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Supplementary A: proof of Theorems

Here we give the proofs for Lemma 1 and Theorems 1 and
2. We also introduce Corollary 1, which is the global H
version of Lemma 1.

Proof of Lemma 1

Proof of Lemma 1. We first show that (10a) - (10b) is a suf-
ficient condition for global stability when v, is the global
Lipschitz constant. From the assumption, we have

[10]le.. < vallelen,
= ’YAH‘I’auU- + PowW + (I)a(ﬁé”(’,x
<yalPaslc lI6lle. +valPavu + PawwWlle.,. -

From condition (10a), we can bound the £, norm of § as

A
) <
I8lle < =5

Then, we have

[[®Pouu+ Paww|r, - (16)

I e.
= |Pys0 + Pyuu+ Py Wl (17a)
< | Bysle, 18] + [ Byua+ Bypuwle,  (17b)
< Tyl | Bawu + Bawwlle,
— b
+ | Pyuu+ Pyww|, (I7¢)

A

’YA”(Pyé”ﬁl ”‘bcxunﬁl ) ||u||Z
1—-5 -

YA
1-5

< (Iyalle, +

+ [[®PywWlle,, + [@ysllc, |PawwW|e.,

(17d)

7A||‘I>y6||£1 ||§au||£1 ) ||y||
1—p b

"YAH'I)yénﬁl ||'I)aw||ﬁl ) ||W||
1-5 foe

< 7 (I1@yullz, +

+ (I12ywlle, +
(17¢)

From condition (10b), we can bound the /., norm of y as
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This shows that the ¢, to £, gain from w to y is bounded.
We can use similar procedure to show that the ¢, to {
gain from w to u, d, ¢ are all bounded. This shows the
input-output stability of the closed loop system when the
global Lipschitz constant of the neural network policy is ..

Next, we consider the case where -y, is valid only over a
local region ||y|/¢.. < Yoo. From (10c), we know that the
right-hand-side of (18) is less than or equal to Y, given
[lwlle,, < weo. Thus, y will never go outside the local
region ||y|l¢,. < Yoo Where we calculate the Lipschitz con-
stant ~y, for any valid perturbation (7). This completes the
proof. O

The global H ., version of Lemma 1

The following Corollary is the global H ., version of Lemma
1.

Corollary 1. Consider a stable LTI plant (1) - (4) inter-
connected with a neural network policy (5) and a dynamic
uncertainty block (6) as shown in Figure 1. Assume that the
persistent perturbation w lies in the set given by (7). Sup-
pose that the neural network policy w = 7(y) has a finite
Ly to U5 gain v, for all y, and the uncertainty block A has
the property ||0||e, < vall|le,. If the following conditions
hold:
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then the closed loop system in Figure 1 is (s to Uy input-
output stable.

Proof of Theorem 1

The proof of Theorem 1 relies on the concept of a positively
invariant set, which is defined as follows:

Definition 1 (from (Khalil, 2002)). A set M is said to
be a positively invariant set with respect to the dynamics

zlt +1] = f(=[t]) if

z[0] e M = z[t] € M,Vt > 0. (20)

The proof of Theorem 1 is given as follows:

Proof of Theorem 1. We use mathematical induction to
show that Z = {(y,u,,9)| |y| =X 7,|u] <X @, ]a <
@, |0 = &} is a positively invariant set of the closed loop
dynamical system if the three conditions of the theorem are
given. From the zero initial condition assumption in (4), we
have

[y[0]] = [Dww[0]] < abs(Dy)w = abs(Pyw)w =y

where the last inequality is from the third condition of the
theorem. Then from the first condition of the theorem, we
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have |u[0]| < @. Similarly, we have

|a[0]] = [Dawu[0] + Daww[0]]
= abs(Dyy ) + abs(D gy )W

Then from the second condition of the theorem, we have
|6[0]] = 4. This shows (y[0], u[0], @[0], 5[0]) € Z. Assume
that we have (y[t], u[t], «[t],0[t]) € Z forall 0 < ¢t < T.
From the second row of the matrix equation (9), we have
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where the last inequality is from the third condition of the
theorem. Similarly, we can derive |a[T]| < & from the third
row of the matrix equation (9). The first two conditions of
Theorem 1 then imply |u[T]| < @ and |§[T]| < &, and thus
we have (y[T7], u[T], a[T],d[T]) € Z. Using mathematical
induction, we conclude that (y[t], u[t], at], §[t]) € Z for all
t > 0 and the closed loop feedback signals and state are
bounded within the set specified by the theorem. O

