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Proof of Theorem 3.1

Theorem 3.1. [(Miescke and Liese, 2008, Theorem 7.115)]
In BI, the sequence of posteriors (Sk) is strongly consistent
at θ̂ = δh for each h ∈ H, with arbitrary choice of an
interior point θ0 ∈ (P(H))◦ (i.e. θ0(h) > 0 for all h ∈ H)
as prior.

Proof. We follow the same line as discussed right after this
theorem in the paper. Let θ0 = (θ0(1), θ0(2), . . . , θ0(n)) be
the original prior, and let θk = (θk(1), θk(2), . . . , θk(m))
be the posterior after having k data points d1, d2, . . . , dk.
Then for l ≤ k and h ∈ H, the posterior θl(i) =(
Nvec(diag(M(dl, ))θl−1)

)
(i) by Bayes’ rule. In other

words,

θl(i) =
M(dl,i)[θ(l−1)(i)]∑m
j=1 M(dl,j)[θ(l−1)(j)]

. (1)

This is a recursive formula, so we may move forward to
calculate θl(i) from a smaller round index θt(i) with t < l:

θl(i) =

[∏l
s=tM(ds,i)

]
θ(t−1)(i)∑m

j=1

[∏l
s=tM(ds,j)

]
θ(t−1)(j)

.

This recursion stops at prior θ0, so we have an explicit
expression of θk:

θk(i) =

[∏k
s=1 M(ds,i)

]
θ0(i)∑m

j=1

[∏k
s=1 M(ds,j)

]
θ0(j)

. (2)

It can be seen that for each hypothesis i, the denominator of
the k-th posterior on i are the same, so we have

θk(i)

θk(h)
=

[∏k
s=1 M(ds,i)

]
θ0(i)[∏k

s=1 M(ds,h)

]
θ0(h)

. (3)

So we define αk(d) to be the frequency of the occurrence
of data d in the first k rounds of a episode. And then

log

(
θk(i)

θk(h)

)
= log

(
θ0(i)

θ0(h)

)
+

n∑
d=1

αk(d) log

(
M(d,i)

M(d,h)

)
.

(4)

Since we know that the data (di) in the model is sampled
following the i.i.d. with distribution M( ,h), then for a fixed
k, αk(i) follows the multinomial distribution with parameter
M( ,h).

By the strong law of large numbers, αk(i)
k →M(i,h) almost

surely as k →∞. Thus, when we rewrite the sample values
to random variable version,

1

k
log

(
Θk(i)

Θk(h)

)
→

n∑
d=1

M(d,h) log

(
M(d,i)

M(d,h)

)
a.s.

(5)

That is,

1

k
log

(
Θk(i)

Θk(h)

)
−→ −KL

(
M( ,h),M( ,i)

)
a.s. (6)

By the assumption in Section 2 of the paper that M has dis-
tinct columns, the KL divergence between the i-th column
and the h-th column is strictly positive, thus almost surely,

log

(
Θk(i)

Θk(h)

)
→ −∞, or equivalently,

Θk(i)

Θk(h)
→ 0, for

any i 6= h.

Therefore, θk = (θk(1), θk(2), . . . , θk(m)) → δh almost
surely, equivalently, BI at θ̂ is strongly consistent.

Proof of Theorem 3.2

Theorem 3.2. In BI, with θ̂ = δh for some h ∈ H,
let Θk(h)(D1, . . . ,Dk) := Sk(h|D1, . . . ,Dk) be the h-
component of posterior given D1, . . . ,Dk as random vari-

ables valued in D. Then
1

k
log

(
Θk(h)

1−Θk(h)

)
converges to

a constant minh′ 6=h
{

KL(M( ,h),M( ,h′))
}

almost surely.

Proof. Follow the previous proof. First recall that
1

k
log

(
Θk(i)

Θk(h)

)
→ −KL(M( ,h),M( ,i)) almost surely.

Let η := argmini 6=h
{

KL(M( ,h),M( ,i))
}

, then Θk(η)
decays slowest among {Θk(i) : i 6= h} almost surely.

Therefore, for the sample values θk’s, asymptotically,

1

k
log

[
θk(η)

θk(h)

]
≤ 1

k
log

[
1− θk(h)

θk(h)

]
≤ 1

k
log

[
(m− 1)θk(η)

θk(h)

]
.
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So when we are taking limits k →∞, with probability one,
we have

−KL(M( ,h),M( ,η)) ≤ lim
k→∞

1

k
log

[
1− θk(h)

θk(h)

]
≤ lim
k→∞

−KL(M( ,h),M( ,η)) +
1

k
log(m− 1)

= −KL(M( ,h),M( ,η)). (7)

Proof of Theorem 3.5

To prove Theorem 3.5, we need the following lemmas.

Lemma S.1. Given a fixed hypothesis h ∈ H, for any
µ ∈ P(∆m−1),

Eµ(θ(h)) ≤ EΨ(h)(µ)(θ(h)). (8)

equality happens when M
〈nx〉

(i,h) = M
〈nx〉

(j,h) for any i, j and
µ-almost everywhere for x ∈ ∆m−1.

Remark 1. This lemma shows that the expectation of θ(h),
in each round is increasing, thus the sequence obtained from
all the rounds has an limit since the sequence is monotonic
and upper bounded by 1. To prove the theorem we, then just
need to show the limit is 1.

Proof. We start from the right hand side of Eq. 8. Let ∆
denote ∆m−1 for short.

