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Abstract

Neural processes (NPs) constitute a family of vari-
ational approximate models for stochastic pro-
cesses with promising properties in computational
efficiency and uncertainty quantification. These
processes use neural networks with latent variable
inputs to induce predictive distributions. However,
the expressiveness of vanilla NPs is limited as
they only use a global latent variable, while target-
specific local variation may be crucial sometimes.
To address this challenge, we investigate NPs sys-
tematically and present a new variant of NP model
that we call Doubly Stochastic Variational Neu-
ral Process (DSVNP). This model combines the
global latent variable and local latent variables
for prediction. We evaluate this model in several
experiments, and our results demonstrate com-
petitive prediction performance in multi-output
regression and uncertainty estimation in classifi-
cation.

1. Introduction

In recent decades, increasingly attention has been focused
on deep neural networks, and the success of deep learn-
ing in computer vision, natural language processing and
robotics control etc. can be attributed to the great poten-
tial of function approximation with high-capacity models
(LeCun et al., 2015). Despite this, there still remain some
limitations which incur doubts from industry when apply-
ing these models to real world scenarios. Among them,
uncertainty quantification is long-standing and challenging,
and instead of point estimates we prefer probabilistic es-
timates with meaningful confidence values in predictions.
With uncertainty estimates at hand, we can relieve some risk
and make relatively conservative choices in cost-sensitive
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decision-making (Gal & Ghahramani, 2016).

Faced with such reality, Bayesian statistics provides a
plausible schema to reason about subjective uncertainty
and stochasticity, and marrying deep neural networks and
Bayesian approaches together satisfies practical demands.
Traditionally, Gaussian processes (GPs) (Rasmussen, 2003)
as typical non-parametric models can be used to handle
uncertainties by placing Gaussian priors over functions.
The advantage of introducing distributions over functions
lies in the characterization of the underlying uncertain-
ties from observations, enabling more reliable and flexi-
ble decision-making. For example, the uncertainty-aware
dynamics model enjoys popularity in model-based reinforce-
ment learning, and GPs deployed in PILCO enable propaga-
tion of uncertainty in forecasting future states (Deisenroth &
Rasmussen, 2011). Another specific instance can be found
in demonstration learning; higher uncertainty in prediction
would suggest the learning system to query new observa-
tions to avoid dangerous behaviors (Thakur et al., 2019).
During the past few years, a variety of models inspired by
GPs and deep neural networks have been proposed (Salim-
beni & Deisenroth, 2017; Snelson & Ghahramani, 2006;
Titsias, 2009; Titsias & Lawrence, 2010).

However, GP induced predictive distributions are met with
some concerns. One is high computational complexity in
prediction due to the matrix inversion, and another is less
flexibility in function space. Recognized as an explicit
stochastic process model, the vanilla GP strongly depends
on the assumption that the joint distribution is Gaussian,
and such a unimodal property makes it tough to scale to
more complicated cases. These issues facilitate the birth
of adaptations or approximate variants for GP related mod-
els (Garnelo et al., 2018a;b; Louizos et al., 2019), which
incorporate latent variables in modeling to account for uncer-
tainties. Among them, Neural Processes (NPs) are relatively
representative with advantages like uncertainty-aware pre-
diction and efficient computations.

In this paper, we investigate NP related models and explore
more expressive approximations towards general stochastic
processes (SPs). The main focus is on a novel variational
approximate model for NPs to solve learning problems in
high-dimensional cases. To improve flexibility in predictive
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distributions, hierarchical latent variables are considered as
part of the model structure. Our primary contributions can
be summarized as follows.

e We systematically revisit NPs, SPs and other related
models from a unified perspective with an implicit
Latent Variable Model (LVM). Both GPs and NPs are
studied in this hierarchical LVM.

e The Doubly Stochastic Variational Neural Process
(DSVNP) is proposed to enrich the NP family, where
both global and target specific local latent variables are
involved in a predictive distribution.

e Experimental results demonstrate effectiveness of the
proposed Bayesian model in high dimensional do-
mains, including regression with multiple outputs and
uncertainty-aware image classification.

