
Supplementary Material for Striving for Simplicity and Performance in
Off-Policy DRL: Output Normalization and Non-Uniform Sampling

1. Hyperparameters

Table 1 shows hyperparameters used for SOP, SOP+ERE
and SOP+PER. For adaptive SAC, we use our own PyTorch
implementation for the comparisons. Our implementation
uses the same hyperparameters as used in the original paper
(Haarnoja et al., 2018). Our implementation of SOP vari-
ants and adaptive SAC share most of the code base. For
TD3, our implementation uses the same hyperparamters
as used in the authors’ implementation, which is different
from the ones in the original paper (Fujimoto et al., 2018).
They claimed that the new set of hyperparamters can im-
prove performance for TD3. We now discuss hyperparam-
eter search for better clarity, fairness and reproducibility
(Henderson et al., 2018; Duan et al., 2016; Islam et al.,
2017).

For the η value in the ERE scheme, in our early exper-
iments we tried the values (0.993, 0.994, 0.995, 0.996,
0.997, 0.998) on the Ant and found 0.995 to work well.
This initial range of values was decided by computing the
ERE sampling range for the oldest data. We found that for
smaller values, the range would simply be too small. For
the PER scheme, we did some informal preliminary search,
then searched on Ant for β1 in (0, 0.4, 0.6, 0.8), β2 in (0,
0.4, 0.5, 0.6, 1), and learning rate in (1e-4, 2e-4, 3e-4, 5e-
4, 8e-4, 1e-3), we decided to search these values because
the original paper used β1 = 0.6, β2 = 0.4 and with re-
duced learning rate. For the exponential sampling scheme,
we searched the λ value in (3e-7, 1e-6, 3e-6, 5e-6, 1e-5,
3e-5, 5e-5, 1e-4) in Ant, this search range was decided by
plotting out the probabilities of sampling, and then pick a
set of values that are not too extreme. For σ in SOP, in
some of our early experiments with SAC, we accidentally
found that σ = 0.3 gives good performance for SAC with-
out entropy and with Gaussian noise. We searched values
(0.27, 0.28, 0.29, 0.3). For σ values for TD3+, we searched
values (0.1, 0.15, 0.2, 0.25, 0.3).

2. Entropy Value Comparison

To better understand whether the simple normalization
term in SOP achieves a similar effect compared to explic-
itly maximizing entropy, we plot the entropy values for
SOP and SAC throughout training for all environments.

Figure 1 shows that the SOP and SAC policies have very
similar entropy values across training, while removing the
entropy term from SAC leads to a much lower entropy
value. This indicates that the effect of the action normal-
ization is very similar to maximizing entropy.

3. ERE Pseudocode

Our Streamlined Off Policy (SOP) with Emphasizing Re-
cent Experience (ERE) algorithm is described in Algorithm
1.

4. Inverting Gradient Method

In this section we discuss the details of the Inverting Gra-
dient method.

Hausknecht & Stone (2015) discussed three different meth-
ods for bounded parameter space learning: Zeroing Gra-
dients, Squashing Gradients and Inverting Gradients, they
analyzed and tested the three methods and found that In-
verting Gradients method can achieve much stronger per-
formance than the other two. In our implementation, we
remove the tanh function from SOP and use Inverting Gra-
dients instead to bound the actions. Let p indicate the out-
put of the last layer of the policy network. During explo-
ration p will be the mean of a normal distribution that we
sample actions from, the IG approach can be summarized
by the following equation (Hausknecht & Stone, 2015):

⎧
pmax−p⎨ if rp suggestspmax−pmin

rp = rp · increasing p (1)⎩ p−pmin otherwise pmax−pmin

Where rp is the gradient of the policy loss w.r.t to p. Dur-
ing a policy network update, we frst backpropagate the
gradients from the outputs of the Q network to the out-
put of the policy network for each data point in the batch,
we then compute the ratio (pmax − p)/(pmax − pmin) or
(pmax − p)/(pmax − pmin) for each p value (each action
dimension), depending on the sign of the gradient. We then
backpropagate from the output of the policy network to pa-
rameters of the policy network, and we modify the gradi-
ents in the policy network according to the ratios we com-
puted. We made an effcient implementation and further

Supplementary Material for Striving for simplicity and performance in off-policy DRL

Table 1: SOP Hyperparameters

Parameter Value
Shared

optimizer
learning rate
discount (γ)
target smoothing coeffcient (ρ)
target update interval
replay buffer size
number of hidden layers for all networks
number of hidden units per layer
mini-batch size
nonlinearity

