Neural Network Control Policy Verification with Persistent Adversarial
Perturbations

Yuh-Shyang Wang ! Tsui-Wei Weng? Luca Daniel >

Abstract

Deep neural networks are known to be fragile to
small adversarial perturbations, which raises se-
rious concerns when a neural network policy is
interconnected with a physical system in a closed
loop. In this paper, we show how to combine re-
cent works on static neural network certification
tools with robust control theory to certify a neu-
ral network policy in a control loop. We give a
sufficient condition and an algorithm to ensure
that the closed loop state and control constraints
are satisfied when the persistent adversarial per-
turbation is £, norm bounded. Our method is
based on finding a positively invariant set of the
closed loop dynamical system, and thus we do
not require the continuity of the neural network
policy. Along with the verification result, we also
develop an effective attack strategy for neural net-
work control systems that outperforms exhaustive
Monte-Carlo search significantly. We show that
our certification algorithm works well on learned
models and could achieve 5 times better result
than the traditional Lipschitz-based method to cer-
tify the robustness of a neural network policy on
the cart-pole balance control problem.

1. Introduction

Deep neural networks have become state-of-the-arts in a
variety of machine learning tasks, including control of a
physical system in the reinforcement learning setting. For
example, in guided policy search (Zhang et al., 2016), a
neural network policy is used to replace the online model
predictive control policy to directly control a physical sys-
tem in a feedback loop. Yet, recent studies demonstrate that

'Argo AI, Pittsburgh, Pennsylvania, USA *Department
of EECS, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA. Correspondence to: Yuh-Shyang Wang
<yswang@argo.ai>.

Proceedings of the 37" International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

neural networks are surprisingly vulnerable to adversarial
examples and attacks (Huang et al., 2017; Szegedy et al.,
2013; Xie et al., 2017; Jia & Liang, 2017). For applications
that are safety-critical, such as self-driving cars, the exis-
tence of adversarial examples in neural networks has raised
severe and unprecedented concerns — a small perturbation
on the neural network input may cause significant change in
control actions, which could possibly destabilize the system
or drive the system state to an unsafe region. Therefore, it is
crucial to develop a verification tool that can provide useful
certificate (such as safety or robustness guarantees) for a
dynamical system with a neural network policy in the loop.

Recently, much research effort has been devoted to develop-
ing verification methods to quantify the robustness of neural
networks against adversarial input perturbations (Katz et al.,
2017; Ehlers, 2017; Kolter & Wong, 2018; Ruan et al., 2018;
Weng et al., 2018; Dvijotham et al., 2018; Bunel et al., 2018;
Boopathy et al., 2019; Royo et al., 2019). Specifically, given
a neural network policy u = 7 (y), these verifiers can certify
that u = 7w(y) € U for all y € Y for some sets U and).
However, these verifiers are developed in a static setting,
where the neural networks do not interact with a dynami-
cal system. When a neural network policy is deployed to
a dynamical system (Zhang et al., 2016; Kiumarsi et al.,
2017), the neural network output u can affect the neural
network input y in the future via a feedback loop. To certify
a neural network policy in closed loop, it is necessary to
extend the static neural network certification tools to the
dynamic setting.

In this paper, we propose a novel framework to verify neural
network policies in a closed loop system by combining the
aforementioned static neural network certification tools with
robust control theory. We consider a realistic and strong
threat model where the adversaries can manipulate observa-
tions and states at every time step over an infinite horizon
(the so-called persistent perturbations). Our key idea is to
leverage the static neural network certification tools to give
a tight input-output characterization of the neural network
policy, consequently allowing us to find a positively invari-
ant set of the closed loop dynamical system when combined
with robust control theory. Our contributions are summa-
rized as below:

Neural Network Control Policy Verification with Persistent Adversarial Perturbations

e To our best knowledge, our work is the first one to extend
the aforementioned neural network certification tools to a
dynamic setting, in which we certify a neural network pol-
icy in a feedback control loop under persistent adversarial
perturbation.

e Our framework can handle non-Lipschitz and discon-
tinuous neural network policies, while the traditional
Lipschitz-based robust control approach cannot. Even
when the neural network policy is Lipschitz continuous,
we prove theoretically and validate experimentally that
our proposed framework is always better than the tradi-
tional Lipschitz-based robust control approach in terms
of tighter certification bound.

e We show that our method could work on situations where
the system dynamic is unknown, unstable, and nonlinear.
As long as one can learn a nominal linear model and
over-approximate the modeling error using a data driven
approach, our certification algorithm can be applied.

e Along with the certification algorithm, we develop an
effective persistent /., attack algorithm that can success-
fully discover the vulnerability of a neural network con-
trol system while an exhaustive Monte-Carlo simulation
cannot. This observation indicates that the robustness of
a neural network control system cannot be certified via
exhaustive simulation, and the mathematical-based certi-
fication framework developed in this paper is necessary.

Related works. Recent works (Berkenkamp et al., 2017;
Richards et al., 2018; Jin & Lavaei, 2018a;b; Ivanov et al.,
2019) in the field of safe reinforcement learning can give
a certificate of stability or safety properties of a neural net-
work control system. Our work differs from the above works
in two aspects. First, we explicitly incorporate the adversar-
ial perturbation in our formulation, especially the persistent
perturbation sequence with bounded £, norm (the 5 norm
and the energy of the signal are unbounded). The Lyapunov
based method (Richards et al., 2018) and the hybrid system
method (Ivanov et al., 2019) do not deal with perturbation
and the integral quadratic constraint based method (Jin &
Lavaei, 2018b;a) is developed with bounded ¢ norm on
the perturbation. Second, our method can be applied on
neural networks that are discontinuous in nature — e.g. the
discontinuity due to quantization, digitalization, switching
logic, obfuscated gradient (Athalye et al., 2018), or other
defense strategies. Even when the neural network is Lip-
schitz continuous, we show in this paper that our method
give a tighter bound than the Lipschitz-based robust control
method.