2. Deep Latent Variable Model as Stochastic
Processes

Generally, a stochastic process places a distribution over
functions and any finite collections of variables can be as-
sociated with an implicit probability distribution. Here, we
naturally formulate an implicit LVM (Rezende et al., 2014;
Kingma & Welling, 2014) to characterize General Stochas-
tic Function Processes (GSFPs). The conceptual generation
paradigm for this LVM can be depicted in the following
equations,

zi = () + e(x;) (D
yi = p(xi, 2) + G ()

where terms € and ( respectively indicate the stochastic
component in the latent space and random noise in observa-
tions. To avoid ambiguity in notation, the stochastic term
e is declared as an index dependent random variable €(x; ),
and (; is observation noise in the environment. Also, the
transformations ¢ and ¢ are assumed to be Borel measur-
able, and the latent variables in Eq. (1) are not restricted.
Note that they can be some set of random variables with
statistical correlations without loss of generality. When Kol-
mogorov Extension Theorem (Oksendal, 2013) is satisfied
for e(x;), a latent SP can be induced. Eq. (1) decomposes
the process into a deterministic component and a stochastic
component in some models. The transformation ¢ in Eq.
(2) is directly connected to the output. Such a generative
process can simultaneously inject aleatoric uncertainty and
epistemic uncertainty in modelling (Hofer et al., 2002), but
inherent correlations in examples make the exact inference
intractable mostly.

Another principal issue is about prediction with permutation
invariance, which learns a conditional distribution in SP
models. With the context C = {(x;,y;)li = 1,2,...,N}

and input variables of the target x7, we seek a stochastic
function fy mapping from X to Y and formalize the dis-
tribution as pg(yr|zc,yc,xr)! invariant to the order of
context observations. The definitions about permutation
invariant functions (PIFs) and permutation equivariant func-
tions (PEFs) are included in Appendix A.

2.1. Gaussian Processes in the Implicit LVM

Let us consider a trivial case in the LVM when the operation
 is an identity map, ¢ is Gaussian white noise, and the
latent layer follows a multivariate Gaussian distribution.
This degenerated case indicates a GP, and terms ¢, € are
respectively the mean function and the zero-mean GP prior.
Meanwhile, recall that the prediction at target input z in
GPs relies on a predictive distribution p(yr|zc,ye, zT),
where the mean and covariance matrix are inferred from the
context [x¢, yco| and target input z.

wlrr;xe,yo) = go(rr) + ET,CEE}c(yC — ¢g(zc))

S(zrize,yo) = Srr — SreSeeSor

3)

Here ¢¢ and X in Eq. (3) are vectors of mean functions
and covariance matrices. For additive terms, they embed
context statistics and connect them to the target sample x.
Furthermore, two propositions are drawn, which we prove
in Appendix B.

Proposition 1. The statistics of GP predictive distributions,
such as mean and (co)-variances, for a specific point . are
PIFs, while those in p(yr|zc, yo, 1) are PEFs.

2.2. Neural Processes in the Implicit LVM

In non-GP scenarios, inference and prediction processes
for the LVM can be non-trivial, and NPs are the family of
approximate models for implicit SPs. Also, relationship be-
tween GPs and NPs can be explicitly established with deep
kernel network (Rudner et al., 2018). Note that NPs trans-
late some properties of GPs to predictive distributions, espe-
cially permutation invariance of context statistics, which is
highlighted in Proposition 1. Here three typical models are
investigated, respectively conditional neural process (CNP)
(Garnelo et al., 2018a),vanilla NP (Garnelo et al., 2018b)
and attentive neural process (AttnNP) (Kim et al., 2019).

When approximate inference is used in NP family with La-
tent Variables, a preliminary evidence lower bound (ELBO)
for the training process can be derived, which aims at pre-

"For brief notations, the inputs, outputs of the context and
the target are respectively denoted as xc = x1.n, Yo = Y1:N»
TT = T1.N+M, YT = Y1:N+Mm. Only in CNP, 27 = TN 1:N+ M,
yr = yn+1:N+Mm. And [z.,y.] refers to any instance in the
target.
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(a) CNP

(¢) AttnNP
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(d) DSVNP (Ours)

Figure 1. Probabilistic Graphs for CNP, vanilla NP, Attentive NP and DSVNP. The blue dotted lines characterize the inference towards
global latent variable zg, while the pink dotted lines are for target specific local latent variables z.. The ones in first row are training

cases, while those in second row are testing cases.

dictive distributions for most NP related models.

In [p(yrlzc,yo, v1)] > Eq,(r) In [po(yrlor, 27)]

—Drr(ag(zrl|ze, yo, vr,yr) || plar|ze, yo, xr)]

“4)

To ensure context information invariant to orders of points,
CNP embeds the context point [z¢, y¢| in an elementwise
way and then aggregates them with a permutation invariant
operation @, such as mean or max pooling.

N
ri = he(i, ¥i), TC:®7“2' (5)
i=1

The latent variable in CNP is a deterministic embedding of
the form py(z¢|xc, ye) = re(ze, yo). Followed with Eq.
(2), CNP decodes statistics as the mean and the variance for
a predictive distribution.