Adam (Kingma & Ba, 2014)
3 · 10−4

0.99
0.005
1
106

2
256
256
ReLU

SAC adaptive
entropy target -dim(A) (e.g., 6 for HalfCheetah-v2)

SOP
gaussian noise std σ = σ1 = σ2 0.29

TD3
gaussian noise std for data collection σ
guassian noise std for target policy smoothing σ̃

0.1 * action limit
0.2

TD3+
gaussian noise std for data collection σ
guassian noise std for target policy smoothing σ̃

0.15
0.2

ERE
ERE initial η0 0.995

PER
PER β1 (α in PER paper)
PER β2 (β in PER paper)

0.4
0.4

EXP
Exponential λ 5e − 06

Supplementary Material for Striving for simplicity and performance in off-policy DRL

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 1: Entropy value comparison between SOP, SAC, and SAC without entropy maximization

discuss the computation effciency of IG in the implemen-
tation details section.

5. SOP with Other Sampling Schemes

We also investigate the effect of other interesting sampling
schemes.

5.1. SOP with Prioritized Experience Replay

We also implement the proportional variant of Prioritized
Experience Replay (Schaul et al., 2015) with SOP.

Since SOP has two Q-networks, we redefne the absolute
TD error |δ| of a transition (s, a, r, s0) to be the average
absolute TD error in the Q network update:

2X1 |δ| = |yq(r, s 0) − Qφ,l(s, a)| (2)
2

l=1

Within the sum, the frst term yq(r, s0) = r +
0γ mini=1,2 Qφtarg,i (s , tanh(µθ(s

0) + δ)), δ ∼ N (0, σ2) is
simply the target for the Q network, and the term Qθ,l(s, a)
is the current estimate of the lth Q network. For the ith data
point, the defnition of the priority value pi is pi = |δi| + �.
The probability of sampling a data point P (i) is computed
as:

β1p
P (i) = P i β1

(3)
j pj

where β1 is a hyperparameter that controls how much the
priority value affects the sampling probability, which is de-

noted by α in Schaul et al. (2015), but to avoid confusion
with the α in SAC, we denote it as β1. The importance
sampling (IS) weight wi for a data point is computed as:

1 1
)β2wi = (· (4)

N P (i)

where β2 is denoted as β in Schaul et al. (2015).

Based on the SOP algorithm, we change the sampling
method from uniform sampling to sampling using the prob-
abilities P (i), and for the Q updates we apply the IS weight
wi. This gives SOP with Prioritized Experience Replay
(SOP+PER). We note that as compared with SOP+PER,
ERE does not require a special data structure and has neg-
ligible extra cost, while PER uses a sum-tree structure with
some additional computational cost. We also tried several
variants of SOP+PER, but preliminary results show that it
is unclear whether there is improvement in performance, so
we kept the algorithm simple.

5.2. SOP with Exponential Sampling

The ERE scheme is similar to an exponential sampling
scheme where we assign the probability of sampling ac-
cording to the probability density function of an exponen-
tial distribution. Essentially, in such a sampling scheme,
the more recent data points get exponentially more proba-
bility of being sampled compared to older data.

For the ith most recent data point, the probability of sam-
pling a data point P (i) is computed as:

P (i) = λe−λx (5)

Supplementary Material for Striving for simplicity and performance in off-policy DRL

Algorithm 1 SOP with Emphasizing Recent Experience

1: Input: initial policy parameters θ, Q-function parameters φ1, φ2, empty replay buffer D of size N , initial η0, recent
and max performance improvement Irecent = Imax = 0.

2: Set target parameters equal to main parameters φtarg,i ← φi for i = 1, 2
3: repeat
4: Generate an episode using actions a = M tanh(µθ(s) + �) where � ∼ N (0, σ1).
5: update Irecent, Imax with training episode returns, let K = length of episode

Irecent + (1 − Irecent 6: compute η = η0 ·)Imax Imax

7: for j in range(K) do
· ηk 1000

K8: Compute ck = N
9: Sample a batch of transitions, B = {(s, a, r, s)} from most recent ck data in D

10: Compute targets for Q functions:
yq(r, s0) = r + γ mini=1,2 Qφtarg,i (s

0,M tanh(µθ(s
0) + δ)) δ ∼ N (0, σ2)

11: Update Q-functions by one step of gradient descent using
1rφi |B|

P
(s,a,r,s0)∈B (Qφ,i(s, a) − yq(r, s0))