Another class of related works is neural network control
verification with (partially observable) Markov decision pro-
cess models (Carr et al., 2019). Our work differs from these
works as we assume continuous instead of discrete state

X: state vector

y: measurement

w: control action

w: external perturbation
7r: neural network policy
P: plant

. A: model uncertainty

! a: input to A

I §: output of A
|

1

Figure 1: A neural network policy interconnected with an
uncertain dynamical system.

space model. We also explicitly consider model uncertainty
and persistent adversarial perturbation, and provide safety
guarantees against worst-case perturbations to the systems.
While in (Carr et al., 2019), the safety constraint is certified
on nominal systems. Finally, (Carr et al., 2019) consid-
ers both policy synthesis and verification. Our work only
focuses on verification of a given policy.

Notations. We use lower case letters such as = to denote
vectors and upper case letters such as A to denote matrices.
We use = y to denote that z is element-wise less than or
equal to y. For a square matrix A, we use p(A) to denote
the largest absolute value of the eigenvalues of A. We
use boldface letters such as x and ® to denote signals and
transfer matrices in the frequency domain, respectively. For
a time signal {z[t]}$2,, the unilateral z-transform of the
time series {z[t]};2, is given by x(z) = >.,o 2z ‘zt].
We use ®[t] to denote the ¢-th spectral component of a
transfer matrix ®, i.e., ®(z) = 3,7 27 '®[t]. We use x
and @ as shorthand of x(z) and ®(z) when the context
makes it clear. For a frequency domain equation y = ®x,
the corresponding time domain equation is given by the
convolution formula y[t] = Y77) ®[r]z[t — 7]. We use
l|x|l¢, to denote the standard £, norm of the signal x and
use || @]z, and ||®||%_. to denote the £1 norm (Dahleh &
Pearson, 1987) and the H ., norm (Zhou et al., 1996) of the
system ®. We define the absolute operator abs(+) of a stable
transfer matrix & by abs(®) = >, |®[t]|. Note that each
element of the transfer matrix ® is absolutely summable if
and only if the transfer matrix ® is real rational and stable
(Page 113-114 of (Oppenheim et al., 1996)).

2. Problem Formulation

We consider a neural network policy interconnected with a
dynamical system. The model architecture is shown in Fig.
1, where 7(+) is the neural network control policy, P is the
plant to be controlled, and A characterizes the uncertainty

Neural Network Control Policy Verification with Persistent Adversarial Perturbations

of the model P. When the model dynamics is unknown
in the first place, one can use data driven approaches such
as (Dean et al., 2017; Recht, 2019) to learn the nominal
model P and over-approximate the modeling error using A.
We assume that P is a discrete time linear time invariant
(LTT) system with dynamics given by

z[t+1] = Az[t]| + Bult] + Bywl[t] + Bsd[t] (1)
y[t] = Cz[t] + Dyw[t] ()
aft] = Cuzlt] + Dowult] + Daywlt]. (3)

where ¢ denotes the time index, x the state vector, u the con-
trol action, y the measurement, w the external perturbation,
and « and § the input and output of the uncertainty block A.
In particular, w is a persistent perturbation over an infinite
horizon t > 0. In the rest of the paper, we assume zero
initial condition unless stated otherwise:

2[0] = 0. @)

This is for ease of exposition — the method proposed in this
paper can be readily extended to handle persistent pertur-
bation with nonzero initial condition as well. We assume
the pair (A, B) is stabilizable and (A, C') is detectable. The
neural network policy is assumed to be static'

ult] = m(ylt]), (5)
while the uncertainty block can be dynamic, with
= Aa) (6)

in the frequency domain. We assume that A is stable and
norm bounded. Equations (1) - (6) give a complete descrip-
tion of the model architecture shown in Fig. 1.

In this paper, we use w to model the persistent adversarial
perturbation. We assume that w lies in the set |[w|, <
Weo, OF equivalently,

w e {w | |w[t]] 2wl =w, Vt>0}. (7)

The matrices B,, and D,, in (1) - (2) control the impact of
w on the state x and the neural network input y. The goal
of this paper is the following:

Goal. Given the model equations (1) - (6), design an algo-
rithm to certify that the following requirement is satisfied
for any adversarial sequence {wlt]}:2, satisfying (7):

'If the input to the neural network policy is a finite horizon
of historical measurement, i.e., u[t] = w(y[t], y[t — 1],...,y[t —
T1]) for a finite length 7', then we can augment the state = and
measurement y for 7" steps and convert 7 () to a static policy.

3. Closed Loop Boundedness

In this section, we derive a sufficient condition to ensure
that the state x, measurement y, and control u in Fig. 1
are bounded for any adversarial attack w lies within the
lo ball (7). We first assume that the plant model (1) -
(3) is open loop stable, i.e., p(A) < 1, and directly apply
traditional robust control theory to obtain Lemma 1 for
closed loop stability. We then explain the restrictions of
Lemma 1 and improve the results by combining robust
control theory with neural network certification tools to
obtain Theorem 1. Finally, we extend our results to unstable
plants.