For vanilla NPs, the encoder structure resembles that of
CNPs, and the learned embedding variable 7 in Eq. (5) is
no longer a function but a Gaussian variable after amortized
transformations. For the graphical structure of this LVM
in vanilla NPs (Refer to Figure 1 (b)), all latent variables
are degraded to a global Gaussian latent variable, which
accounts for the consistency.

AttnNP further improves the expressiveness of context infor-
mation in NP, leaving the latent variable as the combination
of a global variable and a local variable. Especially, the at-
tention network uses self-attention or dot-product attention
to enable transformations of context points and the extrac-
tion of hierarchical dependencies between context points
and target points. For the graphical model of this LVM in
AttnNP, the context information is instance-specific. The
latent variable of AttnNP in Eq. (6) is the concatenation
of attention embedding 2,4, from element-wise context
embedding s; and a global latent variable zg drawn from

an amortized distribution parameterized with Eq. (5).

N
Zattn = @ U)(.’I,‘i7 x*)si; z = [Zattn; ZG} (6)
i=1
As a summary, AttnNP boosts performance with attention
networks, which implicitly seeks more flexible functional
translations for each target.

2.3. Connection to Other Models

In some scenarios, when the latent layer in Eq. (1) is speci-
fied as a Markovian chain, the LVM degrades to classical
state space model. If random variables in the latent layer
of the LVM are independent, the resulted neural network
is similar to the conditional variational auto-encoder (Sohn
et al., 2015) and no context information is utilized for pre-
diction. Instead, the existence of correlations between latent
variables in the hidden layer increases the model capacity.
The induced SP in Eq. (2) is a warped GP when the latent
SP is a GP and the transformation ¢ is nonlinear monotonic
(Snelson et al., 2004). In addition, several previous works
integrate this idea in modelling as well, and representative
examples are deep GPs (Dai et al., 2016) and hierarchical
GPs (Tran et al., 2016).

3. Neural Process under Doubly Stochastic
Variational Inference

In the last section, we gain more insights about mechanism
of GPs and NPs and disentangle these models with the im-
plicit LVM. A conclusion can be drawn that the posterior
inference conditioned on the context requires both approx-
imate distributions with permutation invariance and some
bridge to connect observations and the target in latent space.
Note that the global induced latent variable may be insuffi-
cient to describe dependencies, and critical challenge comes
from non-stationarity and locality, which are even crucial
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Table 1. Structure Summary over NP Related Models on Training Dataset. Here f corresponds to some functional operation. Global
latent variable in CNP only governs points to predict, while that in NP works for the whole points. And local latent variables in AttnNP
and DSVNP are distinguished, with the latter as a latent random variable.

NP FAMILY RECOGNITION MODEL  GENERATIVE MODEL  PRIOR DISTRIBUTION  LATENT VARIABLE
CNP zc = f(ze,yc) p(yr|zc, zT) NULL GLOBAL
NP q(zclzc,yc,zr,yr)  plyr|za,zr) p(zelzc,yo) GLOBAL
ATTNNP Q(ZG‘mC7yCaxTayT)7 p(y*|ZG,Z*,ZC*) p(ZG|fL'C,yC) GLOBAL
2z = f(xc,yo, ) +LOCAL
DSVNP (OURS)  q(zg|zc,yc,xr,yr),  D(Y«|2a, 2+, Tx) p(zalze,ye), GLOBAL
Q(z*lvax*vy*) p(Z*|ZG,CE'*) +LocAL

in high-dimensional cases.

Hence, we present a hierarchical way to modify NPs, and
the trick is to involve auxiliary latent variables for NPs and
derive a new evidence lower bound for different levels of ran-
dom variables with doubly stochastic variational inference
(Salimbeni & Deisenroth, 2017; Titsias & Lazaro-Gredilla,
2014). The original intention of involving auxiliary latent
variables is to improve the expressiveness of approximate
posteriors, and it is commonly used in deep generative mod-
els (Maalge et al., 2016). So, as displayed in Table (1),
DSVNP considers a global latent variable and a local latent
variable to convey context information at different levels.
Our work is also consistent with the hierarchical implicit
Bayesian neural networks (Tran et al., 2016; 2017), which
distinguish the role of latent variables and induce more pow-
erful posteriors. Without exception, the local latent variable
z, refers to any data point (2., y. ) for prediction in DSVNP
in the remainders of this paper.

3.1. Neural Process with Hierarchical Latent Variables

To extract hierarchical context information for the predictive
distribution, we distinguish the global latent variable and
the local latent variable in the form of a Bayesian model,
and the induced LVM is DSVNP. This variant shares the
same prediction structure with AttnNP. The global latent
variable is shared across all observations, and the role of
context points resembles inducing points in sparse GP (Snel-
son & Ghahramani, 2006), summarizing general statistics
in the task. As for the local latent variable in our proposed
DSVNP, it is an auxiliary latent variable responsible mainly
for variations of instance locality. From another perspec-
tive, DSVNP combines the global latent variable in vanilla
NPs with the local latent variable in conditional variational
autoencoder (C-VAE). This implementation in model con-
struction separates the global variations and sample specific
variations and theoretically increases the expressiveness of
the neural network.

