fujimoto et al., 
2018) use clipping, and SAC (Haarnoja et al., 2018a;b) 
uses smooth squashing with the tanh() function. For con-
creteness, henceforth we will assume that smooth squash-
ing with the tanh() is employed. 

We note that an environment may actually allow the agent 
to input actions that are outside the bounds. In this case, the 
environment will typically frst clip the actions internally 
before passing them on to the “actual” environment (Fujita 
& Maeda, 2018). 

We now make a simple but crucial observation: squash-
ing actions to ft into a bounded action space can have 
a disastrous effect on additive-noise exploration strate-
gies. To see this, let the output of the policy network be 
µ(s) = (µ1(s), . . . , µK (s)). Consider an action taken 
along one dimension k, and suppose µk(s) >> 1 and 
|�k| is relatively small compared to µk(s). Then the ac-
tion ak = M tanh(µk(s) + �k) will be very close (essen-
tially equal) to M . If the condition µk(s) >> 1 persists 
over many consecutive states, then ak will remain close to 
1 for all these states, and consequently there will be es-
sentially no exploration along the kth dimension. We will 
refer to this problem as the squashing exploration problem. 
We will argue that algorithms using the standard objective 
(Equation 1) with additive noise exploration can be greatly 
impaired by squashing exploration. 

3.2. How Does Entropy Maximization Help for the 
MuJoCo Environments? 

SAC is a maximum-entropy off-policy DRL algorithm 
which provides good performance across all of the MuJoCo 
benchmark environments. To the best of our knowledge, it 
currently provides state of the art performance for the Mu-
JoCo benchmark. In this section, we argue that the princi-
pal contribution of the entropy term in the SAC objective 
is to resolve the squashing exploration problem, thereby 
maintaining suffcient exploration when facing bounded ac-
tion spaces. To argue this, we consider two DRL algo-
rithms: SAC with adaptive temperature (Haarnoja et al., 
2018b), and SAC with entropy removed altogether (tem-
perature set to zero) but everything else the same. We re-
fer to them as SAC and as SAC without entropy. For SAC 
without entropy, for exploration we use additive zero-mean 
Gaussian noise with σ fxed at 0.3. Both algorithms use 
tanh squashing. We compare these two algorithms on two 
MuJoCo environments: Humanoid-v2 and Walker-v2. 

Figure 1 shows the performance of the two algorithms with 
10 seeds. For Humanoid, SAC performs much better than 
SAC without entropy. However, for Walker, SAC without 
entropy performs nearly as well as SAC, implying maxi-
mum entropy RL is not as critical for this environment. 

To understand why entropy maximization is important for 
one environment but less so for another, we examine the 
actions selected when training these two algorithms. Hu-
manoid and Walker have action dimensions K = 17 and 
K = 6, respectively. Here we show representative re-
sults for one dimension for both environments. The top and 
bottom rows of Figure 2 shows results for Humanoid and 
Walker, respectively. The frst column shows the µk values 
for an interval of 1,000 consecutive time steps, namely, for 
time steps 599,000 to 600,000. The second column shows 
the actual action values passed to the environment for these 
time steps. The third and fourth columns show a concate-
nation of 10 such intervals of 1000 time steps, with each in-
terval coming from a larger interval of 100,000 time steps. 

The top and bottom rows of Figure 2 are strikingly differ-
ent. For Humanoid using SAC with entropy, the |µk| val-
ues are small, mostly in the range [-1.5,1.5], and fuctuate 
signifcantly. This allows the action values to also fuctu-
ate signifcantly, providing exploration in the action space. 
On the other hand, for SAC without entropy the |µk| val-
ues are typically huge, most of which are well outside the 
interval [-10,10]. This causes the actions ak to be persis-
tently clustered at either M or -M , leading to essentially 
no exploration along that dimension. For Walker, we see 
that for both algorithms, the µk values are sensible, mostly 
in the range [-1,1] and therefore the actions chosen by both 
algorithms exhibit exploration. 
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(a) Humanoid-v2 (b) Walker2d-v2 

Figure 1: SAC performance with and without entropy maximization 

(a) Humanoid-v2 

(b) Walker2d-v2 

Figure 2: µk and ak values from SAC and SAC without entropy maximization. See section 3.2 for a discussion. 