3.1. Stable Plant: robust control baseline

We use the frequency domain notation introduced before to
rewrite (1) - (3) as

X Py Pxw Pxs u u
v| =@y @y Bys| [w| =@ |w|
(o4 "I)au (I)aw i’aé 0 0

with @y = (21— A) 1B, &y = (21— A) 1B, ®y5 =
(21 — A)7'Bs, ®yy = CPxy, Pyw = CPyw + Dy,
@yé = C®ys, Pau = CoPxu+ Dous Paw = CoPxw +
Dy, and @45 = C,Pys. To show the input-output sta-
bility? of the structure in Fig. 1, we first assume that the
neural network policy is locally Lipschitz continuous with a
finite {0 to Loo gain g, ie., |Julle. < vxllylle., over some
range ||y|l¢.. < Yoo. For a stable transfer matrix, the £ to
{+, induced norm is known as the £ system norm (Dahleh
& Pearson, 1987). The following Lemma gives the local
input-output stability of Fig. 1, which directly comes from
robust control theory:

Lemma 1. Consider the model in Fig. 1 ((1) - (7) with
p(A) < 1). Suppose that the neural network policy u =
w(y) has a finite U, to L gain v for all ||ylle., < Yoo
and the uncertainty block A has the property ||6]|¢., <
Yalle|le.. - If the following three conditions hold.:

b1 =72l Pasllc, <1 (10a)
VAII‘I’ysllz:lll‘I’auHcl}
= Tr P u 1
R L e <
(10b)
1 YAl Pysllc, | Pawll .
135 [H‘I’ywHLl + ” y1”_ gl ” :|w<>o < Yoo
(10¢)

then the closed loop system in Fig. 1 is input-output stable
over the region ||ylle.. < Yoo for all adversarial attack w
satisfying (7).

The closed loop system is said to be finite gain input-output
stable if the gain from perturbation w to (x, u,y) is finite.

Neural Network Control Policy Verification with Persistent Adversarial Perturbations

The proof of Lemma 1 is in the Supplementary. To certify
the local input-output stability of the closed loop system
using Lemma 1, we can iteratively search for y., until the
local Lipschitz continuous assumption and (10a) - (10c)
are both satisfied, or the state constraint is violated. Note
that when ~; is the global ¢, to £, bound of the neural
network policy, we can drop the condition (10c) because
Yoo Can be arbitrarily large. The global version of Lemma
1, i.e., with y., being arbitrarily large, can be found in the
robust control literature in (Khammash & Pearson, 1991).
When the magnitude of the signals w and y is characterized
by the ¢ norm, we can replace the £; norm in Lemma
1 by the H norm, as the H, norm is equivalent to the
{5 to {5 induced norm. We include the global and H
version of Lemma 1 in the Supplementary, which is an
unstructured version of the main loop theorem® (Packard
& Doyle, 1993; Zhou et al., 1996) in the robust control
literature (o, control and structured singular value).

3.2. Stable Plant: improvement

Lemma 1 has several restrictions. First, the neural network
policy needs to be Lipschitz continuous, and thus Lemma
1 cannot be applied on non-differentiable or discontinuous
policies due to quantization or other issues. Second, even
when the given neural network policy is Lipschitz contin-
uous, the bound of the local Lipschitz constant v, for a
deep neural network policy is usually very loose. As a
consequence, Lemma 1 can only be applied to certify the
robustness of Fig. 1 over a small region near the stable
equilibrium. Finally and most importantly, even if the given
policy is Lipschitz continuous and the local Lipschitz con-
stant v, is exact, using ||ulls, < Y ||y|le., to characterize
the input-output relation of a given neural network is usually
very loose. In this subsection, we improve the results of
Lemma 1 and propose a more useful Theorem to certify the
boundedness of the structure in Fig. 1.

Our strategy is to use the static neural network certification
tool to give a tighter characterization of the input-output
relation of the given neural network policy. The following
Theorem gives a sufficient condition to ensure closed loop
boundedness under any adversarial attack satisfying (7).

Theorem 1. Consider the model in Fig. 1 ((1) - (7) with
p(A) < 1). If we can find a quadruplet (g, u, &, 0) satisfy-
ing the following conditions:

1. Neural network robustness certificate: The static policy
u = 7(y) has the property |u| =< @ for all |y| < .

2. Input-output relation of the uncertainty block: § = A()
has the property |alk]| = &, k=0,--- ,;t = [J[t]| <
d forallt > 0.

3 An extension of the well-known small gain theorem.

|
+

3. Feedback condition: abs(®yw) w + abs(Pyu)
abs(®ys) 0 = iy and abs(Paw) W + abs(Pou)
abs(®ns) 6 =X a.

N
+

then we have the following properties:

1. Bounded feedback signals: |y[t]] =< ¥,
laft]] <X @, |d]t]| < & forallt > 0.

ult]] 2 4,

2. Bounded state: |z[t]| X T, with T = abs(®Pxw) W +
abs(®Pyy) U + abs(Pys) d forall t > 0.

The key idea of Theorem 1 is to combine a static neu-
ral network certification algorithm (Kolter & Wong, 2018;
Weng et al., 2018; Gehr et al., 2018; Dvijotham et al.,
2018; Boopathy et al., 2019; Royo et al., 2019) with ro-
bust control theory to certify a neural network policy in a
feedback control loop. The first condition of Theorem 1
is an input-output characterization of the neural network
policy, which can be obtained by a static neural network
certification algorithm. The second condition is a charac-
terization of the model uncertainty block A. The third
condition, when combining with the first two conditions, en-
sures that {(y,u, ., 8)| |y| <7, |u| 2 4,|a| < &, |5 <6}
is a positively invariant set of the closed loop dynamical
system. The complete proof of Theorem 1 is in the Sup-
plementary. Theorem 1 can be used as follows: if we
have (Z,7,%) = (Z1im, Yiim, Wiim), then the requirement
(8) is satisfied. We will discuss how to find a quadruplet
(9,1, &, d) satisfying the conditions of Theorem 1 in the
next section.