As illustrated in Figure 1 (d), the target to predict is governed
by these two latent variables. Both the global latent variable
z¢ and the local latent variable z, contribute to prediction.

Formally, the generative model as a SP is described as
follows, where exact inferences for latent variables zg and
z, are infeasible.

N+M

Paronnr (Y1:N M) // H p(yilza, zi, ) %

p(zi| 2, ZG)p(ZG)d21:N+MdZG

Meanwhile, we emphasize that this generation method nat-
urally induces an exchangeable stochastic process (Bhat-
tacharya & Waymire, 2009). (The proof is given in Ap-
pendix C.)

3.2. Approximate Inference and ELBO

With the relationship between these variables clarified, we
can characterize the inference process for DSVNP and then
anew ELBO is presented. Distinguished from AttnNP, we
need to infer both global and local latent variables with
evidence of collected dataset. Posteriors of the global and
local latent variables on training dataset are approximated
with distributions like vanilla NPs, mapping Eq. (5) to
means and variances. And inference towards local latent
variables requires target information in the approximate
posterior,

q¢1,1 :N(ZG‘M(xCayCaxTayT)aE<x07y07$T7yT>)
®)
g1 = N(Z*“L(Zg,l‘*,y*), E(ZGv'r*ay*)) 9

where qg4, , and gy, , are approximate posteriors in training
process. The generative process is reflected in Eq. (10) for
DSVNP, where gy indicates a decoder in a neural network.

p(y*|xc7y07x*) 299(2G7z*ax*) (10)

Consequently, this difference between vanilla NP and
DSVNP leads to another ELBO or negative variational free
energy L as the right term,

In [p(y*‘xCa yC?‘r*)] 2 Eq¢1 I]Eq¢2 1 ln[p(y*|ZGv Z*,IL'*)]

—Dxr[ag, , (zc|Te, yo, zr,y7) || Poy o (2c]Te, y0)]

(1)

]E%l 1 [DKL[q% 1(Z*|ZG7$*7y*) || P, 2 z*|Zc;,33*
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where py, ,(2¢|lzc,yc) and pg, , (2|2, r.) parameter-
ized with neural networks are used as prior distributions.
Here we no longer employ standard normal distributions
with zero prior information, and instead these are parameter-
ized with two diagonal Gaussians for the sake of simplicity
and learned in an amortized way.

3.3. Scalable Training and Uncertainty-aware
Prediction

Based on the inference process in DSVNP and the corre-
sponding ELBO in Eq. (11), the Monte Carlo estimation for
the lower bound is derived, in which we wish to maximize,

K
_1 (k)
Lyc = ?; Zln y*|1’*,z* y G )}

(12)
~Dirla(zlzg", 2 y.) | p(zl2g) 2.)]]
—Dxrlq(zclre,yo, zr,yr) || p(zelze, yo)]

where latent variables are sampled as 28“ )~
k

Q. (zalee,ye) and 27~ g, (al2g @),

And the resulted Eq. (12) is employed as the objective
function in the training process. To reduce variance in
sampling, the reparameterization trick (Kingma & Welling,
2014) is used for all approximate distributions and the
model is optimized using Stochastic Gradient Variational
Bayes (Kingma & Welling, 2014). More details can be
found in Algorithm (1).

The predictive distribution is of our interest. For DSVNP,
prior networks as p(z¢|zc, yo) and p(z«|zg, z.) are in-
volved in prediction, and this leads to the integration over
both global and local latent variables here as revealed in Eq.
(13).

p(y«lzc, yo, zs) = //p(y*\zG,z*,x*)pm(m\xc,yc)

Pos 2 (Z* |ZG7 x*)dZGdZ*
(13)

For uncertainty-aware prediction, there exist different ap-
proaches for Bayesian neural networks. Generally, once
the model is well trained, the conditional distribution in
neural networks can be derived. The accuracy can be
evaluated through deterministic inference over latent vari-
ables, i.e., zg = Elzglzc,ycl, 2« = Elzilza, T4], Y« =
arg maxy p(y|Zx, 2a, Tx).

The Monte Carlo estimation over Eq. (13), which is com-
monly used for prediction, can be written in the following
equation,

K S
1 k
(y*|x07yC7I* %Kizz y*|9:*,z* ,Zé))
k=1 s=1

(14)

Algorithm 1 Variational Inference for DSVNP in Training.