EΨ(h)(µ)(θ(h))

=

∫
∆

θ(h)d(Ψ(h)(µ))(θ)

=

∫
∆

n∑
d=1

τd(T
−1
d (θ))θ(h)d(Td∗(µ))(θ)

=

n∑
d=1

∫
∆

τd(θ)(Td(θ))(h)d (Td∗(µ)) (Td(θ))

=

n∑
d=1

∫
∆

τd(θ)(Td(θ))(h)dµ(θ)

=

n∑
d=1

∫
∆

Td(θ)(h)

nθ(h)
Td(θ)(h)dµ(θ)

=

∫
∆

n∑
d=1

Td(θ)(h)2

nθ(h)
dµ(θ)

In the calculation, the bijectivity of Td and the formula
(Td∗(µ))(E) = µ(T−1

d (E)) is used (and will be used repet-
itively later).

Consider that by definition of the bijection Td, the sum∑n
d=1 Td(θ)(h) = nθ(h) (Td is the d-th row of Sinkhorn

scaling by column sums nθ). Thus

EΨ(h)(µ)(θ(h)) =

∫
∆

∑n
d=1 Td(θ)(h)2∑n
d=1 Td(θ)(h)

dµ(θ)

≥
∫
∆

(
∑n
d=1 Td(θ)(h))

2

n
∑n
d=1 Td(θ)(h)

dµ(θ)

=

∫
∆

1

n

n∑
d=1

Td(θ)(h)dµ(θ)

=

∫
∆

θ(h)dµ(θ)

= Eµ(θ(h)), (9)

where
∑n
d=1 Td(θ)(h)2 ≥ 1

n
(
∑n
d=1 Td(θ)(h))

2 by
Cauchy-Schwarz inequality, with equality achieved if and
only if Td(θ)(h) is constant on d. Therefore, the equality of
Eq. (9) is achieved when M

〈nx〉
(d,h) is constant on d, µ-almost

everywhere for x ∈ ∆m−1.

θ(h) = 0

θ(h) = 1

θ(h) = a

θ(h) = b

Lemma S.4

Lemma S.2

ε

Figure 1. Sketch of ∆m−1, for a general θ, its y-coordinate is θ(h).
The levels are compatible with proof of Theorem 3.5. Lemma S.2
and Lemma S.4 are located where they contribute to prove the
vanishing of measure in the limit.

The following lemmas helps showing that the measure µk
of the complement of a neighborhood of δh ∈ P(H) has
limit 0.

Lemma S.2. Given M, h ∈ H and prior µ0 ∈ P(∆m−1)
satisfying assumptions, we have

Eµk
(
θ(h′)

θ(h)

)
= Eµ0

(
θ(h′)

θ(h)

)
(10)

for any k ≥ 0 and any h′ 6= h.
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Proof. It suffices to prove the k = 1 case for a general µ0

(then we have the rest by induction).

Eµ1

(
θ(h′)

θ(h)

)
=

∫
∆

(
θ(h′)

θ(h)

)
dµ1(θ)

=

∫
∆

(
θ(h′)

θ(h)

)
d(Ψ(h)(µ0))(θ)

=

∫
∆

∑
d∈D

τd(T
−1
d (θ))

θ(h′)

θ(h)
d(Td∗(µ0))(θ)

=
∑
d∈D

∫
∆

τd(θ)
Td(θ)(h

′)

Td(θ)(h)
d(Td∗(µ0))(Td(θ))

=
∑
d∈D

∫
∆

Td(θ)(h)

nθ(h)

Td(θ)(h
′)

Td(θ)(h)
d(µ0)(θ)

=

∫
∆

∑
d∈D

Td(θ)(h
′)

nθ(h)
d(µ0)(θ)

=

∫
∆

∑
d∈D Td(θ)(h

′)

nθ(h)
d(µ0)(θ)

=

∫
∆

nθ(h′)

nθ(h)
d(µ0)(θ)

= Eµ0

(
θ(h′)

θ(h)

)
. (11)

Lemma S.3. The operator Ψ(h) preserves convex combina-
tions of probability measures, i.e., for positive a1, a2, . . . , al
with

∑l
i=1 ai = 1 and probability measures µ1, µ2, . . . , µl,

Ψ(h)

(
l∑
i=1

aiµi

)
=

l∑
i=1

aiΨ(h)(µi).

Proof. By definition, for any measurable set E in Borel σ
algebra A,

Ψ(h)(µ)(E) :=

∫
E

n∑
d=1

τd(T
−1
d (θ))d(Td∗(µ))(θ).

where every summand commutes with convex combination.

Lemma S.4. Given M, h, and µ0 satisfying the assump-
tions, then for any 0 < a < b < 1,

lim
k→∞

µk({θ ∈ ∆m−1 : a ≤ θ(h) ≤ b}) = 0 (12)

Proof. We first show a property of µ on the set ∆[a,b] :=
{θ ∈ ∆m−1 : a ≤ θ(h) ≤ b}.