In conclusion, the principal beneft of maximum entropy 
RL in SAC for the MuJoCo environments is that it resolves 
the squashing exploration problem. For some environments 
(such as Walker), the outputs of the policy network take on 
sensible values, so that suffcient exploration is maintained 
and overall good performance is achieved without the need 
for entropy maximization. For other environments (such as 
Humanoid), entropy maximization is needed to reduce the 
magnitudes of the outputs so that exploration is maintained 
and overall good performance is achieved. 

4. Matching SOTA Performance without 
Entropy Maximization 

In this paper we examine two approaches for matching 
SAC performance without using entropy maximization. 

4.1. Output Normalization 

As we observed in the previous section, in some environ-
ments the policy network output values |µk|, k = 1, . . . ,K 

can become persistently huge, which leads to insuffcient 
exploration due to the squashing. We propose a simple 
solution of normalizing the outputs of the policy network 
when they collectively (across the action dimensions) be-
come too large. To this end, let µ = (µ1, . . . , µK ) be 
the output of the original policy network, and let G =P 

|µk|/K. The G is simply the average of the magni-k 
tudes of the components of µ. The normalization proce-
dure is as follows. If G > 1, then we reset µk ← µk/G for 
all k = 1, . . . ,K; otherwise, we leave µ unchanged. With 
this simple normalization, we are assured that the average 
of the normalized magnitudes is never greater than one. 

Our Streamlined Off Policy (SOP) algorithm is described 
in Algorithm 1. The algorithm is essentially TD3 minus 
the delayed policy updates and the target policy parame-
ters but with the addition of the normalization described 
above. SOP also uses tanh squashing instead of clipping, 
since tanh gives somewhat better performance in our ex-
periments. The SOP algorithm is “streamlined” as it has 
no entropy terms, temperature adaptation, target policy pa-
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(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2 

(d) Ant-v2 (e) Humanoid-v2 

Figure 3: Streamlined Off-Policy (SOP) versus SAC, SOP IG and TD3 

rameters or delayed policy updates. 

4.2. Inverting Gradients 

In our experiments, we also consider using SOP but 
replacing the output normalization with the IG scheme 
(Hausknecht & Stone, 2015). In this scheme, when gra-
dients suggest increasing the action magnitudes, gradients 
are down scaled if actions are within the boundaries, and 
inverted if otherwise. More specifcally, let p be the output 
of the last layer of the policy network, let pmin and pmax be 
the action boundaries. The IG approach can be summarized 
as follows (Hausknecht & Stone, 2015): ⎧ 

pmax−p⎨ if rp suggestspmax−pmin 

rp = rp · increasing p (2)⎩ p−pmin otherwise pmax−pmin 

Where rp is the gradient of the policy loss w.r.t to p. 
Although IG is not complicated, it is not as simple and 
straightforward as simply normalizing the outputs. We re-
fer to SOP with IG as SOP IG. Implementation details can 
be found in the supplementary materials. 

4.3. Experimental Results for SOP and SOP IG 

Figure 3 compares SAC (with temperature adaptation 
(Haarnoja et al., 2018a;b)) with SOP, SOP IG, and TD3 
plus the simple normalization (which we call TD3+) for 
fve of the most challenging MuJoCo environments. Using 
the same baseline code, we train each of the algorithms 
with 10 seeds. Each algorithm performs fve evaluation 

rollouts every 5000 environment steps. The solid curves 
correspond to the mean, and the shaded region to the stan-
dard deviation of the returns over seeds. Results show that 
SOP, the simplest of all the schemes, performs as well or 
better than all other schemes. In particular, SAC and SOP 
have similar sample effciency and robustness across all en-
vironments. TD3+ has slightly weaker asymptotic perfor-
mance for Walker and Humanoid. SOP IG initially learns 
slowly for Humanoid with high variance across random 
seeds, but gives similar asymptotic performance. These 
experiments confrm that the performance of SAC can be 
achieved without maximum entropy RL. 

4.4. Ablation Study for SOP 

In this ablation study, we separately examine the impor-
tance of (i) the normalization at the output of the policy 
network; (ii) the double Q networks; (iii) and randomiza-
tion used in the line 9 of the SOP algorithm (that is, target 
policy smoothing (Fujimoto et al., 2018)). 