Input: Dataset D, Maximum context points N,,qz,
Learning rate o, Batch size B and Epoch number m.
Output: Model parameters ¢1, ¢2 and 6.
Initialize parameters ¢1, ¢, 6 of recognition model and
generative model in Eq. (8), (9) and (10).
for: = 1tomdo
Draw some context number N¢ ~ U1, Nyaz];
Draw mini-batch instances and formulate context-
target pairs {(zc, yo, 77, yr)bs Hooy ~ D;
Feedforward the mini-batch instances to recognition

model gy,
Draw sample of latent variable zg ~ g4, , in
Eq. (8);
Draw sample of latent variable z, ~ g4, , in
Eq. 9);
Feedforward the latent variables to discrimination
model pg:
Compute conditional probability distribution in
Eq. (10);
Update parameters by Optimizing Eq. (12):
O1 4 1+ oV, Ly > o1 = (P11, ¢1,2)
G2 < P2+ aVp, Laic > P1 = (P21, ¢2,2]

0+ 0+ aVeLlyc
end for

where the global and local latent variables are sampled

in prior networks through ancestral sampling as zgg )~

k
Pgn, ,(2¢lrc, yo) and Z( )~ Pgs o (Z*|Zév)7l'*)

3.4. More Insights and Implementation Tricks

The global latent variable and local latent variables gov-
ern different variations in prediction and sample generation.
This is a part of motivations for AttnNP and DSVNP. In-
terestingly, the inference for our induced SP integrates the
aspects of vanilla NPs (Eslami et al., 2018) and C-VAEs
(Sohn et al., 2015).

Similar to 8-VAE (Higgins et al., 2017), we rewrite the
right term in Eq. (11) with constraints and these restrict the
search for variational distributions. Equivalently, tuning the
weights of divergence terms in Eq. (11) leads to varying
balance between global and local information.

¢?}2§6 Efwl‘l E‘I¢211 ln[p9 (y* |ZG3 Zxy .T*)]

-DKL [q(ZG‘xC1yC7xT7yT) || p(2G|xC7yC)] < €a

Egy, , [Drrla(zlza: 2o, ys) || p(2sl2a, 20)]] <er
(15)

Here, a more practical objective in implementations derived
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by weight calibrations in Eq. (16).

K S
1 1 ( k
Liic = 7 2[5 2 (e, 27, 26")
k=1 s=1

‘ 16)
—B1Dk (a2 ]2 ®) 20, ya) | p(2a]2®) 2]

—B2Dkr[q(zcl|zc, yo, xr, yr) || p(2clze, yo))

Also, training stochastic model with multiple latent vari-
ables is non-trivial, and there exist several works about KL
divergence term annealing (Sgnderby et al., 2016) or dy-
namically adapting for the weights. Importantly, the target
specific KL divergence term is sometimes suggested to as-
sign more penalty to guarantee the consistency between
approximate posterior and prior distribution (Kohl et al.,
2018; Sohn et al., 2015).

(a) CNP (b)NP () AttnNP

v V \

i RN
N \/\\;/\\/‘/~ LS

Figure 2. Function Prediction in Interpolation and Extrapolation.
Blue curves are ground truth with dotted units as context points,
and orange ones are predicted results. Rows from up to down
respectively indicate cases: single function with noise, interpola-
tion and extrapolation towards realizations from stochastic process.
The shadow regions are 3 standard deviations from the mean.

4. Experiments

In this section, we start with learning predictive functions on
several toy dataset, and then high-dimensional tasks, includ-
ing system identification on physics engines, multioutput
regression on real-world dataset as well as image classi-
fication with uncertainty quantification, are performed to
evaluate properties of NP related models. The dot-product
attention is implemented in all AttnNPs here. All implemen-
tation details are attached in Appendix E.

4.1. Synthetic Experiments

We initially investigate the episdemic uncertainty captured
by NP related models on a 1-d regression task, and the
function (Osband et al., 2016) is characterized asy = z+¢e+
sin(4(x +e€)) +sin(13(z+¢)). Observations as the training
set include 12 points and 8 points respectively uniformly

Table 2. Average Negative Log-likelihoods over all target points
on realizations from Synthetic Stochastic Process. (Figures in
brackets are variances.)