For any µ supported on ∆[a,b] (that is, µ(∆[a,b]) = 1), there
is a positive number ε0, such that

EΨ2(h)(µ)(θ(h))− Eµ(θ(h)) ≥ ε0. (13)

According to the calculation in Lemma S.1, especially the
first step of Eq. (9),

EΨ2(h)(µ)(θ(h))

=

∫
∆

∑n
d=1 Td(θ)(h)2∑n
d=1 Td(θ)(h)

d(Ψ(h)(µ))(θ)

=

∫
∆

n∑
e=1

τe(T
−1
e (θ))

∑n
d=1 Td(θ)(h)2∑n
d=1 Td(θ)(h)

d(Te∗(µ))(θ)

=

∫
∆

n∑
e=1

τe(θ)

∑n
d=1 Td(Te(θ))(h)2∑n
d=1 Td(Te(θ))(h)

dµ(θ) (14)

Thus

EΨ2(h)(µ)(θ(h))− Eµ(θ(h))

=

∫
∆

n∑
e=1

τe(θ)

n∑
d=1

Td(Te(θ))(h)2

n∑
d=1

Td(Te(θ))(h)
− θ(h)dµ(θ) (15)

To show the claim, it suffices to find a positive
lower bound of the integrand of Eq. (15), I(θ) :=∑n
e=1 τe(θ)

∑n
d=1 Td(Te(θ))(h)2∑n
d=1 Td(Te(θ))(h)

−θ(h), for all θ ∈ ∆[a,b].

Moreover, since ∆[a,b] is compact, we just need to show
I(θ) > 0 on ∆[a,b].

With Cauchy-Schwarz inequality used in Lemma S.1, we
know

I(θ) =

n∑
e=1

τe(θ)

∑n
d=1 Td(Te(θ))(h)2∑n
d=1 Td(Te(θ))(h)

− θ(h)

≥
n∑
e=1

τe(θ)
1

n

(
n∑
d=1

Td(Te(θ))(h)

)
− θ(h)

=

n∑
e=1

τe(θ)Te(θ)(h)− θ(h)

=

n∑
e=1

Te(θ)(h)

nθ(h)
Te(θ)(h)− θ(h)

≥ 1

n
Te(θ)(h)− θ(h)

= θ(h)− θ(h) = 0 (16)

I(θ) vanishes if and only if both line 2 and line 5 has equal-
ity, and we will discuss why these can not happen simulta-
neously.
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The equality in line 5 requires that Te(θ)(h) are identical
for all e ∈ D, or more precisely, the vector M

〈nθ〉
( ,h) =

ten has identical components. Further if equality in line
2 holds, the terms Td(Te(θ))(h) are the same for all d ∈
D. That is, by condition

∑n
e=1 Te(θ)(h) = nθ(h) and∑n

d=1 Td(Te(θ))(h) = nTe(θ)(h), I(θ) vanishes if and
only if Td(Te(θ))(h) = Te(θ)(h) = θ(h) for all d, e ∈ D.

We analyze the Sinkhorn scaled matrices in detail: Let
M? = M〈nθ〉 be the scaled matrix whose e-th row is
Te(θ), and let M(e) = M〈nTe(θ)〉 be the scaled matrix
whose d-th row is Td(Te(θ)). Since M? and each M(e)

has the same h-th column, there are diagonal matrices
D(e) = diag(

nM?
(e,1)∑n

i=1 M?
(i,1)

,
nM?

(e,2)∑n
i=1 M?

(i,2)
, . . . ,

nM?
(e,n)∑n

i=1 M?
(i,n)

)

such that M(e) = M?D(e). Since M? and all M(e) are
row-normalized to e (i.e., their row sums are 1), we have
the following equations from the row sums:

S(d, e) :=

m∑
j=1

M?
(d,j)

nM?
(e,j)∑n

i=1 M
?
(i,j)

= 1 (17)

for all d, e ∈ D representing the d-th row-sum of M(e).

Then we calculate (n− 1)
∑n
e=1 S(e, e)−

∑
d6=eS(d, e).

On the right hand side, since S(d, e) = 1 for every d, e, we
have

(n−1)

n∑
e=1

S(e, e)−
∑
d6=e

S(d, e) = (n−1)n−(n2−n) = 0.

Meanwhile,

(n− 1)

n∑
e=1

S(e, e)−
∑
d6=e

S(d, e)

=

m∑
j=1

n
n∑
i=1

M?
(i,j)

(
n∑
e=1

(n− 1)(M?
(e,j))

2

−
∑
d6=e

M?
(d,j)M

?
(e,j)


=

m∑
j=1

n
n∑
i=1

M?
(i,j)

(∑
d<e

(M?
(d,j) −M?

(e,j))
2

)

= 0 (18)

Therefore, M?
(d,j) = M?

(e,j) for any d, e, and j. Therefore,
the rows of M? are identical, so the columns of M? are
all parallel (or say, collinear as vectors, i.e. one is a scalar-
multiple of the other) to each other.

By Sinkhorn scaling theory (Fienberg et al., 1970), the cross-
ratios are invariant. Since M is a positive matrix and has
distinct (non-parallel) columns, the 2 × 2 cross-ratios are

not identically 1, however, M? — a scaled matrix of M —
has cross ratios identically 1. Therefore our assumption that
I(θ) = 0 cannot happen, and by compactness of ∆[a,b] and
continuity of I(θ), we can conclude that I(θ) has a lower
bound ε0 > 0 on ∆[a,b].

Therefore,

EΨ2(h)(µ)(θ(h))− Eµ(θ(h))

=

∫
∆

I(θ)dµ(θ)

≥
∫
∆

ε0dµ(θ)

= ε0µ(∆) = ε0. (19)

Thus we prove the property Eq. (13).

We prove the lemma by contradiction:

Suppose the limit does not exist or the limit is nonzero. In
either case, there exists a positive real number ε > 0, such
that there are infinitely many integers, or say a sequence
(ki) such that

µki({a ≤ θ(h) ≤ b}) > ε.

We may assume ki contains no consecutive elements, i.e.,
ki+1− ki > 1 for all i, otherwise, we can always find a sub-
sequence satisfying this (for example, choose the sequence
of all odd or even ki’s, at least one of them is infinite, so we
have a sequence).