Figure 4 shows the results for the fve environments con-
sidered in this paper. In Figure 4, “no normalization” is 
SOP without the normalization of the outputs of the policy 
network; “single Q” is SOP with one Q-network instead of 
two; and “no smoothing” is SOP without the randomness 
in line 8 of the algorithm. 

Figure 4 confrms that double Q-networks are critical for 
obtaining good performance (Van Hasselt et al., 2016; Fu-
jimoto et al., 2018; Haarnoja et al., 2018a). Figure 4 also 
shows that output normalization is critical. Without out-
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put normalization, performance fuctuates wildly, and av-
erage performance can decrease dramatically, particularly 
for Humanoid and HalfCheetah. Target policy smoothing 
improves performance by a relatively small amount. 

In addition, to better understand whether the simple nor-
malization term in SOP achieves a similar effect compared 
to explicitly maximizing entropy, we plot the entropy val-
ues for SOP and SAC throughout training for all environ-
ments. We found that SOP and SAC have very similar en-
tropy values across training, while removing the entropy 
term from SAC makes the entropy value much lower. This 
indicates that the effect of the action normalization is very 
similar to maximizing entropy. The results can be found in 
the supplementary materials. 

5. Non-Uniform Sampling 

In the previous section we showed that SOP, SOP IG, and 
SAC all offer roughly equivalent sample-effciency perfor-
mance, with SOP being the simplest of the algorithms. We 
now show how a small change in the sampling scheme, 
which can be applied to any off-policy scheme (including 
SOP, SOP IG and SAC), can achieve state of the art per-
formance for the MuJoCo benchmark. We call this non-
uniform sampling scheme Emphasizing Recent Experience 
(ERE). ERE has 3 core features: (i) It is a general method 
applicable to any off-policy algorithm; (ii) It requires no 
special data structure, is very simple to implement, and has 
near-zero computational overhead; (iii) It only introduces 
one additional important hyper-parameter. 

The basic idea is that during the parameter update phase, 
the frst mini-batch is sampled from the entire buffer, then 
for each subsequent mini-batch we gradually reduce our 
range of sampling to sample more from recent data. Specif-
ically, assume that in the current update phase we are to 
make 1000 mini-batch updates. Let N be the max size of 
the buffer. Then for the kth update, we sample uniformly 
from the most recent ck data points, where ck = N · ηk 

and η ∈ (0, 1] is a hyper-parameter that determines how 
much emphasis we put on recent data. η = 1 is uniform 
sampling. When η < 1, ck decreases as we perform each 
update. η can be made to adapt to the learning speed of the 
agent so that we do not have to tune it for each environ-
ment. The algorithmic and implementation details of such 
an adaptive scheme is given in the supplementary material. 

The effect of such a sampling formulation is twofold. The 
frst is recent data have a higher chance of being sampled. 
The second is that sampling is done in an ordered way: 
we frst sample from all the data in the buffer, and grad-
ually shrink the range of sampling to only sample from the 
most recent data. This scheme reduces the chance of over-
writing parameter changes made by new data with parame-

ter changes made by old data (French, 1999; McClelland 
et al., 1995; McCloskey & Cohen, 1989; Ratcliff, 1990; 
Robins, 1995). This allows us to quickly obtain infor-
mation from recent data, and better approximate the value 
functions near recently-visited states, while still maintain-
ing an acceptable approximation near states visited in the 
more distant past. 

What is the effect of replacing uniform sampling with 
ERE? First note if we uniformly sample several times from 
a fxed buffer (uniform fxed), where the buffer is flled, 
and no new data is coming in, then the expected number of 
times a data point has been sampled is the same for all data 
points. 

Now consider a scenario where we have a buffer of size 
1000 (FIFO queue), we collect one data at a time, and then 
perform one update with mini-batch size of one. If we 
start with an empty buffer and sample uniformly (uniform 
empty), as data flls the buffer, each data point gets less 
and less chance of being sampled. Specifcally, start from 
timestep 0, over a period of 1000 updates, the expected 
number of times the tth data (the data point collected at 

1 1 1tth timestep) has been sampled is: + + · · · + . t t+1 1000 
And if we start with a flled buffer and sample uniformly 
(uniform full), then the expected number of times the tthP1000 1 1000−tdata has been sampled is = .t0=t 1000 1000 

Figure 5f shows the expected number of times a data point 
has been sampled (at the end of 1000 updates) as a func-
tion of its position in the buffer. We see that when uniform 
sampling is used, older data are expected to get sampled 
much more than newer data, especially in the empty buffer 
case. This is undesirable because when the agent is im-
proving and exploring new areas of the state space; new 
data points may contain more interesting information than 
the old ones, which have already been updated many times. 