PREDICTION CNP NP ATTNNP DSVNP

INTER -0.802 -0.958 -1.149 -0.975
(1E-6)  (2E-5) (8E-6) (2E-5)

EXTRA 1.764 8.192 8.091 4.203
(1E-1) (7El) (7E2) (9E0)

drawn from intervals U|0, 0.6] and U[0.8,1.0], with the
noise drawn from e ~ N(0,0.003%). As illustrated in the
first row of Fig. (2), we can observe CNP and DSVNP better
quantify variance outside the interval [0, 1.0], while AttnNP
either overestimates or underestimates the uncertainty to
show higher or lower standard deviations in regions with
less observations. All models share similar properties with
GPs in predictive distributions, displaying lower variances
around observed points. As for the gap in interval [0.6, 0.8],
the revealed uncertainty is consistent to that in (Sun et al.,
2019; Hernandez-Lobato & Adams, 2015) with intermediate
variances.

Further, we conduct curve fitting tasks in SP. The SP
initializes with a zero mean Gaussian Process y(©) ~
GP(0,k(.,.)) indexed in the interval z € [—2.0, 2.0], where
the radial basis kernel k(z,2") = o?exp(—(z — ') /21?)
is used with /-1 0.4 and o 1.0. Then the transformation
is performed to yield y = sin (y(°)(z) + z). The training
process follows that in NP (Garnelo et al., 2018b). Predicted
results are visualized in the second and the third rows of
Fig. (2). Note that CNP only predicts points out of the
context in default settings. More evidence is reported in
Table (2), where 2000 realizations are independently sam-
pled and predicted for both interpolation and extrapolation.
After several repetitive observations, we find in terms of the
interpolation accuracy, DSVNP works better than vanilla
NP but the improvement is not as significant as that in At-
tnNP, which is also verified in visualizations. All (C)NPs
show higher uncertainties around index 0, where less con-
text points are located, and variances are relatively close in
other regions. For extrapolation results, since all models are
trained in the dotted column lines restricted regions, it is
tough to scale to regions out of training interval and all neg-
ative log-likelihoods (NLLs) are higher. When there exist
many context points located outside the interval, the learned
context variable may deteriorate predictions for all (C)NPs,
and observations confirm findings in (Gordon et al., 2020).
Interestingly, DSVNP tends to overestimate uncertainties
out of the training interval but predicted extrapolation results
mostly fall into the one o confident region, this property is
similar to CNP. On the other hand, vanilla NP and AttnNP
tend to underestimate the uncertainty sometimes.
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4.2. System Identification on Physics Engines

Capturing dynamics in systems is crucial in control related
problems, and we extend synthetic experiments on a classi-
cal simulator, Cart-Pole systems, which is detailed in (Gal
et al., 2016). As shown in Fig. (3), the original inten-
tion is to conduct actions to reach the goal with the end of
a pole, but here we focus on dynamics and the state is a
vector of the location, the angle and their first-order deriva-
tives. Specifically, the aim is to forecast the transited state
[z¢, 0, x,,0'] in time step ¢ + 1 based on the input as a state
action pair [z, 0, x.,0’,a] in time step ¢. To generate a
variety of trajectories under a random policy for this experi-
ment, the mass m,. and the ground friction coefficient f. are
varied in the discrete choices m.. € {0.3,0.4,0.5,0.6,0.7}
and f. € {0.06,0.08,0.1,0.12}. Each pair of [m., f.] val-
ues specifies a dynamics environment, and we formulate all
pairs of m, € {0.3,0.5,0.7} and f. € {0.08,0.12} as train-
ing environments with the rest 16 pairs of configurations as
the testing environments.

Figure 3. Cart-Pole Dynamical Systems.The cart and the pole are
with masses m. and m,, and the length of the pole is {. And the
configuration of the simulator is up to parameters of the cart-pole
mass and the ground friction coefficient here with other hyper-
parameters fixed in this experiment.

For each configuration of the simulator including training
and testing environments, we sample 400 trajectories of
horizon as 10 steps using a random controller, and more
details refer to Appendix E. The training process follows
Algorithm (1) with the maximum number of context points
as 100. During the testing process, 100 state transition pairs
are randomly selected for each configuration of the environ-
ment, working as the maximum context points to identify
the configuration of dynamics. And the collected results
are reported in Table (3), where prediction performance on
5600 trajectories from 14 configurations of environments
are revealed. As can be seen, the negative log-likelihood val-
ues are not consistent with those of mean square errors, and
DSVNP shows both better uncertainty quantification with
lowest NLLs and approximation errors in MSEs. AttnNP
improves NP in both metrics, while CNP shows relatively
better NLLs but the approximation error is a bit higher than
others.

Table 3. Predictive Negative Log-Likelihoods and Mean Square
Errors on Cart-Pole State Transition Testing Dataset. (Figures in
brackets are variances.)