Theorem 1 has several advantages over Lemma 1. First,
Theorem 1 does not require the differentiability or continuity
of the neural network policy 7(-). Theorem 1 is valid as long
as the property |u| < @ for all |y| < ¢ can be certified. This
is one of the key difference between our approach and the
Lipschitz-based robust control method (Berkenkamp et al.,
2017; Richards et al., 2018; Jin & Lavaei, 2018a;b). Second,
the neural network certification tool can give a tighter input-
output characterization of the neural network policy than
the local Lipschitz constant. As a result, the conditions
of Theorem 1 are less restricted and easier to satisfy. The
following Theorem (proof in the Supplementary) claims
that the conditions of Lemma 1 implies that the sufficient
conditions of Theorem 1 will always hold. This means
that Theorem 1 can be applied on a strictly larger class of
problems than that of Lemma 1.

Theorem 2. The conditions of Lemma 1 imply the condi-
tions of Theorem 1.

Note that Theorem 1 only certifies the boundedness of the
closed loop system, not the stability of the closed loop sys-
tem — Theorem 1 does not guarantee that = 0 is a stable

Neural Network Control Policy Verification with Persistent Adversarial Perturbations

equilibrium. However, in the presence of persistent ad-
versarial perturbation, we argue that there is no significant
difference between boundedness and stability because both
of them will have a finite yet nonzero state deviation. In our
case study section, we show that Theorem 1 is much more
useful than the traditional robust control approach (Lemma
1) as it can certify the requirement (8) with persistent adver-
sarial attack (7) that is 5 times larger.

3.3. Unstable Plant

In this subsection, we consider the case where the plant
(1) - (3) is unstable. Our strategy is to extract a first order
approximation of the neural network policy to stabilize the
plant first, then analyze the interconnection of the stabilized
plant and the residual control policy. Specifically, we rewrite
the neural network policy as u[t] = 7 (y[t]) = Koy[t] +
mo(y[t]) for some matrix Ky. We call mo(+) the residual
control policy. Equations (1) - (3) then become

z[t + 1] = (A + BKyC)z[t] + Buglt]

+ (BKoDy + By)w[t] + Bsd[t] (11a)
y[t] = Czlt] + Dywlt] (11b)
alt] = (Co 4+ Dau KoC)z[t] + Doy uolt]

+ (DauKoDyw + Do)w]t] (11¢)

with the neural network policy wug[t] = mo(y[t]). As long
as the spectral radius of the closed loop system matrix
Aaq = (A + BKyC) is less than 1, the transfer matrix
(2I — Ay)~ ! is stable. Theorem 1 can then be used
with redefined transfer matrices: for instance, we have
&, = (2 — Ay) " (BK¢D,, + B,) — other transfer
matrices can be derived in a similar manner. In the follow-
ing, we propose two different ways to obtain a candidate
Ko: (1) using the Jacobian evaluated at the origin, and (2)
using neural network certification tool to find a first order
approximation of the policy over a region.

If the neural network policy has the property 7(0) = 0
and is differentiable at y = 0, we can use the Jacobian

of m(y) evaluated at y = 0 as a candidate for Ky, i.e.,

Ky = 32—2") . In this case, the residual control policy
! y=0

mo(y) has the following property:

Imo ()

lyll—o ||yl

—0 (12

We then have the following Lemma adopt from Theorem
4.3 in (Astrom & Murray, 2010) (uncertainty A is ignored).

Lemma 2. Consider the system (11a) - (11b) with the resid-
ual control policy mo(y) = w(y) — Koy satisfying (12). If
p(A+ BKC) < 1, then x = 0 is a locally asymptoti-
cally stable equilibrium point of the system (11a) - (11b).
If p(A+ BKyC) > 1, then x = 0 is a locally unstable
equilibrium point of the system (11a) - (11b).

If the neural network policy is not differentiable or the
equilibrium x = 0 is locally unstable according to Lemma
2, one can leverage the neural network certification tools
to find a different candidate K. For instance, the method
proposed in (Weng et al., 2018) provide a pair of linear
lower and upper bounds on the neural network output as

A candidate K is given by (Ky + K1)/2, which is a
first order approximation of the control policy over the re-
gion |y| = yres. As long as we can find a Ky to make
p(Aq) < 1, Theorem 1 is a valid sufficient condition to
verify the requirement (8) under persistent perturbation (7).
This statement holds even when a stable equilibrium does
not exist.

Kry+br <n(y) < Kyy + by,

4. Algorithms

In this section, we propose an iterative algorithm (Algorithm
1) to find a quadruplet (7, 1o, @&, 0) that satisfies the condi-
tions of Theorem 1. We then propose a simple and effective
attack strategy for a neural network control system.

4.1. Algorithm for Theorem 1

For an unstable plant, we assume that a matrix K; with
p(A + BK,C) < 1is given as a default linear approxi-
mation of the neural network policy*. We assume that the
uncertainty block is described by |0| =< I'a|«| for a non-
negative matrix I'a. We explain why this form of uncer-
tainty is natural when the model and uncertainty are learned
using a data driven approach in (Dean et al., 2017) in the
Supplementary. The following algorithm finds a quadruplet
(9,0, &, &) satisfying the conditions of Theorem 1.

