
WHEN DEEP DENOISING MEETS ITERATIVE PHASE RETRIEVAL
SUPPLEMENTARY MATERIAL

In this supplementary material, we provide proofs on the proximal operators used in our algorithms and show how
ADMM (Boyd et al., 2011) with indicator functions coincides with Hybrid-Input-Output (HIO) (Fienup, 1982) and
Hybrid-Projection-Reflection (HPR) (Bauschke et al., 2003).

1 Proximal operators

We consider two proximal operators for Fourier phase retrieval: the squared error of Fourier amplitudes and regulariza-
tion by denoising (RED) coupled with additional object-space constraints.

1. R(x) = ĪC(x) + λ
2 〈x, x−D(x)〉

Let D be the denoiser used in RED and C be the set of signals satisfying the additional constraints provided,
where we assume that the denoiser D is (locally) homogeneous with symmetric Jacobian (Romano et al.,
2017) and C is a convex set. For any τ > 0, if v+ = proxτR(v), then the first-order optimality condition gives

v+ = armin
x∈Rn

τR(x) +
1

2
‖v − x‖2

⇒ τ(∂ĪC(v
+) + λ(v+ −D(v+))) + v+ − v = 0

⇔ v+ =

(
I +

τ

1 + λτ
∂ĪC

)−1(
v + λτD(v+)

1 + λτ

)
⇔ v+ = ΠC

(
v + λτD(v+)

1 + λτ

)
(S1)

where ∂ĪC is the subgradient of the indicator function and the last equality follows by noting that the resolvent
of ∂ĪC is the projection ΠC onto C (Ryu & Boyd, 2016).

2. f(z) = 1
2‖y − |Fz|‖

2

Let F be the (normalized) discrete Fourier transform and y be the measured Fourier amplitude, which is
non-negative. For simplicity, we consider 1D signals only (the conclusion holds for any dimension). Using the
overhead symbol ·̂ to denote the signal after Fourier transform, Parseval’s theorem gives

x+ = proxτf (x) = argminz
τ

2
‖y − |Fz|‖22 +

1

2
‖x− z‖2

⇔ x̂+ = argminẑ
τ

2
‖y − |ẑ|‖22 +

1

2
‖x̂− ẑ‖2

= argminẑ
1

2

∑
k

τ(|ẑ[k]| − y[k])2 + |ẑ[k]− x̂[k]|2

(S2)

It was noticed in (Wen et al., 2012) that the solution is

x̂+[k] =
τ

τ + 1
y[k]

x̂[k]

|x̂[k]|
+

1

τ + 1
x̂[k] ∀k (S3)

which follows from the first-order optimality condition. Here, we provide an alternative proof that this solution
is the global minimum.



We start by using the triangle inequality |ẑ[k]− x̂[k]|2 ≥ (|ẑ[k]| − |x̂[k]|)2 to give the lower bound

min
ẑ

∑
k

τ(|ẑ[k]| − y[k])2 + |ẑ[k]− x̂[k]|2 ≥ min
ẑ

∑
k

τ(|ẑ[k]| − y[k])2 + (|ẑ[k]| − |x̂[k]|)2 (S4)

Equality between the right- and left-hand sides is achieved when

<(ẑ[k]x̂[k]) = |ẑ[k]x̂[k]| ∀k (S5)

i.e., when the complex phase ∠ẑ[k] = ∠x̂[k] (∠ẑ[k] can be arbitrary if x̂[k] = 0). As the right-hand side is
convex on |ẑ[k]|, the minimum is achieved when

|ẑ[k]| = τy[k] + |x̂[k]|
τ + 1

∀k (S6)

as y[k], |x̂[k]| ≥ 0. Therefore, if x+ minimizes (S2), then for all k,

x̂+[k] =
τy[k] + |x̂[k]|

τ + 1
exp(i∠x̂[k])

=
τ

τ + 1
y[k] exp(i∠x̂[k]) +

1

τ + 1
|x̂[k]| exp(i∠x̂[k])

=
τ

τ + 1
y[k]

x̂[k]

|x̂[k]|
+

1

τ + 1
x̂[k]

(S7)

Performing an inverse Fourier transform gives (26) in the main text:

x+ =
τ

1 + τ
ΠM(x) +

1

τ + 1
x (S8)

2 Equivalence between ADMM and HIO\HPR

Let x0 be the ground truth and S and S̃ be the support for x0 and the extended support for padded x̃0 = Pmnx0,
respectively.

If there is additional information about the signal support, e.g. an estimation γ such that S ⊆ γ, then the relation S̃ ⊆ γ̃
holds for the extended support as well. For example, if we use the same vectorization as in the main text, such that

x̃ = Pmnx =

[
x

0m−n

]
(S9)

then we will have S = S̃ and γ = γ̃. Define subset S for the signals satisfying the given support constraint,

S := {x ∈ Cn | xi = 0 ∀i /∈ γ} (S10)

The projection onto S is

ΠS(x)i =

{
xi if i ∈ γ
0 otherwise

(S11)

and similarly for S̃ := {x ∈ Cm | xi = 0 ∀i /∈ γ̃} on the extended support.

According to (Bauschke et al., 2002), HIO with β = 1 can be written as

x̃k+1 = ΠS̃(2ΠM(x̃k)− x̃k)−ΠM(x̃k) + x̃k (S12)

We now relate this to the optimization of FPR with the support constraint

minimize
x∈Cn,z∈Cm

ĪM(z) + ĪS(x)

subject to z = Omnx
(S13)

With x̃ = Omnx, this can be rewritten as

minimize
x̃,z∈Cm

ĪM(z) + ĪS̃(x̃)

subject to z = x̃
(S14)
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for which ADMM gives the update rule as

x̃k+1 = ΠS̃(zk + uk)

zk+1 = ΠM(x̃k+1 − uk)

uk+1 = uk + zk+1 − x̃k+1

(S15)

As in (Wen et al., 2012), the updates for mk+1 = x̃k+1 − uk are given by

mk+2 = x̃k+2 − uk+1

= ΠS̃(2ΠM(mk+1)−mk+1)−ΠM(mk+1) +mk+1
(S16)

which coincides with (S12).

Next, we denote S+ as the set containing signals which not only satisfy the support constraint but also have non-negative
elements in the real part:

S+ := {x ∈ Cn | xi = 0 ∀i /∈ γ and <(xi) ≥ 0 ∀i} (S17)
The projection onto S+ is

ΠS+(x) = ΠRe+ (ΠS(x)) (S18)
with ΠRe+ being the element-wise projection

ΠRe+(x)i =

{
xi if <(xi) ≥ 0

i=(xi) otherwise
(S19)

Changing S to S+ in (S14) and repeating (S15) to (S16) gives the recursion for mk+1 as

mk+2 = ΠS̃+(2ΠM(mk+1)−mk+1)−ΠM(mk+1) +mk+1 (S20)

which coincides with HPR with β = 1 (Bauschke et al., 2003).
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