METRICS CNP NP ATTNNP DSVNP

NLL -2.014  -1.537 -1.821 -2.145
(9e-4)  (1E-3) (7E-3) (9E-4)

MSE 0.096 0.074 0.067 0.036
(3e-4) (2E-4) (1E-4) (2.1E-5)

4.3. Multi-Output Regression on Real-world Dataset

Further, more complicated scenarios are considered when
the regression task relates to multiple outputs. As investi-
gated in (Moreno-Muiioz et al., 2018; Bonilla et al., 2008),
distributions of output variables are implicit, which means
no explicit distributions are appropriate to be used in pa-
rameterizing the output. We evaluate the performance of
all models on dataset, including SARCOS 2 Water Quality
(WQ) (Dzeroski et al., 2000) and SCM20d (Spyromitros-
Xioufis et al., 2016). Details about these dataset and neural
architectures for all models are included in Appendix E.
Furthermore, Monte-Carlo Dropout is included for compar-
isons. Similar to NP (Garnelo et al., 2018b), the variance
parameter is not learned and the objective in optimization
is pointwise mean square errors (MSEs) after averaging all
dimensions in the output. Each dataset is randomly split into
2-folds as training and testing sets. The training procedure
in (C)NPs follows that in Algorithm (1), and some context
points are randomly selected in batch samples. In the testing
stage, we randomly select 30 instances as the context and
then perform predictions with (C)NPs. The weights of data
likelihood and KL divergence terms in models are not tuned
here.

During training, ELBOs in NP related models are optimized,
while MSEs are used as evaluation metric in testing (Dez-
fouli & Bonilla, 2015). The predictive results on testing
dataset are reported in Table (4). All MSEs are averaged
after 10 independent experiments. We observe DSVNP
outperforms other models, and deterministic context infor-
mation in CNP hardly increases performance. Compared
with NP models, MC-NN is relatively satisfying on Sarcos
and WQ, and AttnNP works not well in these cases. A po-
tential reason can be that deterministic context embedding
with dot product attention is less predictive for output with
multiple dimensions, while the role of local latent variable
in DSVNP not only bridges the gap between input and out-
put, but also extracts some correlation information among
variables in outputs. As a comparison to synthetic experi-
ments, the attention mechanism is more suitable to extract

“http://www.gaussianprocess.org/gpml/data/
3Directly optimizing Gaussian log-likelihoods does harm to
performance based on experimental results.
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Table 4. Predictive MSEs on Multi-Output Dataset. CNP’s results are for target points. D records (input,output) dimensions, and N is the
number of samples. MC-Dropout runs 50 stochastic forward propagation and average results for prediction in each data point. (Figures in

brackets are variances.)

DATASET N D MC-DropoUT CNP NP ATTNNP DSVNP

SARCOS 48933  (21,7) 1.215(3€E-3) 1.437(2.9-2) 1.285(1.2e-1) 1.362(8.4E-2) 0.839(1.5E-2)
wQ 1060 (16,14) 0.007(9.6eE-8) 0.015(2.4-5) 0.007(5.2e-6) 0.01(8.5E-6) 0.006(1.6E-6)
SCM20D 8966 (61,16) 0.017(2.4e-7) 0.037(6.7-5) 0.015(7.1E-8) 0.015(8.1E-7) 0.007(2.3E-7)

local information when the output dimension is lower.

4.4. Classification with Uncertainty Quantification

Here image classification is performed with NP models and
MC-Dropout, and out of distribution (0.0.d.) detection is
chosen to measure the goodness of uncertainty quantifica-
tion. We respectively train models on MNIST and CIFAR10.
The dimensions for latent variables are 64 on MNIST and
128 on CIFAR10. The training process for NP related mod-
els follows Algorithm (1), with the number of context im-
ages randomly selected in each batch update. For the testing
process, we randomly select 100 instances from the domain
dataset as the context for (C)NP models. The commonly
used measure for uncertainty in K-class 0.0.d. detection
is entropy (Lakshminarayanan et al., 2017), H[y*|z*] =
—3K  pw(yZ 2% D) In py (y|2*; Dy, ), where data point
(z*,y*) comes from either domain test dataset Dy, or 0.0.d
dataset D, yq.

For classification performance with NP related models, we
observe the difference is extremely tiny on MNIST with
all accuracies around 99%, while on CIFAR10 DSVNP
beats all baselines with highest accuracy 86.3% and lowest
in-distribution entropies (Refer to Table (2) in Appendix
E). The involvement of a deterministic path does not im-
prove much, and in contrast, MC-Dropout and CNP achieve
intermediate performance. A possible cause can be im-
plicit kernel information captured by attention network in
images is imprecise. The cumulative distributions about
predictive entropies are reported in Fig. (4). For models
trained on MNIST, we observe no significant difference on
domain dataset, but DSVNP achieves best results on FM-
NIST/KMNIST and MC-Dropout performs superior on Uni-
form/Gaussian noise dataset. Interestingly, AttnNP tends
to underestimate uncertainty on FMNIST/KMNIST and the
measure is close to the neural network without dropout.
Those trained on CIFAR10 are are different from observa-
tions in the second row of Fig. (4). It can be noticed DSVNP
shows lowest uncertainty on domain dataset (CIFAR10) and
medium uncertainty on SVHN/Gaussian/Uniform Dataset.
MC-Dropout and AttnNP seem to not work so well overall,
but CNP well measures uncertainty on Gaussian/Uniform
dataset. Results again verify SVHN as tough dataset for the
task (Nalisnick et al., 2019). Also note that entropy distri-