Algorithm 1 can be interpreted as follows. We first ex-
tract a linear policy K to make the closed loop transfer
matrices stable and calculate the bounds for w and g over
the region |y| < y,.s using neural network certification
tools (Kolter & Wong, 2018; Weng et al., 2018; Gehr et al.,
2018). Meanwhile, we calculate the bound for § based on
the assumption of the uncertainty block A. These two steps
ensure that the quadruplet (yrcf, %o, Qrey, 5) satisfies the
first two conditions of Theorem 1. Given the range of the ad-
versarial perturbation w, the residual control action g, and
the uncertainty-induced input 5, we calculate the bounds
for the state x, measurement g, and « on Line 7. If we
have § < yrer and & = ey, then (Yres, Uo, Qref, §) also
satisfies the third condition of Theorem 1, thus we obtain
a certificate for closed loop boundedness. If § A ¥,y or

*Finding a static gain K to make (A + BKC) a stable matrix
is known as the static output feedback problem. This problem
can be NP-hard (Blondel & Tsitsiklis, 1997) in worst case. For
an output feedback problem, one may consider using a dynamic
(recurrent) policy for control.

Neural Network Control Policy Verification with Persistent Adversarial Perturbations

Algorithm 1 Certification of state and control constraints
under persistent adversarial perturbation

1: Input: Equations (1) - (8), initial bounds y,.y = 0
and ooy = 0, default approximation K4, parameter
e =106, flag Success = False, Done = False, k = 0,
MaxIter = 200
2: Qutput: flag Success, certified bounds z, 4, &
3: while Done == False and k < MaxlIter do
4: 1o, U, K = NN-CERTIFICATION(, ¢, K4) from
existing tools such as (13)
5 §=Tnx Qref
6: Calculate the transfer matrix ® in (9)
7. [g a] =abs(®) [0 w 6]
8: if T £ Zim or § £ Yiim OF U A Ui then
9: Success = False, Done = True
10: elseif § < y,.r and & =X a7 then

11: Success = True, Done = True

12: else

13: Yref =14+ €7, areg = (1+€)a, k=k+1
14: end if

15: end while
16: Return Success, 7, 4, U

& 2 agey, we then increase the test bound (Yre £, Qref) and
repeat the search.

The overall computational complexity of Algorithm 1 de-
pends mainly on the chosen neural network certification tool,
as Line 4 is usually more expensive than other lines within
the while loop. Our case study uses the method in (Zhang
et al., 2018) as the certification tool, whose complexity is
O(m?n?) for a m layer neural network with n nodes per
layer.

4.2. Attack Algorithm

In addition to the certification algorithm, here we propose an
algorithm to attack the neural network policy in the control
loop. As an example, we show how to design a perturba-
tion sequence {w[t]}_, with |w||,., = 1 to attack the i-th
state x;. Our idea is to follow Lines 4 - 6 of Algorithm 1
to construct the closed loop transfer matrices with the help
of neural network certification tools. We then have z[T'] =
ZZ:O D, [T —T|w[T]+ Py [T — 7)o [T] + Pous [T — 7)0[7]
If we ignore the contribution of uy and J, we can maxi-
mize z; [T using the following /., bounded perturbation
sequence:

w;lt] = sign((Paw [T = t])i5), t=0,---,T (14)
for each j. Note that (14) is sub-optimal because we ignore
the contribution of ug and §. Nevertheless, we show in the
next section that our attack (14) is extremely strong.

5. Case Study

In this section, we demonstrate our algorithm on a cart-pole
example and show the following results:

e Our proposed framework (Theorem 1 and Algorithm 1)
outperforms methods based on traditional robust control
theory (Lemma 1). Specifically, Algorithm 1 can certify
the boundedness of the closed loop system with attack
level that is 5 times larger than that of a robust control
approach. See the result in Fig. 2a.

e Algorithm 1 works on situations where the system dy-
namics is unknown, unstable, and nonlinear. We use the
method in (Dean et al., 2017) to learn a nominal model
P with conservative over-approximation of the modeling
error A, then use Algorithm 1 to certify the robustness of
the neural network policy interconnected with the learned
model. The result is close to that with the knowledge of
the true model. See the result in Fig. 2b.

e Algorithm 1 can be applied on a discontinuous policy
where the control action is quantized into discrete lev-
els. Lipschitz-based methods (Berkenkamp et al., 2017;
Richards et al., 2018; Jin & Lavaei, 2018b;a) cannot cer-
tify the boundedness of the closed loop system in this
case. See the result in Fig. 2c.

e Our proposed attack algorithm (14) is far more effective
than an exhaustive Monte-Carlo attack. In particular, our
model-based attack algorithm can successfully discover
the internal vulnerability of the closed loop system while
an exhaustive Monte-Carlo simulation cannot. See the
result in Fig. 2d, 2e, and 2f.

Experiment setup. We use proximal policy optimiza-
tion (Schulman et al., 2017) in stable baselines (Hill et al.,
2018) to train a 3-layer neural network policy for the cart-
pole problem in Open-Al gym (Brockman et al., 2016). Our
neural network has 16 neurons per hidden layer, ReLU ac-
tivations, and continuous control output. To obtain a more
stable policy, we modify the reward function to be

B z[t] T Qx[t] + ult] T Rult]

T T ’
Liim Qziim + ulimRulim

rit] =2

which will attempt to minimize the quadratic cost
o[t] T Qz[t] + u[t]T Ru[t]. The policy is trained with 2M
steps. We use the neural network certification framework
developed in (Weng et al., 2018; Zhang et al., 2018) for
Algorithm 1. For the ease of illustrating the result, we con-
sider an one dimensional persistent perturbation on the pole
angle measurement of the cart-pole. The requirement is to
certify that a single state (angle of the pole) is within the
user-specified limit. Note that Algorithm 1 can be applied

Neural Network Control Policy Verification with Persistent Adversarial Perturbations