For a µ-measurable set E, let µ|E be the restriction of
µ on E, which can be treated as a measure on ∆ by
setting the measure of the complement Ec zero (but the
measure of ∆ is no longer 1). We scale it to µ̂|E :=
(µ(E))−1µ|E to make it a probability measure, then µki =
[µki(∆[a,b])]µ̂ki |∆[a,b]

+ [1 − µki(∆[a,b])]µ̂ki |(∆−∆[a,b]).
Thus according to Lemma S.3,

EΨ2(h)(µki )
(θ(h))

= µki(∆[a,b])EΨ2(h)(µ̂ki |∆[a,b]
)(θ(h))

+(1− µki(∆[a,b]))EΨ2(h)(µ̂ki |(∆−∆[a,b])
)(θ(h))

≥ µki(∆[a,b])(Eµ̂ki |∆[a,b]
(θ(h)) + ε0)

+(1− µki(∆[a,b]))Eµ̂ki |(∆−∆[a,b])
(θ(h))

≥ εε0 + Eµki (θ(h)) (20)

By Lemma S.1, we can see that Eµk+1
[θ(h)] ≥ Eµk [θ(h)],

and there is a sequence (ki) such that Eµki+2
[θ(h)] ≥

Eµki [θ(h)] + ε0ε. Thus Eµki+2
[θ(h)] ≥ Eµ0

[θ(h)] + iε0ε,
so lim

k→∞
Eµk [θ(h)] =∞.
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However, θ(h) ≤ 1, we have Eµk (θ(h)) ≤ 1 for all k,
which is a contradiction. Therefore, we know that Eq. (12)
holds.

Theorem 3.5. In SCBI, let M be a positive matrix. If the
teacher is teaching one hypothesis h (i.e., θ̂ = δh ∈ P(H)),
and the prior distribution µ0 ∈ P(∆m−1) satisfies µ0 =
δθ0 with θ0(h) > 0, then the estimator sequence (Sk) is
consistent, for each h ∈ H, i.e., the posterior random vari-
ables (Θk)k∈N converge to the constant random variable θ̂
in probability.

Some notions used in the proof are visualized in Fig. 1.

Proof. Let Z0 be a random variable with sample space
∆m−1 such that the Law(Z0) = µ0. This is the initial
state in SCBI. The posteriors in the following rounds are
determined by the sequence of data taught by teacher, which
makes the posteriors random variables as well. LetZk be the
random variable representing the posterior after k-rounds
of SCBI, the law of Zk is given by Law(Zk) = µk =

[Ψ(h)]
k

(µ0) according to the definition of Ψ(h).

The consistency mentioned in the theorem is equivalent to
that the sequence (Zk) converges to Ẑ with Law(Ẑ) = µ̂
in probability where µ̂ = δθ̂.

We prove the theorem by contradiction. Suppose Zk → Ẑ
in probability is not valid, i.e., there exists ε > 0 such that

lim
k→∞

Pr(d(Zk, Ẑ) > ε) (21)

does not exist or the limit is positive, where the metric d
on ∆m−1 is the Euclidean distance inherited from Rm. In
either case, there is a real number C > 0 such that

Pr(d(Zk′ , Ẑ) > ε) > C (22)

for a subsequence (Zk′) of (Zk).

Let R := Eµ0

[
1−θ(h)
θ(h)

]
= 1−θ0(h)

θ0(h) , let a = 1
4R/C+1 and

b = 1− ε. By Lemma S.4, there exists N > 0 such that for
all k > N ,

µk(∆[a,b]) < C/2.

Therefore, for all the terms in (k′) satisfying k′ > N ,
µk′({θ : θ(h) < a}) > C/2. Furthermore,

Eµk′
[

1− θ(h)

θ(h)

]
≥

∫
{θ:θ(h)<a}

[
1− θ(h)

θ(h)

]
dµk′(θ)

≥
[

1− a
a

]
C

2

=

[
4R

C

]
C

2

= 2R > R. (23)

However, by Lemma S.2,

Eµk′
[

1− θ(h)

θ(h)

]
= Eµk′

[∑
h′ 6=h θ(h

′)

θ(h)

]
=

∑
h′ 6=h

Eµk′
[
θ(h′)

θ(h)

]

=
∑
h′ 6=h

Eµ0

[
θ(h′)

θ(h)

]

= Eµ0

[∑
h′ 6=h θ(h

′)

θ(h)

]
= Eµ0

[
1− θ(h)

θ(h)

]
= R, (24)

which is a contradiction. Therefore,

lim
k→∞

Pr(d(Zk, Ẑ) > ε) = 0. (25)

And the sequence of SCBI estimators is consistent at θ̂.

Proof of Theorem 3.6

Theorem 3.6. With matrix M, hypothesis h ∈ H, and a
prior µ0 = δθ0 ∈ P(∆m−1) same as in Theorem. 3.5, let
θk denote a sample value of the posterior Θk after k rounds
of SCBI, then

lim
k→∞

Eµk

[
1

k
log

(
θk(h)

1 − θk(h)

)]
= Rs(M;h) (26)

where Rs(M;h) := minh 6=h′ KL
(
M]

( ,h),M
]
( ,h′)

)
with

M] = Ncol(diag(M( ,h))
−1M). Thus we call Rs(M;h)

the asymptotic rate of convergence (RoC) of SCBI.