Proof of Theorem 2

Proof of Theorem 2. We need to show that when (10a) -
(10c) and the locally Lipschitz continuous assumption of
Lemma | are satisfied, we can always construct a quadruplet
(7,1, a,0) satisfying the three conditions of Theorem 1.
Consider the following equation:
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with scalar variables y,..y and a.y. For any wo, > 0, we
have y,.y > 0 and ;. > 0 because all the elements in
(23) are positive according to the conditions (10a) - (10b).
In addition, we can show that y,. s defined in (23) is equiv-
alent to the left-hand-side of (10c). Therefore, we have
Yref < Yoo from (10c) — this means that ..y is always
contained within the region where we calculate the local

Lipschitz constant of the neural network policy ~v,. It is
then straightforward to verify that § = yrer1, % = Vr¥resl,
A = apepl, 8 = Yaayes1 satisfy the first two conditions of
Theorem 1 given the locally Lipschitz continuous assump-
tion of Lemma 1.

For the third condition of Theorem 1, it can be verified that
(23) is a solution to the following inequality:
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Finally, we note the following inequality
abs(®)1 < || B, 1 (25)

from the fact that the £4 norm is selecting the maximum
row sum. Therefore, we have
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We can see that if the conditions of Lemma 1 hold, we can
always construct a quadruplet (7, @, @, §) satisfying all the
three conditions of Theorem 1. The converse is not true.
Therefore, Theorem 1 can be applied on a strictly larger
class of problems than Lemma 1. O

Supplementary B: cart pole model

We consider a cart-pole problem with 7 being the displace-
ment of the cart and # the angle of the pole. The dynamics
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is given by

] :(il(M +m)l — mlcosQ(O))_l-

(= m1292s1n( ) — mglsin(#)cos(h) + %lu)
0= (é M + m)l — mlcos (9))_
(—

ml2sin(f)cos(0) + (M + m)gsin(6) — cos(f)u).

We use the default model parameters from stable baselines:

g=98 M =1, m = 0.1, and [ = 0.5. Using Euler
discretization, the nonlinear discrete time cart pole model is
given by

nlt + 1] = nft] + 7nlt]
[t + 1] = nt] + ijlt]
o[t + 1] = 0[t] + 7[t]
Ot + 1] = [t] + 7[t]

with sampling time 7 = 0.02.

Linearized model with no uncertainty

Define the state vector z = [77 n 0 9] " The linearized
cart-pole model around the origin is given by

zft + 1) = Azft] + Bult], ylt] = z[t] + Dowl[t]
with
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Note from D,, that we have an one dimensional perturbation
on the pole angle measurement. The requirement is to certify
that the actual pole angle is within the user-specified limit,
that is,

|z3[t]] < Zpgm, VE>0. (29)
As explained in the Case Study Section, the assumptions
of one dimensional perturbation and one dimensional state
constraint are made for the ease of illustrating the result. Al-
gorithm 1 can be applied to systems with multi-dimensional
perturbations with user-specified requirement on both state,
measurement, and control action.

Learned model using data driven approach

When the model equation is unknown in the first place,
we can collect the data from the simulator and fit the data
to a model. Let z(»7)[t] be the state vector z at time t
for the i-th episode from the j-th bootstrap sample, for
7 =0,1,...,100. For the j-th bootstrap run, we solve the
following least square problem to obtain the system matrices
AW and BW:-

N T-1

minimizeg E |2t +
A, B

i=1 t=0

— AW s 3)[ t]

— BOuI 113 (30)

with T' = 30, x from the simulator, and v randomly gener-
ated. We then find a pair of non-negative matrices A 4 and
A g such that

AD —AQ| <A, |BY - BO<AE (1)

forj =1,---,100 to over-approximate the modeling error
of the nominal model (A(®), B(®)). The learned model used
by our experiment in the Case Study Section is then given
by

AOg[t] + BOult] + 8]t
x[t] + Dywlt]
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where 'y = [A 4 A B] is the non-negative matrix used
in Algorithm 1.