Normalized state deviation limit

(a) Alg 1 is 5x better than robust control

9 T T 9 9

gl == Attack (Eq. (14)) - 8.1 / sl Algorithm 1, Learned, N = 1 gl Alg 1, NN with continuous action
% - —— Algorithm 1 (Thm 1) | ; % ; —— Algorfthm 1, Learned, N = 10 % S #— Alg 1, NN with quantized action
< —e— Baseline (Lemma 1) < —— Algorfthm 1, Learned, N = 100 <
G 671 U 61 —+— Algorithm 1, true model vl
© 53 pmm={ & [~ TETTTEEETEEE 0 e F 2 N A A R * w—
£s £s —=--1 £
T 4 T4 T 4
& 8 e g p—
=, =3 e
z Safe 2 g 2
g 2 0 E- ; E 2 o2

e

Z, Za Sa Z1 5@’\9

0 __ Safe N , N i

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 80

Normalized state deviation limit

(b) Alg 1 works on learned models

Normalized state deviation limit

(c) Alg 1 works on non-Lipschitz policies

Monte-Carlo Our Monte-Carlo Monte-Carlo Our Monte-Carlo
attack attack attack attack attack attack
9 f - ——----- ———P---> = =======- - - ----
K \) ;
) & | o % s »
(%] $ T a =

> >
g7 A4 oe%‘*/ 5 £
%2 X O) 3
3@ /| A attacklevel =5 g T
= o o E=1 =
g a 5.2 / / 31.4 g 0 g 0
[[-
=3 // ‘/—o- Our Attack (T=250) =, g -10
£, Py / —4— Our Attack (T=2500) £ =
S / —s— Monte-Carlo (T=25000) S 4 E 20
= =z | s

1 —e— Monte-Carlo (T=1M) Z _39

0 —6 . . : : : . . : ; ; . ;

0 10 20 30 40 50 60 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

Normalized state deviation limit

(d) Our attack (14) is much better than the
exhaustive Monte-Carlo simulation.

Time (s)

(e) Attack sequence as input

Time (s)

(f) State deviation as output

Figure 2: Summary of our result. (a): The safe region certified by our Algorithm 1 (area below the blue curve) is larger
than the safe region certified by the traditional robust control approach (Lemma 1, area below the red curve). (b): Compare
Algorithm 1 on various learned models (Dean et al., 2017) and the true model. (¢): Compare certificates on Lipschitz and
non-Lipschitz (quantized) neural network policies. (d): The unsafe region discovered by our attack algorithm (14) (area
above the black curve) is much larger than the unsafe region discovered by exhaustive Monte-Carlo simulation (area above
the brown curve). (e): Our designed attack is injected between 100s and 150s. Monte-Carlo based random attack is injected
before 100s and after 150s. (f): Our designed attack causes a huge state deviation between 100s and 150s compared to the

Monte-Carlo based attack.

to systems with multi-dimensional perturbations. In the fol-
lowing, we use attack level w, to represent the £, norm of
the perturbation on pole angle measurement, and use state
deviation limit x;,, to represent the limit on the £, norm
of the pole angle state. Both the attack level and the state de-
viation are normalized with respect to 0.014 degree, which
is the maximum attack level that can be certified by the
Lipschitz-based robust control approach (Lemma 1). The
complete model equations are in the Supplementary.

Tightness of Algorithm 1. In this experiment, we use the
linearized cart-pole model with no uncertainty (I'a = 0)
to compare the tightness of Algorithm 1 (Theorem 1)
and the Lipschitz-based robust control baseline (Lemma
1). Given a user-specified state deviation limit x;;,,, we
use binary search to call Algorithm 1 repeatedly to ob-
tain the largest possible w’_ such that the safety require-
ment ||x||¢e.. < Ty is satisfied for any persistent attack
[Ilwlle,, < wk,. We plot w, as a function of zy;,, as the
blue curve in Fig. 2a. Clearly, the area below the blue
curve is the safe region certified by Theorem 1. Likewise,

the area below the red curve is the safe region certified by
the traditional robust control theory (Lemma 1), where the
local Lipschitz constant is obtained via a sampling-based
approach. Fig. 2a validates our claim in Theorem 2 — the
safe region certified by Lemma 1 is always a subset of the
safe region certified by Theorem 1. For x;,,, = 50 (the
vertical green line in Fig. 2a), Algorithm 1 can certify an at-
tack level that is 5.3 times larger than the one using Lemma
1. Note that there is a flat dashed line at attack level = 1
for the robust control approach. This is because when the
attack level is greater than 1, the conditions (10a) - (10c)
of Lemma 1 no longer hold. In other words, the maximum
attack level that can be certified by Lemma 1 is 1 regardless
of the state deviation limit. Note that the local Lipschitz
constant used in Lemma 1 is only a lower bound because it
is obtained via a sampling-based approach. Therefore, the
only reason that can explain the gap between the blue curve
and the red curve is that the neural network certification
algorithm (Weng et al., 2018) gives a much tighter input-
output characterization of the neural network policy than the

Neural Network Control Policy Verification with Persistent Adversarial Perturbations

Lipschitz-based method (which uses |[ull¢, < vrll¥ylles.)-

In Fig. 2a, the area above the black curve is the unsafe
region where our attack algorithm (14) (with 7" = 2500) is
able to make the state deviation exceed the user-specified
limit. When the attack level is small (< 1), we can see from
Fig. 2a that the black, blue, and red curves overlap. This
means that our certification bound is tight in this region.
When the attack level increases (or the state deviation limit
increases), we start to see a gap between our certification
algorithm and our attack algorithm. Future research will
attempt to further bridge this gap.

Algorithm 1 on learned models. In many reinforcement
learning applications, the mathematical model of the sys-
tem dynamics (1) - (6) is not available in the first place.
Therefore, we need to learn the model before performing
the certification task. In this experiment, we show that Algo-
rithm 1 works on learned models, even when the underlying
system dynamics is unknown, unstable, and nonlinear.