Proof. We treat θk as random variables, then

Eµk+1

(
log

[
θk+1(h′)

θk+1(h)

])
= Eµk

(
log

[
θk(h′)

θk(h)

])
+Wh′

k ,

where

Wh′

k = −Eµk
[
KL
(
Nvec(M

〈nθk〉
( ,h)),Nvec(M

〈nθk〉
( ,h′))

)]
.

We can get it from the following calculation (∆ represents
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the simplex ∆m−1):

Eµk+1

(
log

[
θk+1(h′)

θk+1(h)

])
=

∫
∆

log

[
θ(h′)

θ(h)

]
dµk+1(θ)

=

∫
∆

n∑
d=1

τd(T
−1
d (θ)) log

[
θ(h′)

θ(h)

]
d(Td∗(µk+1))(θ)

=

n∑
d=1

∫
∆

τd(θ) log

[
Td(θ)(h

′)

Td(θ)(h)

]
d(µk)(θ)

=

∫
∆

n∑
d=1

Td(θ)(h)

nθ(h)
log

[
Td(θ)(h

′)

Td(θ)(h)

]
d(µk)(θ)

=

∫
∆

n∑
d=1

Td(θ)(h)

nθ(h)

{
log

[
Td(θ)(h

′)

nθ(h′)

nθ(h)

Td(θ)(h)

]

+ log

[
nθ(h′)

nθ(h)

]}
d(µk)(θ)

=

∫
∆

−KL
(
N (M

〈nθ〉
( ,h)),N (M

〈nθ〉
( ,h′))

)
dµk

+

∫
∆

log

[
θ(h′)

θ(h)

]
dµk

= Wh′

k + Eµk

(
log

[
θk(h′)

θk(h)

])
. (27)

Next, we show

lim
k→∞

Eµk
1

k
log

(
θk(h′)

θk(h)

)
= −KL

(
M]

( ,h),M
]
( ,h′)

)
, (28)

and then by a similar argument in the proof of Theorem 3.2,
we can show the result in this theorem.

To show Eq. (28), we can make use of Eq. (27). By show-
ing that Wh′

k converges to −KL
(
M]

( ,h),M
]
( ,h′)

)
, we can

conclude that Eµk
1

k
log

(
θk(h′)

θk(h)

)
, as the average of (Wh′

i )

on the first k-terms, converges to −KL
(
M]

( ,h),M
]
( ,h′)

)
as well.

To prove this, we need the following result from direct
calculation:

Lemma S.5. Given a n × 2 positive matrix [a,b] with
columns as n-vectors a = (a1, a2, . . . , an)> and b =
(b1, b2, . . . , bn)> with

∑n
i=1 ai =

∑n
i=1 bi = 1, consider

the 2 × 2 cross-ratios: Ci := CR(1, 2; 1, i) =
a1bi
aib1

, then

KL(a,b) = log (
∑n
i=1 aiCi)−

∑n
i=1 ai logCi. With fixed

Ci ∈ (0,∞) for i = 1, 2, . . . , n, KL(a,b) is continuous
and bounded about a ∈ ∆n−1.

Proof of Lemma S.5. The formula of KL(a,b) is from di-
rect calculation.

The KL-divergence is continuous and bounded since by the
formula, every part is continuous and bounded given the
restrictions on a and Ci.

Now we continue to prove Theorem 3.6:

By continuity of the KL-divergence given fixed cross-ratios,
for any ε > 0, we find a number δ > 0 such that for any
θ ∈ ∆m−1 with θ(h) > 1− δ,∣∣∣KL

(
Nvec(M

〈nθ〉
( ,h)

),Nvec(M
〈nθ〉
( ,h′))

)
−KL

(
M
]
( ,h)

,M
]

( ,h′)

)∣∣∣ < ε

3
.

(29)

Further, according to Theorem 3.5, and the boundedness
from Lemma S.5, we can find a number N > 0, such that
for any k > N , we have µk({θ : θ(h) < 1 − δ}) < C
where C satisfies

C · sup
θ∈∆m−1

{
KL
(
Nvec(M

〈nθ〉
( ,h)),Nvec(M

〈nθ〉
( ,h′))

)}
<
ε

3
. (30)

The expectation Wh′

k can be split into two parts, Wh′

k =
−W> −W< where

W> =

∫
θ(h)>1−δ

KL
(
Nvec(M

〈nθ〉
( ,h)

),Nvec(M
〈nθ〉
( ,h′))

)
dµk(θ), (31)

and

W< =

∫
θ(h)≤1−δ

KL
(
Nvec(M

〈nθ〉
( ,h)

),Nvec(M
〈nθ〉
( ,h′))

)
dµk(θ). (32)

Similarly, since µk is a probability measure,
KL
(
M]

( ,h),M
]
( ,h′)

)
= K> +K< where

K>=

∫
θ(h)>1−δ

KL
(
M]

( ,h),M
]
( ,h′)

)
dµk(θ), (33)

and
K<=

∫
θ(h)≤1−δ

KL
(
M]

( ,h),M
]
( ,h′)

)
dµk(θ). (34)

Then we have∣∣∣Wh′
k + KL

(
M
]
( ,h)

,M
]

( ,h′)

)∣∣∣ ≤ |K> −W>|+ |W<|+ |K<|. (35)

The choice of δ can make a good estimate of the integral on
θ(h) > 1− δ.

|K> −W>|

≤ ε

3
(1− C)

<
ε

3
. (36)

For the other two terms, directly from condition Eq. (30),
we have |K<| < ε

3 and |W<| < ε
3 , and hence |K>−W>|+

|K<|+ |W<| < ε.
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Therefore, Wh′

k converges to −KL
(
M]

( ,h),M
]
( ,h′)

)
.