butions on Rademacher Dataset are akin to that on domain
dataset, which means the Rademacher noise is more risky
for CIFAR10 classification, and DSVNP is a better choice to
avoid such adversarial attack in this case. Those evidences
tell us that the deterministic path in AttnNP does not boost
classification performance on domain dataset but weakens
the ability of o0.0.d. detection mostly, while local latent
variables in DSVNP improve both performance. Maybe
deterministic local latent variables require more practical
attention information, but here only dot-product attention
information is included. As a comparison, the local latent
variable in DSVNP captures some target specific informa-
tion during the training process and improves detection
performance with it.

5. Related Works

Scalability and Expressiveness in Stochastic Process.
GPs are the most well known member of SPs family and
have inspired a lot of extensions, such as deep kernel learn-
ing (Wilson et al., 2016a;b) and sparse GPs (Snelson &
Ghahramani, 2006) with better scalability. Especially, the
latter incorporated sparse prior in function distribution and
utilized a small proportion of observations in predictions.
In multi-task cases, several GP variants were proposed
(Moreno-Muiioz et al., 2018; Bonilla et al., 2008; Zhao &
Sun, 2016). Other works also achieve sparse effect but with
variational inference, approximating the posterior in GPs
and optimizing ELBO (Hensman et al., 2015; Salimbeni
et al., 2019; Titsias & Lawrence, 2010). Another branch
is about directly capturing uncertainties with deep neural
networks, which is revealed in NP related models. Other
extensions include generative query network (Eslami et al.,
2018), sequential NP (Singh et al., 2019) and convolutional
conditional NP (Gordon et al., 2020). Variational implicit
process (Ma et al., 2019) targeted at more general SPs
and utilized GPs in latent space as approximation. Sun
et al. proposed functional variational Bayesian neural net-
works (Sun et al., 2019), and variational distribution over
functions of measurement set was used to represent SPs.
The more recently proposed functional NPs (Louizos et al.,
2019) characterized a novel family of exchangeable stochas-
tic processes, placing more flexible distributions over latent
variables and constructing directed acyclic graphs with la-
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Figure 4. Cumulative Distribution Functions of Entropies in O.0.D. Detection Tasks. Values in X-axis are example entropies ranging from
0 to 2.3, and y-axis records cumulative probabilities. The first row corresponds to the predictive result with models trained on MNIST,
while the second is with models trained on CIFAR10. NN means the baseline neural network without dropout layer. Curves in CDFs

closer to triangular arrows reveal better uncertainty quantification.

tent affinities of instances in inference and prediction.

Uncertainty Quantification and Computational Com-
plexity. GPs can well characterize aleatoric uncertainty and
epistemic uncertainty through kernel function and Gaussian
noise. But SPs with non-Gaussian marginals are crucial
in modelling. Apart from GPs, there exist some other tech-
niques such as Dropout (Gal & Ghahramani, 2016) or other
variants of Bayesian neural networks (Louizos et al., 2017)
to quantify uncertainty. In (Depeweg et al., 2018), uncertain-
ties were further decomposed in Bayesian neural network.
DSVNP can theoretically capture both uncertainties as an ap-
proximate prediction model for general SPs and approaches
the problem in a Bayesian way. For the computational cost
in prediction, the superior sparse GPs with K-rank covari-
ance matrix approximations (Burt et al., 2019) are with the
complexity O((M + N)K?), while the variants of CNPs or
NPs mostly reduce the complexity O((N + M)?) in GPs
to O(M + N) in prediction process. And those for AttnNP
and DSVNP are O((M + N)N).

6. Discussion and Conclusion

In this paper, we present a novel exchangeable stochastic
process as DSVNP, which is formalized as a latent variable
model. DSVNP integrates latent variables hierarchically
and improves the expressiveness of the vanilla NP model.
Experiments on high-dimensional tasks demonstrate bet-
ter capability in prediction and uncertainty quantification.
Since this work mainly concentrates on latent variables and
associated inference methods, future directions can be the
enhancement in the representation of latent variables, such
as the use of more flexible equivariant transformations over
the context or the dedicated selection of proper context
points.
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