We use the method proposed in (Dean et al., 2017) to learn
the nominal model P and a conservative estimate of the
uncertainty A. For each episode, we run the simulation
using the black-box nonlinear cart-pole model with random
control action for 30 time steps. We run N episodes of
simulation to collect the data, then we solve a regression
problem to estimate the system matrices for the nominal
model P. To get a conservative bound of the modeling error
A, we synthesize 100 bootstrap samples of P and use the
element-wise maximum deviation from the nominal model
to over-approximate the model uncertainty A. The details
of our model learning procedure is in the Supplementary.

In Fig. 2b, we show the certification result of Algorithm
1 on models learned with different number of episodes N.
As N increases, the 100 bootstrap samples become more
consistent and thus the size of the modeling error A shrinks.
For N = 100, Fig. 2b shows that the safe region certified
by Algorithm 1 is very close to that with the true linearized
model with no uncertainty. This experiment shows that our
method works well even when the model of the system dy-
namics is unknown in the first place. Given a nonlinear and
unknown plant model interconnected with a neural network
control policy, as long as we can find a nominal LTI plant P
and bound the modeling error by A, we can use Algorithm
1 to certify the boundedness of the closed loop system under
persistent adversarial perturbation.

Algorithm 1 on non-Lipschitz neural network policies.
In Fig. 2c, we show that Algorithm 1 can be applied on a
non-Lipschitz neural network policy, where the output of the
neural network is quantized into discrete levels. This setting
is common in many reinforcement learning tasks, in which
the control action is chosen from a discrete set. When the
neural network output is quantized into discrete levels, the

neural network policy becomes discontinuous and the closed
loop system may not have a stable equilibrium. Therefore,
the Lipschitz-based and the stability based methods cannot
be used to certify the boundedness of the closed loop system.
On the other hand, our Algorithm 1 can still be applied in
this case — the area below the light blue curve in Fig. 2c is the
safe region certified by Algorithm 1. This is because we use
the static neural network certification tools to characterize
the input-output relation of a neural network policy, which
works even when the policy is not Lipschitz continuous.

Our attack algorithm. In Fig. 2d, we show that our simple
attack algorithm (14) is far more effective than an exhaustive
Monte-Carlo simulation. Specifically, the area above the
black curve is the unsafe region discovered by our attack
algorithm (14) (with T" = 2500), while the area above the
brown curve is the unsafe region discovered by Monte-Carlo
simulation with 1 million time steps. There is a huge gap
between the unsafe region found by the two methods. This is
a strong evidence that the safety of a neural network control
system cannot be certified using exhaustive Monte-Carlo
simulation. We need to use the certification framework
developed in this paper to guarantee the safety of a neural
network control system.

For example, at attack level 5 (the horizontal red line in
Fig. 2d), the mean, standard deviation, and maximum of
the state deviation in 1M steps Monte-Carlo simulation are
0, 1.1, and 5.2, respectively. One may conclude that the
probability of seeing a state deviation greater than 5.2 is
1075 and falsely claim that the area outside the brown region
is safe. Unfortunately, this statement is not true when the
perturbation sequence is adversarial — with the same attack
level, the maximum state deviation found by our algorithm
is 31.4, which is 29 standard deviation away. We show
the perturbation sequence (input) and the state deviation
(output) as functions of time in Fig. 2e and 2f. In Fig.
2e, we inject our designed attack between 100s and 150s
(sampling time = 0.02s, thus the number of time step is
T = 2500). We inject Monte-Carlo based random attack
with the same attack level before 100s and after 150s. It is
clear from Fig. 2f that the state deviation is much higher
when we inject our attack.

6. Conclusions

Neural networks have shown superior performance in vari-
ous control tasks in reinforcement learning, yet people have
concerns using them in safety critical systems because it
is hard to certify its robustness under adversarial attacks.
In this paper, we extended the static neural network certifi-
cation tools to the dynamic setting and developed an algo-
rithm to certify the robustness of a neural network policy
in a feedback loop under persistent adversarial attack. We
showed both theoretically and empirically that our method

Neural Network Control Policy Verification with Persistent Adversarial Perturbations

outperforms the traditional Lipschitz-based robust control
approach and works on situations where the model dynam-
ics is unknown in the first place. We also developed an
£ attack algorithm and showed that it can discover the
vulnerability of a neural network control system while an
exhaustive Monte-Carlo simulation cannot — this suggested
that a mathematical-based certification framework, like the
one developed in this paper, is necessary to ensure the safety
of a neural network control system.

Acknowledgements

We would like to thank the anonymous reviewers for their
insightful comments to improve the quality of this paper.

References

Astrom, K. J. and Murray, R. M. Feedback systems: an
introduction for scientists and engineers. Princeton uni-
versity press, 2010.

Athalye, A., Carlini, N., and Wagner, D. Obfuscated gra-
dients give a false sense of security: Circumventing de-
fenses to adversarial examples. ICML, 2018.

Berkenkamp, F., Turchetta, M., Schoellig, A., and Krause,
A. Safe model-based reinforcement learning with stability
guarantees. In Advances in neural information processing
systems, pp. 908-918, 2017.

Blondel, V. and Tsitsiklis, J. N. Np-hardness of some linear
control design problems. SIAM Journal on Control and
Optimization, 35(6):2118-2127, 1997.

Boopathy, A., Weng, T.-W., Chen, P.-Y., Liu, S., and Daniel,
L. Cnn-cert: An efficient framework for certifying ro-
bustness of convolutional neural networks. In AAAI, Jan
2019.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Bunel, R. R., Turkaslan, I., Torr, P., Kohli, P, and
Mudigonda, P. K. A unified view of piecewise linear
neural network verification. In Advances in Neural Infor-
mation Processing Systems, pp. 4790-4799, 2018.