An Example on a 2 by 2 Matrix

Let H = {h1, h2}, D = {d1, d2}, and the shared joint

distribution be MJD =

h1 h2( )
d1 0.3 0.3
d2 0.1 0.3 . Further assume

that the learner has uniform prior on H, i.e. S0 = θ0 =
(0.5, 0.5) and the true hypothesis given to the teachers is
h1. In round 1, the BI teacher will sample a data from D
according to the first column of M =

(
0.75 0.5
0.25 0.5

)
, which is

obtained by column normalizing MJD. On the contrast, the
SCBI teacher will form his likelihood matrix by first doing
(r1, c1)-Sinkhorn scaling on M, then column normalization
if needed, where r1 = (1, 1) and c1 = (1, 1) based on the
uniform priors. The resulting limit matrix (with precision
of three decimals) is M∗1 =

(
0.634 0.366
0.366 0.634

)
, which is already

column normalized. Hence the SCBI teacher will teach
according to the first column of the M1 = M∗1. Suppose
that d1 is sampled by both teachers. The posterior for the
BI learner is Sb

1(d1) = (0.6, 0.4) (normalizing the first row
of M). The posterior for the SCBI learner is Ss

1(d1) =
(0.643, 0.366) (the first row of M1).

Similarly, in round 2, the SCBI teacher would update his
likelihood matrix by first doing (r2, c2)-Sinkhorn scaling
on M1, where r2 = (1, 1) and c2 = (0.643, 0.366) ×
2 = (1.268, 0.732). The resulting limit matrix is M∗2 =(

0.758 0.242
0.51 0.49

)
. Then through column normalizing M∗2, a

updated likelihood matrix M2 =
(

0.60 0.33
0.4 0.67

)
is obtained.

The SCBI teacher will teach according to the first column of
the M2. Whereas the BI teacher will again sample another
data according to the the first column of M. Suppose that d1

is sampled for both teachers. The posteriors for BI and SCBI
learners are Sb

2(d1, d1) = (0.692, 0.308) and Ss
1(d1, d1) =

(0.758, 0.242) respectively.

Although same teaching points are assumed, the SCBI
learner’s posterior on the true hypothesis h1 is higher than
the BI learner in both rounds. Moreover, notice that the KL
divergence between h1 and h2 is increasing as the likelihood
matrix is updating through the SCBI. This will eventually
lead much faster convergence for the SCBI learner.

Calculations about Sample Efficiency
Here we compute the expectation E mentioned in Sec. 4.1
of the paper, for matrices of size n× 2.

We first calculate the average of RoC for a particular matrix

M. For simplicity, let x = M( ,1) and y = M( ,2).

1

2

2∑
h=1

Rb(M;h)

=
1

2

(
KL(M( ,1),M( ,2)) + KL(M( ,2),M( ,1))

)
=

1

2
(KL(x,y) + KL(y,x))

=
1

2

(
n∑
i=1

(xi − yi)(lnxi − lnyi)

)
. (37)

To calculate that for SCBI, denote x/y = Nvec(v) the
normalization of vector v withvi = xi/yi.

1

2

2∑
h=1

Rs(M;h)

=
1

2

[
KL
(e
n
,x/y

)
+ KL

(e
n
,y/x

)]
=

1

2

 1

n

n∑
i=1

−2 lnn− ln
xi
yi

+ ln

 n∑
j=1

xj
yj


− ln

yi
xi

+ ln

 n∑
j=1

yj
xj


=

1

2

ln

 n∑
j=1

xj
yj

+ ln

 n∑
j=1

yj
xj

− lnn. (38)

The simulation of P is based on the above calculations. For
E, the above expressions can be further simplified.

Given M = (x,y) uniformly distributed in (∆n−1)2, with
measure ν⊗ν where ν is the measure of uniform probability
distribution on ∆n−1, we can calculate the expected value,

E

[
1

2

2∑
h=1

Rb(M;h)

]

=
1

2

∫
(∆n−1)2

n∑
i=1

(xi − yi)(lnxi − lnyi)dν(x)dν(y)

= n

∫
∆n−1

x1 lnx1dν(x)− n
∫

(∆n−1)2

x1 lny1dν(x)dν(y)

= n

∫ 1

0

x(n− 1)(1− x)n−2 lnxdx+

n

∫ 1

0

∫ 1

0

x(n− 1)2(1− x)n−2(1− y)n−2 ln ydxdy

=
n− 1

n
. (39)
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Here we use the fact that∫
{θ∈∆n−1:θ(h)=a}

dx = (n− 1)(1− a)n−2.

Furthermore, since integral on (∆n−1)2 with measure ν⊗ν
is symmetric on x and y, we have

E =

∫
(∆n−1)2

ln

(
n∑
i=1

xi
yi

)
dν(x)dν(y) − lnn− n− 1

n
. (40)

In general, we calculate the integral in Eq. (40) by Monte
Carlo method since other numerical integral methods we
tried becomes slow dramatically as n grows. In particu-
lar, when n = 2, an expression related to the dilogarithm
Li2 can be obtained (can be easily checked in Wolfram
software).