2 for i = 1, 2
12: Update policy by one step of gradient ascent using

1 P
rθ Qφ,1(s, M tanh(µθ(s)))|B| s∈B

13: Update target networks with
φtarg, i ← ρφtarg, i + (1 − ρ)φi for i = 1, 2

14: end for
15: until Convergence

(a) Hopper-v2 (b) Walker2d-v2 (c) Halfcheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 2: Streamlined Off-Policy (SOP), with ERE and PER sampling schemes

We apply this sampling scheme to SOP and refer to this formance of SOP, and especially in the Humanoid en-
variant as SOP+EXP. vironment, although not as good as ERE. Surprisingly,

SOP+PER does not give a signifcant performance boost
5.3. PER and EXP experiment results to SOP (if any boost at all). We also found that it is dif-

fcult to fnd hyperparameter settings for SOP+PER that
Figure 2 shows a performance comparison of SOP, work well for all environments. Some of the other hyperpa-
SOP+ERE, SOP+EXP and SOP+PER. Results show that rameter settings actually reduce performance. It is unclear
the exponential sampling scheme gives a boost to the per-

Supplementary Material for Striving for simplicity and performance in off-policy DRL

why PER does not work so well for SOP. A similar result
has been found in another recent paper (Fu et al., 2019),
showing that PER can signifcantly reduce performance on
TD3. Further research is needed to understand how PER
can be successfully adapted to environments with continu-
ous action spaces and dense reward structure.

6. Additional ERE analysis

Figure 3 shows, for fxed η, how η affects the data sam-
pling process, under the ERE sampling scheme. Recent
data points have a much higher probability of being sam-
pled compared to older data, and a smaller η value gives
more emphasis to recent data.

Different η values are desirable depending on how fast the
agent is learning and how fast the past experiences become
obsolete. So to make ERE work well in different environ-
ments with different reward scales and learning progress,
we adapt η to the the speed of learning. To this end, de-
fne performance to be the training episode return. Defne
Irecent to be how much performance improved from N/2
timesteps ago, and Imax to be the maximum improvement
throughout training, where N is the buffer size. Let the
hyperparameter η0 be the initial η value. We then adapt η
according to the formula: η = η0 · Irecent/Imax + 1 −
(Irecent/Imax).

Under such an adaptive scheme, when the agent learns
quickly, the η value is low in order to learn quickly from
new data. When progress is slow, η is higher to make use of
the stabilizing effect of uniform sampling from the whole
buffer.

7. Additional implementation details

7.1. ERE implementation

In this section we discuss some programming details.
These details are not necessary for understanding the al-
gorithm, but they might help with reproducibility.

In the ERE scheme, the sampling range always starts with
the entire buffer (1M data) and then gradually shrinks. This
is true even when the buffer is not full. So even if there are
not many data points in the buffer, we compute ck based
as if there are 1M data points in the buffer. One can also
modify the design slightly to obtain a variant that uses the
current amount of data points to compute ck. In addition to
the reported scheme, we also tried shrinking the sampling
range linearly, but it gives less performance gain.

In our implementation we set the number of updates after
an episode to be the same as the number of timesteps in that
episode. Since environments do not always end at 1000
timesteps, we can give a more general formula for ck. Let

K be the number of mini-batch updates, let N be the max
size of the replay buffer, then:

· ηk 1000
Kck = N (6)

With this formulation, the range of sampling shrinks in
more or less the same way with varying number of mini-
batch updates. We always do uniform sampling in the frst

η1000Kupdate, and we always have ηK 1000
= in the last

update.

When η is small, ck can also become small for some of
the mini-batches. To prevent getting a mini-batch with too
many repeating data points, we set the minimum value for
ck to 5000. We did not fnd this value to be too important
and did not fnd the need to tune it. It also does not have any
effect for any η ≥ 0.995 since the sampling range cannot
be lower than 6000.

In the adaptive scheme with buffer of size 1M, the recent
performance improvement is computed as the difference
of the current episode return compared to the episode re-
turn 500,000 timesteps earlier. Before we reach 500,000
timesteps, we simply use η0. The exact way of comput-
ing performance improvement does not have a signifcant
effect on performance as long as it is reasonable.

7.2. Programming and computation complexity

In this section we give analysis on the additional program-
ming and computation complexity brought by ERE and
PER.

In terms of programming complexity, ERE is a clear winner
since it only requires a small adjustment to how we sample
mini-batches. It does not modify how the buffer stores the
data, and does not require a special data structure to make it
work effciently. Thus the implementation diffculty is min-
imal. PER (proportional variant) requires a sum-tree data
structure to make it run effciently. The implementation is
not too complicated, but compared to ERE it is a lot more
work.

