
Bandits for BMO Functions

Tianyu Wang 1 Cynthia Rudin 1

Abstract
We study the bandit problem where the underly-
ing expected reward is a Bounded Mean Oscilla-
tion (BMO) function. BMO functions are allowed
to be discontinuous and unbounded, and are use-
ful in modeling signals with infinities in the do-
main. We develop a toolset for BMO bandits, and
provide an algorithm that can achieve poly-log
δ-regret – a regret measured against an arm that
is optimal after removing a δ-sized portion of the
arm space.

1. Introduction
Multi-Armed Bandit (MAB) problems model sequential
decision making under uncertainty. Algorithms for this
problem have important real-world applications including
medical trials (Robbins, 1952) and web recommender sys-
tems (Li et al., 2010). While bandit methods have been
developed for various settings, one problem setting that has
not been studied, to the best of our knowledge, is when the
expected reward function is a Bounded Mean Oscillation
(BMO) function in a metric measure space. Intuitively, a
BMO function does not deviate too much from its mean
over any ball, and can be discontinuous or unbounded.

Such unbounded functions can model many real-world quan-
tities. Consider the situation in which we are optimizing
the parameters of a process (e.g., a physical or biological
system) whose behavior can be simulated. The simulator is
computationally expensive to run, which is why we could
not exhaustively search the (continuous) parameter space
for the optimal parameters. The “reward” of the system is
sensitive to parameter values and can increase very quickly
as the parameters change. In this case, by failing to model
the infinities, even state-of-the-art continuum-armed bandit
methods fail to compute valid confidence bounds, poten-
tially leading to underexploration of the important part of

1Department of Computer Science, Duke University,
Durham, NC, USA. Correspondence to: Tianyu Wang
<tianyu@cs.duke.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

the parameter space, and they may completely miss the
optima.

As another example, when we try to determine failure modes
of a system or simulation, we might try to locate singular-
ities in the variance of its outputs. These are cases where
the variance of outputs becomes extremely large. In this
case, we can use a bandit algorithm for BMO functions to
efficiently find where the system is most unstable.

There are several difficulties in handling BMO rewards.
First and foremost, due to unboundedness in the expected re-
ward functions, traditional regret metrics are doomed to fail.
To handle this, we define a new performance measure, called
δ-regret. The δ-regret measures regret against an arm that is
optimal after removing a δ-sized portion of the arm space.
Under this performance measure, and because the reward is
a BMO function, our attention is restricted to a subspace on
which the expected reward is finite. Subsequently, strategies
that conform to the δ-regret are needed.

To develop a strategy that handles δ-regret, we leverage
the John-Nirenberg inequality, which plays a crucial role in
harmonic analysis. We construct our arm index using the
John-Nirenberg inequality, in addition to a traditional UCB
index. In each round, we play an arm with highest index.
As we play more and more arms, we focus our attention on
regions that contain good arms. To do this, we discretize the
arm space adaptively, and carefully control how the index
evolves with the discretization. We provide two algorithms
– Bandit-BMO-P and Bandit-BMO-Z. They discretize the
arm space in different ways. In Bandit-BMO-P, we keep a
strict partitioning of the arm space. In Bandit-BMO-Z, we
keep a collection of cubes where a subset of cubes form a
discretization. Bandit-BMO-Z achieves poly-log δ-regret
with high probability.

2. Related Works
Bandit problems in different settings have been actively
studied since as far back as Thompson (1933). Upper
confidence bound (UCB) algorithms remain popular (Rob-
bins, 1952; Lai and Robbins, 1985; Auer, 2002) among the
many approaches for (stochastic) bandit problems (e.g., see
Srinivas et al., 2010; Abbasi-Yadkori et al., 2011; Agrawal
and Goyal, 2012; Bubeck and Slivkins, 2012; Seldin and
Slivkins, 2014). Various extensions of upper confidence

Bandits for BMO Functions

bound algorithms have been studied. Some works use KL-
divergence to construct the confidence bound (Lai and Rob-
bins, 1985; Garivier and Cappé, 2011; Maillard et al., 2011),
and some works include variance estimates within the confi-
dence bound (Audibert et al., 2009; Auer and Ortner, 2010).
UCB is also used in the contextual setting (e.g., Li et al.,
2010; Krause and Ong, 2011; Slivkins, 2014).

Perhaps Lipschitz bandits are closest to BMO bandits. The
Lipschitz bandit problem was termed “continuum-armed
bandits” in early stages (Agrawal, 1995). In “continuum-
armed bandits,” arm space is continuous – e.g., [0, 1]. Along
this line, bandits that are Lipschitz continuous (or Hölder
continuous) have been studied. In particular, Kleinberg
(2005) proves a Ω(T 2/3) lower bound and proposes a
Õ
(
T 2/3

)
algorithm. Under other extra conditions on top of

Lipschitzness, regret rate of Õ(T 1/2) was achieved (Cope,
2009; Auer et al., 2007). For general (doubling) metric
spaces, the Zooming bandit algorithm (Kleinberg et al.,
2008) and Hierarchical Optimistic Optimization algorithm
(Bubeck et al., 2011a) were developed. In more recent years,
some attention has been given to Lipschitz bandit problems
with certain extra conditions. To name a few, Bubeck et al.
(2011b) study Lipschitz bandits for differentiable rewards,
which enables algorithms to run without explicitly knowing
the Lipschitz constants. The idea of robust mean estima-
tors (Bubeck et al., 2013; Bickel et al., 1965; Alon et al.,
1999) was applied to the Lipschitz bandit problem to cope
with heavy-tail rewards, leading to the development of a
near-optimal algorithm (Lu et al., 2019). Lipschitz ban-
dits with an unknown metric, where a clustering is used
to infer the underlying unknown metric, has been studied
by Wanigasekara and Yu (2019). Lipschitz bandits with
discontinuous but bounded rewards were studied by Krish-
namurthy et al. (2019).