Figure 2. A guess of the P values for each n together with empiri-
cal data

And we have an empirical formula to describe the relation
between P and n, shown in Fig. 2:

P(n,2) = 1−

√
x− 1.5

x(x+ 1)
e−0.1x+0.3 (41)

Proof of Proposition 5.1
Proposition 5.1. Given a sequence of identical indepen-
dentD-valued random variables (Di)i≥1 following uniform
distribution. Let µ0 ∈ P(∆m−1) be a prior distribution
on ∆m−1, and µk+1 = ΨL

Dk
(µk), then µk converges, in

probability, to
∑
i∈H aiδi, where ai = Eµ0

[θ(i)].

To show the above proposition, we need the following
lemma:

Lemma S.6. Given the conditions in Proposition 5.1, then
for any k ∈ N and h ∈ H,

Eµk(θ(h)) = Eµ0(θ(h)). (42)

Proof. It suffices to show Eµk+1
(θ(h)) = Eµk(θ(h)) for

any k.

Eµk+1
(θ(h)) =

∫
∆m−1

θ(h)d(µk+1)(θ)

=
∑
d∈D

Dk(d)

∫
∆m−1

Td(θ)(h)dµk(θ)

=

∫
∆m−1

1

n

∑
d∈D

Td(θ)(h)d(µk)(θ)

=

∫
∆m−1

θ(h)d(µk)(θ) = Eµk(θ(h)).

Proof of Proposition 5.1. We first show the following re-
sult:

For any ε > 0, let

∆ε :=
{
θ ∈ ∆m−1 : θ(i) ≤ 1− ε,∀i = 1, 2, . . . ,m

}
,

then lim
k→∞

µk(∆ε) = 0.

We prove this by contradiction. Suppose the limit does not
exist or is not 0, then there is a positive number C and a
subsequence (µki)i∈N such that µki(∆ε) > C for all i.

We define a linear functional L (µ) := Eµf(θ), where

f(θ) = ||θ − u||22 with u =
e

m
the center of ∆m−1.

By definition, for a random variable following uniform dis-
tribution on D, L

(
ΨL

D(µ)
)

= Eµ (Ed∼Df(Td(θ))).

Consider that f is a strictly convex function, by Jensen’s
inequality, Ed∼Df(Td(θ)) ≥ f(Ed∼DTd(θ)) = f(θ), with
equality if and only if Td(θ) = θ for all d ∈ D, equivalently
by the assumptions on matrix L, θ = δh for some h ∈ H.
(This is because we assume L have distinct columns, thus
not all 2-by-2 cross-ratios are 1, for any pair of columns.
however, after Td all 2-by-2 cross-ratios are 1, indicating
the existence of degeneration on every pair of columns. This
can only happen when θ = δh for some h ∈ H.)

Thus for any θ ∈ ∆ε, Ed∼Df(Td(θ)) > f(θ). As ∆ε

is compact, there is a lower bound B > 0, such that
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Ed∼Df(Td(θ))− f(θ) > B for all θ ∈ ∆ε. Thus

L (µki+1)

=

∫
∆m−1\∆ε

Ed∼Df(Td(θ))dµki +

∫
∆ε

Ed∼Df(Td(θ))dµki

>

∫
∆m−1\∆ε

f(θ)dµki +

∫
∆ε

f(θ)dµki +BC

= L (µki) +BC

for all i ∈ N and simply L (µk+1) ≥ L (µk) for general k.

Therefore, L (µk) is unbounded as k →∞ since there is at
least a BC > 0 increment at each ki.

However, by definition, f is bounded by m since
√
m is the

diameter of ∆m−1 under 2-norm, thus L (µ) ≤ m.

Such a contradiction shows that the opposite of our assump-
tion, lim

k→∞
µk(∆ε) = 0, is valid.

Consider that ε is arbitrary, and in Lemma S.6 we show that
Eµkθ(h) is invariant, thus µk approaches

∑
i∈H aiδi with

ai = Eµ0
θ(i) in probability.

Empirical Data for Stability: Perturbation on Prior

We sample 5 matrices of size 3×3, each of them are column-
normalized, and their columns are sampled independently
and uniformly on ∆2, listed below:

M1 =

 0.6559 0.5505 0.7310
0.1680 0.3359 0.0403
0.1760 0.1136 0.2287


M2 =

 0.2461 0.6600 0.4310
0.6785 0.0655 0.2325
0.0754 0.2746 0.3365


M3 =

 0.7286 0.1937 0.7620
0.0739 0.4786 0.1999
0.1974 0.3277 0.0382


M4 =

 0.4745 0.2024 0.5946
0.2898 0.7499 0.1313
0.2357 0.0477 0.2741


M5 =

 0.2207 0.5466 0.1605
0.3828 0.3807 0.5697
0.3965 0.0727 0.2698

 (43)

And the 5 sampled priors are:

θ1 = (0.3333, 0.3333, 0.3333)
>

θ2 = (0.1937, 0.4291, 0.3771)
>

θ3 = (0.4544, 0.0814, 0.4641)
>

θ4 = (0.5955, 0.2995, 0.1051)
>

θ5 = (0.4771, 0.0593, 0.4636)
> (44)

These names (including the rank 4 samples below) are over-
riding the previously defined identical symbols in this part
and in the corresponding subsection in the main paper. In
the 4× 4 cases, we sample 3 matrices in the same way as in
3× 3 case.