Carr, S., Jansen, N., Wimmer, R., Serban, A. C., Becker, B.,
and Topcu, U. Counterexample-guided strategy improve-
ment for pomdps using recurrent neural networks. arXiv
preprint arXiv:1903.08428, 2019.

Dahleh, M. A. and Pearson, J. B. [;-optimal feedback con-
trollers for mimo discrete-time systems. /EEE Transac-
tions on Automatic Control, 32(4):314-322, 1987.

Dean, S., Mania, H., Matni, N., Recht, B., and Tu, S. On
the sample complexity of the linear quadratic regulator.
arXiv preprint arXiv:1710.01688, 2017.

Dvijotham, K., Stanforth, R., Gowal, S., Mann, T., and
Kohli, P. A dual approach to scalable verification of deep
networks. UAI, 2018.

Ehlers, R. Formal verification of piece-wise linear feed-
forward neural networks. In International Symposium on
Automated Technology for Verification and Analysis, pp.
269-286. Springer, 2017.

Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P.,
Chaudhuri, S., and Vechev, M. Ai2: Safety and robustness
certification of neural networks with abstract interpreta-
tion. In IEEE Symposium on Security and Privacy (SP),
volume 00, pp. 948-963, 2018.

Hill, A., Raffin, A., Ernestus, M., Gleave, A., Traore, R.,
Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert,
M., Radford, A., Schulman, J., Sidor, S., and Wu, Y.
Stable baselines. https://github.com/hill-a/
stable-baselines, 2018.

Huang, S., Papernot, N., Goodfellow, 1., Duan, Y., and
Abbeel, P. Adversarial attacks on neural network policies.
arXiv preprint arXiv:1702.02284, 2017.

Ivanov, R., Weimer, J., Alur, R., Pappas, G. J., and Lee,
I. Verisig: verifying safety properties of hybrid systems
with neural network controllers. In Proceedings of the
22nd ACM International Conference on Hybrid Systems:
Computation and Control, pp. 169-178. ACM, 2019.

Jia, R. and Liang, P. Adversarial examples for evaluating
reading comprehension systems. In Empirical Methods
in Natural Language Processing (EMNLP), Outstanding
paper award, 2017.

Jin, M. and Lavaei, J. Control-theoretic analysis of smooth-
ness for stability-certified reinforcement learning. In 2018
IEEE Conference on Decision and Control (CDC), pp.
6840-6847. IEEE, 2018a.

Jin, M. and Lavaei, J. Stability-certified reinforcement
learning: A control-theoretic perspective. arXiv preprint
arXiv:1810.11505, 2018b.

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochender-
fer, M. J. Reluplex: An efficient SMT solver for verifying
deep neural networks. In International Conference on
Computer Aided Verification, pp. 97-117. Springer, 2017.

Khammash, M. and Pearson, J. Performance robustness of
discrete-time systems with structured uncertainty. /[EEE
Transactions on Automatic Control, 36(4):398-412, 1991.

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

Neural Network Control Policy Verification with Persistent Adversarial Perturbations

Kiumarsi, B., Vamvoudakis, K. G., Modares, H., and Lewis,
F. L. Optimal and autonomous control using reinforce-
ment learning: A survey. IEEE transactions on neural
networks and learning systems, 29(6):2042-2062, 2017.

Kolter, J. Z. and Wong, E. Provable defenses against adver-
sarial examples via the convex outer adversarial polytope.
ICML, 2018.

Oppenheim, A. V., Willsky, A. S., and Nawab, S. H. Signals
& systems. Prentice-Hall, Inc., 1996.

Packard, A. and Doyle, J. The complex structured singular
value. Automatica, 29(1):71-109, 1993.

Recht, B. A tour of reinforcement learning: The view from
continuous control. Annual Review of Control, Robotics,
and Autonomous Systems, 2:253-279, 2019.

Richards, S. M., Berkenkamp, F., and Krause, A. The
lyapunov neural network: Adaptive stability certification
for safe learning of dynamic systems. arXiv preprint
arXiv:1808.00924, 2018.

Royo, V. R., Calandra, R., Stipanovic, D. M., and Tomlin, C.
Fast neural network verification via shadow prices. arXiv
preprint arXiv:1902.07247, 2019.

Ruan, W., Wu, M., Sun, Y., Huang, X., Kroening, D., and
Kwiatkowska, M. Global robustness evaluation of deep
neural networks with provable guarantees for the [_0
norm. arXiv preprint arXiv:1804.05805, 2018.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Szegedy, C., Zaremba, W., Sutskever, 1., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

Weng, T.-W., Zhang, H., Chen, H., Song, Z., Hsieh, C.-
J., Boning, D., Dhillon, I. S., and Daniel, L. Towards
fast computation of certified robustness for relu networks.
ICML, 2018.

Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., and Yuille,
A. Adversarial examples for semantic segmentation and
object detection. In ICCV, 2017.

Zhang, H., Weng, T.-W., Chen, P.-Y., Hsieh, C.-J., and
Daniel, L. Efficient neural network robustness certifi-
cation with general activation functions. In NIPS, dec
2018.

Zhang, T., Kahn, G., Levine, S., and Abbeel, P. Learning
deep control policies for autonomous aerial vehicles with
mpc-guided policy search. In 2016 IEEE international
conference on robotics and automation (ICRA), pp. 528-
535. IEEE, 2016.

Zhou, K., Doyle, J. C., and Glover, K. Robust and optimal
control, volume 40. Prentice hall New Jersey, 1996.