The exponential sampling scheme is very easy to imple-
ment, although a naive implementation will incur a signif-
icant computation overhead when sampling from a large
buffer. To improve its computation effciency, we instead
uses an approximate sampling method. We frst sample
data indexes from segments of size 100 from the replay
buffer, and then for each segment sampled, we sample one
data point uniformly from that segment.

In terms of computation complexity (not sample eff-
ciency), and wall-clock time, ERE’s extra computation is
negligible. In practice we observe no difference in com-
putation time between SOP and SOP+ERE. PER needs to

Supplementary Material for Striving for simplicity and performance in off-policy DRL

(a) (b)

Figure 3: Effect of different η values. The plots assume a replay buffer with 1 million samples, and 1,000 mini-batches of
size 256 in an update phase. Figure 3a plots ck (ranging from 0 to 1 million) as a function of k (ranging from 1 to 1,000).
Figure 3b plots the expected number of times a data point in the buffer is sampled, with the data points ordered from most
to least recent.

(a) Hopper-v2 (b) Walker2d-v2 (c) HalfCheetah-v2

(d) Ant-v2 (e) Humanoid-v2

Figure 4: TD3 versus TD3+ (TD3 plus the normalization scheme)

update the priority of its data points constantly and com-
pute sampling probabilities for all the data points. The
complexity for sampling and updates is O(log(N)), and
the rank-based variant is similar (Schaul et al., 2015). Al-
though this is not too bad, it does impose a signifcant over-
head on SOP: SOP+PER runs twice as long as SOP. Also
note that this overhead grows linearly with the size of the
mini-batch. The overhead for the MuJoCo environments
is higher compared to Atari, possibly because the MuJoCo
environments have a smaller state space dimension while
a larger batch size is used, making PER take up a larger
portion of computation cost. For the exponential sampling
scheme, the extra computation is also close to negligible

when using the approximate sampling method.

In terms of the proposed normalization scheme and the In-
verting Gradients (IG) method, the normalization is very
simple and can be easily implemented and has negligible
computation overhead. IG has a simple idea, but its imple-
mentation is slightly more complicated than the normaliza-
tion scheme. When implemented naively, IG can have a
large computation overhead, but it can be largely avoided
by making sure the gradient computation is still done in a
batch-manner. We have made a very effcient implemen-
tation and our code is publicly available so that interested
reader can easily reproduce it.

Supplementary Material for Striving for simplicity and performance in off-policy DRL

7.3. Computing Infrastructure

Experiments are run on cpu nodes only. Each job runs on a
single Intel(R) Xeon(R) CPU E5-2620 v3 with 2.40GHz.

8. TD3 versus TD3+

In fgure 4, we show additional results comparing TD3 with
TD3 plus our normalization scheme, which we refer as
TD3+. The results show that after applying our normal-
ization scheme, TD3+ has a signifcant performance boost
in Humanoid, while in other environments, both algorithms
achieve similar performance.

References

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. Benchmarking deep reinforcement learning
for continuous control. In International Conference on
Machine Learning, pp. 1329–1338, 2016.

Fu, J., Kumar, A., Soh, M., and Levine, S. Diagnosing bot-
tlenecks in deep q-learning algorithms. arXiv preprint
arXiv:1902.10250, 2019.

Fujimoto, S., van Hoof, H., and Meger, D. Address-
ing function approximation error in actor-critic methods.
arXiv preprint arXiv:1802.09477, 2018.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

Hausknecht, M. and Stone, P. Deep reinforcement learn-
ing in parameterized action space. arXiv preprint
arXiv:1511.04143, 2015.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,
D., and Meger, D. Deep reinforcement learning that mat-
ters. In Thirty-Second AAAI Conference on Artifcial In-
telligence, 2018.

Islam, R., Henderson, P., Gomrokchi, M., and Precup,
D. Reproducibility of benchmarked deep reinforcement
learning tasks for continuous control. arXiv preprint
arXiv:1708.04133, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Schaul, T., Quan, J., Antonoglou, I., and Silver,
D. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2015.

	Hyperparameters
	Entropy Value Comparison
	ERE Pseudocode
	Inverting Gradient Method
	SOP with Other Sampling Schemes
	SOP with Prioritized Experience Replay
	SOP with Exponential Sampling
	PER and EXP experiment results

	Additional ERE analysis
	Additional implementation details
	ERE implementation
	Programming and computation complexity
	Computing Infrastructure

	TD3 versus TD3+