M′1 =


0.3916 0.2306 0.0460 0.0404
0.1408 0.6350 0.2139 0.2310
0.2375 0.0275 0.1667 0.2412
0.2301 0.1068 0.5734 0.4874



M′2 =


0.3744 0.6892 0.0112 0.3200
0.3204 0.2320 0.4498 0.3530
0.0291 0.0688 0.3865 0.0653
0.2761 0.0100 0.1526 0.2618



M′3 =


0.2885 0.0873 0.2319 0.1009
0.0653 0.2239 0.0575 0.2584
0.5934 0.3276 0.2283 0.3925
0.0529 0.3612 0.4823 0.2482

(45)

And 3 corresponding priors are sampled:

θ′1 = (0.2500, 0.2500, 0.2500, 0.2500)
>

θ′2 = (0.1789, 0.3664, 0.2915, 0.1632)
>

θ′3 = (0.4460, 0.4676, 0.0821, 0.0043)
> (46)

The value we use to test the effectiveness of perturbed
SCBI is called the successful rate, which is E

[
θL∞(h)

]
=

EµL∞ [θ(h)] where h is the true hypothesis that the teacher
teaches (Definition 5.2). Successful rate is well defined,
i.e. the limit exists, according to the convergences in proba-
bility (Theorem 3.5 and Proposition 5.1) with an ε discus-
sion based on them. To find the successful rate, we use
Monte-Carlo method on 104 teaching sequences, and use
Proposition 5.1 to accelerate the simulation.

We can estimate an upper bound of the standard deviation
(precision) of the empirical successful rate calculated based
on Proposition 5.1. The successful rate of a single teaching
sequence is between 0 and 1, thus with a standard deviation
smaller than 1. So the standard deviation of the empirical
successful rate is bounded by (N)−1/2 where N is the num-
ber of sample sequences. Actually the precision is much
smaller since the successful rate for a single sequence is
much more stable.

Our first simulation is shown in Fig. 3, where we take θL0
evenly on a series of concentric circles centered at θT0 . There
are 14 such circles with radius 0.005 to 0.07. On the i-th
layer (smallest circle is the first layer) we take 6i many
points evenly separated, the upper right figure in Fig. 4
shows how the points are taken in detail.
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Figure 3. Successful rate of SCBI perturbed on prior. Each entry
corresponds to a pair M and θT0 . The first row shows for each
prior θT0 , the position it locates in ∆2 and the range of θL0 in the
simulation. The 5 rows below are the zoom-in version of the
shaded area in each case, whose color at each point represents the
successful rate when θL0 locates at that point.

Thus we have 6 groups of points each distributed along a
ray. We plot the successful rate versus the distance from the
center along each ray in Fig. 4 for all the 25 combinations
of M and θT0 .

To have a similar directional data for matrices of size 4× 4,
we take a sample of 15 directions in R3 (showing in Fig. 5
in spherical coordinates centered at (1/4, 1/4, 1/4, 1/4)>,
with (1, 0, 0, 0)> as φ = 0 axis and (0, 1, 0, 0)> on the half-
plane given by θ = 0) and simulate the perturbations of
θL0 in ∆3 along the 15 directions. On each ray, we take
20 evenly placed θL0 with distance to the center θT0 from
0.005 to 0.100. Then we plot the successful rate versus the
distance in Fig. 5 for all 9 cases as before.

Remark 2. This part provides evidences of linear influence
of the perturbation distance on the successful rate along a
fixed direction.

Next we explore the global behavior of perturbations on
prior. Here we sample for each combination of M and θT0 a
set of 300 points for θL0 evenly distributed in ∆3.

In Fig. 6, we plot the successful rate versus the value of
θL0 (h), for all 25 situations.

We plot in Fig. 7 the distance to center as x-coordinates, for
9 situations with matrices of size 4× 4.

In this part, we observe that there is a lower bound of the
successful rate which depends linearly on the distance to
center, with slope bounded by 1

θT0 (h)
(Conjecture 5.3).

Empirical Data for Stability: Perturbation on Matrix

Fig. 8 shows the behavior of perturbations on all sampled 3×
3 matrices in Section 5. Perturbations are taken only along
the relevant column / irrelevant column, since a perturbation
on the target column is equivalent of the combination of a
perturbation on other two columns (they have the same set
of Cross-ratios, which determines the SCBI behavior). The
cycle path in each plot is the equi-normalized-KL path, with
any point on the path having the same normalized-KL to the
target column as that of the original matrix T.

These graphs should not be confused with the ones occur
in the prior perturbed part, as we are plotting each column
of the matrix here (the simplex is actually P(D)), while we
were plotting the priors in previous discussion (the simplex
is P(H)).
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Figure 4. Upper-Left: the six rays at the center θ1. Upper-Right: zoom-in figure of the six rays in general. Lower: Successful rate versus
distance to center along 6 rays. Fig. 5 in the main paper contains the Row 3 Column 1 picture of the lower one (with a different y-scale).
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Figure 5. Upper: the sampled directions in spherical coordinates. Lower: Successful rate versus distance to center, along 15 rays, for all
the 9 cases of matrices of size 4 × 4. The plot at Row 1 Column 1 appears in Fig. 5 of the main file.
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Figure 6. The 25 cases of 3 × 3 matrices, with successful rate versus θT0 (h) plotted. Plot at Row 3 Column 1 appears in Fig. 5 of the main
file.
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Figure 7. The 9 cases of 4 × 4 matrices, with successful rate versus the distance to the center plotted. Plot at Row 1 Column 1 appears in
Fig. 5 of the main file. Red line is the lower bound given in Conjecture 5.3.
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Figure 8. Perturbations on matrix L. First column: Perturbations on the irrelevant column of L. Second column: zoom-in of the first row.
Third column: Perturbations on the relevant column of L. Last column: zoom-in of the third column. The scales of color in the zoomed
figures are different from that of the original ones. Fig. 6 in the main paper is the third row here.