When we apply the ERE scheme, we effectively skew the 
curve towards assigning higher expected number of sam-
ples for the newer data, allowing the newer data to be fre-
quently sampled soon after being collected, which can ac-
celerate the learning process. In Figure 5f we can see that 
the curves for ERE (ERE empty and ERE full) are much 
closer to the horizontal line (Uniform fxed), compared to 
when uniform sampling is used. With ERE, at any point 
during training, we expect all data points currently in the 
buffer to have been sampled approximately the same num-
ber of times. Simply using a smaller buffer size will also 
allow recent data to be sampled more often, and can some-
times lead to a slightly faster learning speed in the early 
stage. However, it also tends to reduce the stability of learn-
ing, and damage long-term performance. 

Another simple method is to sample data according to an 
exponential scheme, where more recent data points are as-
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(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2 

(d) Ant-v2 (e) Humanoid-v2 

Figure 4: Ablation Study for SOP 

signed exponentially higher probability of being sampled. 
In the supplementary materials, we provide further algo-
rithmic detail and analysis on ERE, and compare ERE to 
the exponential sampling scheme, and show that ERE pro-
vides a stronger performance improvement. We also com-
pare to another sampling scheme called Prioritized Expe-
rience Replay (PER) (Schaul et al., 2015). PER assigns 
higher probability to data points that give a high absolute 
TD error when used for the Q update, then it applies an 
importance sampling weight according to the probability 
of sampling. Performance comparison can also be found 
in the supplementary materials. Results show that in the 
MuJoCo environments, PER can sometimes give a perfor-
mance gain, but it is not as strong as ERE and the exponen-
tial scheme. 

5.1. Experimental Results for ERE 

Figure 5 compares the performance of SAC (considered the 
baseline here), SAC+ERE, SOP+ERE, and SOP IG+ERE. 
ERE gives a signifcant boost to all three algorithms, sur-
passing SAC and achieving a new SOTA. Among the three 
algorithms, SOP+ERE gives the best performance for Ant 
and Humanoid (the two most challenging environments) 
and performance roughly equivalent to SAC+ERE and 
SOP IG+ERE for the other three environments. 

In particular, for Ant and Humanoid, SOP+ERE improves 
performance by 21% and 24% over SAC at 1 million sam-
ples, respectively. For Humanoid, at 3 million samples, 
SOP+ERE improves performance by 15%. In conclusion, 

SOP+ERE is not only a simple algorithm, but also exceeds 
state-of-the-art performance. 

6. Related Work 

In recent years, there has been signifcant progress in 
improving the sample effciency of DRL for continuous 
robotic locomotion tasks with off-policy algorithms (Lill-
icrap et al., 2015; Fujimoto et al., 2018; Haarnoja et al., 
2018a;b). There is also a signifcant body of research 
on maximum entropy RL methods (Ziebart et al., 2008; 
Ziebart, 2010; Todorov, 2008; Rawlik et al., 2013; Levine 
& Koltun, 2013; Levine et al., 2016; Nachum et al., 2017; 
Haarnoja et al., 2017; 2018a;b). Ahmed et al. (2019) very 
recently shed light on how entropy leads to a smoother opti-
mization landscape. By taking clipping in the MuJoCo en-
vironments explicitly into account, Fujita & Maeda (2018) 
modifed the policy gradient algorithm to reduce variance 
and provide superior performance among on-policy algo-
rithms. Eisenach et al. (2018) extend the work of Fujita 
& Maeda (2018) for when an action may be direction. 
Hausknecht & Stone (2015) introduce Inverting Gradients, 
for which we provide expermintal results in this paper for 
the MuJoCo environments. Chou et al. (2017) also ex-
plores DRL in the context of bounded action spaces. Dalal 
et al. (2018) consider safe exploration in the context of con-
strained action spaces. 

Experience replay (Lin, 1992) is a simple yet powerful 
method for enhancing the performance of an off-policy 
DRL algorithm. Experience replay stores past experience 
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(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2 

(d) Ant-v2 (e) Humanoid-v2 (f) Uniform and ERE sampling 

Figure 5: (a) to (e) show the performance of SAC baseline, SOP+ERE, SAC+ERE, and SOP IG+ERE. (f) shows over a 
period of 1000 updates, the expected number of times the tth data point is sampled (with η = 0.996). ERE allows new 
data to be sampled many times soon after being collected. 

in a replay buffer and reuses this past data when making 
updates. It achieved great successes in Deep Q-Networks 
(DQN) (Mnih et al., 2013; 2015). 

Uniform sampling is the most common way to sample from 
a replay buffer. One of the most well-known alternatives is 
prioritized experience replay (PER) (Schaul et al., 2015). 
PER uses the absolute TD-error of a data point as the 
measure for priority, and data points with higher priority 
will have a higher chance of being sampled. This method 
has been tested on DQN (Mnih et al., 2015) and double 
DQN (DDQN) (Van Hasselt et al., 2016) with signifcant 
improvement and applied successfully in other algorithms 
(Wang et al., 2015; Schulze & Schulze, 2018; Hessel et al., 
2018; Hou et al., 2017) and can be implemented in a dis-
tributed manner (Horgan et al., 2018). 

When new data points lead to large TD errors in the Q up-
date, PER will also assign high sampling probability to 
newer data points. However, PER has a different effect 
compared to ERE. PER tries to ft well on both old and new 
data points. While for ERE, old data points are always con-
sidered less important than newer data points even if these 
old data points start to give a high TD error. A performance 
comparison of PER and ERE are given in the supplemen-
tary materials. 

There are other methods proposed to make better use of the 
replay buffer. The ACER algorithm has an on-policy part 

and an off-policy part, with a hyper-parameter controlling 
the ratio of off-policy to on-policy updates (Wang et al., 
2016). The RACER algorithm (Novati & Koumoutsakos, 
2018) selectively removes data points from the buffer, 
based on the degree of “off-policyness,” bringing improve-
ment to DDPG (Lillicrap et al., 2015), NAF (Gu et al., 
2016) and PPO (Schulman et al., 2017). In De Bruin 
et al. (2015), replay buffers of different sizes were tested, 
showing large buffer with data diversity can lead to bet-
ter performance. Finally, with Hindsight Experience Re-
play(Andrychowicz et al., 2017), priority can be given to 
trajectories with lower density estimation (Zhao & Tresp, 
2019) to tackle multi-goal, sparse reward environments. 

7. Conclusion 

In this paper we frst showed that the primary role of max-
imum entropy RL for the MuJoCo benchmark is to main-
tain satisfactory exploration in the presence of bounded ac-
tion spaces. We then developed a new streamlined algo-
rithm which does not employ entropy maximization but 
nevertheless matches the sampling effciency and robust 
performance of SAC for the MuJoCo benchmarks. Fi-
nally, we combined our streamlined algorithm with a sim-
ple non-uniform sampling scheme to create a simple algo-
rithm that achieves state-of-the art performance for the Mu-
JoCo benchmark. 
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Algorithm 1 Streamlined Off-Policy 

1: Input: initial policy parameters θ, Q-function parameters φ1, φ2, empty replay buffer D 
2: Throughout the output of the policy network µθ(s) is normalized if G > 1. (See Section 4.1.) 
3: Set target parameters equal to main parameters φtargi 

← φi for i = 1, 2 
4: repeat 
5: Generate an episode using actions a = M tanh(µθ(s) + �) where � ∼ N (0, σ1). 
6: for j in range(however many updates) do 
7: Randomly sample a batch of transitions, B = {(s, a, r, s)} from D 
8: Compute targets for Q functions: 

yq(r, s0) = r + γ mini=1,2 Qφtargi 
(s0,M tanh(µθ(s

0) + δ)) δ ∼ N (0, σ2) 
9: Update Q-functions by one step of gradient descent using 

rφi |B 
1 
| 
P 

(s,a,r,s0)∈B (Qφi (s, a) − yq(r, s0))
2 for i = 1, 2 

10: Update policy by one step of gradient ascent using 
1 P 

rθ |B| s∈B Qφ1 (s, M tanh(µθ(s))) 
11: Update target networks with 

φtargi 
← ρφtargi 

+ (1 − ρ)φi for i = 1, 2 
12: end for 
13: until Convergence 
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