An important setting that is beyond the scope of the afore-
mentioned works is when the expected reward is allowed
to be unbounded. This setting breaks the previous Lips-
chitzness assumption or “almost Lipschitzness” assumption
(Krishnamurthy et al., 2019), which may allow discontinu-
ities but require boundedness. To the best of our knowledge,
this paper is the first work that studies the bandit learning
problem for BMO functions.

3. Preliminaries
We review the concept of (rectangular) Bounded Mean Os-
cillation (BMO) in Euclidean space (e.g., Fefferman, 1979;
Stein and Murphy, 1993).

Definition 1. (BMO Functions) Let (Rd, µ) be the Eu-
clidean space with the Lebesgue measure. Let L1

loc(Rd, µ)
denote the space of measurable functions (on Rd) that
are locally integrable with respect to µ. A function f ∈

L1
loc(Rd, µ) is said to be a Bounded Mean Oscillation func-

tion, f ∈ BMO(Rd, µ), if there exists a constant Cf , such
that for any hyper-rectangles Q ⊂ Rd,

1

µ(Q)

∫
Q

|f − 〈f〉Q |dµ ≤ Cf , 〈f〉Q :=

∫
Q
fdµ

µ(Q)
. (1)

For a given such function f , the infimum of the admissi-
ble constant Cf over all hyper-rectangles Q is denoted by
‖f‖BMO, or simply ‖f‖. We use ‖f‖BMO and ‖f‖ inter-
changeably in this paper.

A BMO function can be discontinuous and unbounded. The
function in Figure 1 illustrates the singularities a BMO
function can have over its domain. Our problem is most
interesting when multiple singularities of this kind occur.

To properly handle the singularities, we will need the John-
Nirenberg inequality (Theorem 1), which plays a central
role in our paper.

Theorem 1 (John-Nirenberg inequality). Let µ be the
Lebesgue measure. Let f ∈ BMO

(
Rd, µ

)
. Then there

exists constants C1 and C2, such that, for any hypercube
q ⊂ Rd and any λ > 0,

µ
({
x∈ q :

∣∣∣f(x)−〈f〉q
∣∣∣>λ})≤C1µ(q) exp

{
−λ

C2‖f‖

}
.

(2)

The John-Nirenberg inequality dates back to at least John
(1961), and a proof is provided in Appendix C.

As shown in Appendix C, C1 = e and C2 = e2d provide a
pair of legitimate C1, C2 values. However, this pair of C1

and C2 values may be overly conservative. Tight values of
C1 and C2 are not known in general cases (Lerner, 2013;
Slavin and Vasyunin, 2017), and it is also conjectured that
C2 and C1 might be independent of dimension (Cwikel
et al., 2012). For the rest of the paper, we use ‖f‖ = 1,
C1 = 1, and C2 = 1, which permits cleaner proofs. Our
results generalize to cases where C1, C2 and ‖f‖ are other
constant values.

In this paper, we will work in Euclidean space with the
Lebesgue measure. For our purpose, Euclidean space is as
general as doubling spaces, since we can always embed a
doubling space into a Euclidean space with some distortion
of metric. This fact is formally stated in Theorem 2.

Theorem 2. (Assouad, 1983). Let (X, d) be a doubling
metric space and ς ∈ (0, 1). Then (X, dς) admits a bi-
Lipschitz embedding into Rn for some n ∈ N.

In a doubling space, any ball of radius ρ can be covered by
Md balls of radius ρ

2 , where Md is the doubling constant.
In the space (Rd,‖ · ‖∞), the doubling constant Md is 2d.
In domains of other geometries, the doubling constant can

Bandits for BMO Functions

be much smaller than exponential. Throughout the rest of
the paper, we use Md to denote the doubling constant.

4. Problem Setting: BMO Bandits
The goal of a stochastic bandit algorithm is to exploit the
current information, and explore the space efficiently. In this
paper, we focus on the following setting: a payoff function
is defined over the arm space ([0, 1)d, ‖ · ‖max, µ), where
µ is the Lebesgue measure (note that [0, 1)d is a Lipschitz
domain). The payoff function is:

f : [0, 1)d → R where f ∈ BMO([0, 1)d, µ). (3)

The actual observations are given by y(a) = f(a) + Ea,
where Ea is a zero-mean noise random variable whose dis-
tribution can change with a. We assume that for all a,
|Ea| ≤ DE almost surely for some constant DE (N1). Our
results generalize to the setting with sub-Gaussian noise
(Shamir, 2011). We also assume that the expected reward
function does not depend on noise.

In our setting, an agent is interacting with this environment
in the following fashion. At each round t, based on past
observations (a1, y1, · · · , at−1, yt−1), the agent makes a
query at point at and observes the (noisy) payoff yt, where
yt is revealed only after the agent has made a decision at.
For a payoff function f and an arm sequence a1, a2, · · · , aT ,
we use δ-regret incurred up to time T as the performance
measure (Definition 2).

Definition 2. (δ-regret) Let f ∈ BMO([0, 1)d, µ). A num-
ber δ ≥ 0 is called f -admissible if there exists a real
number z0 that satisfies

µ({a ∈ [0, 1)d : f(a) > z0}) = δ. (4)

For an f -admissible δ, define the set F δ to be

F δ :=
{
z ∈ R : µ({a ∈ [0, 1)d : f(a) > z}) = δ

}
. (5)

Define fδ := inf F δ. For a sequence of arms A1, A2, · · · ,
and σ-algebras F1,F2, · · · where Ft describes all random-
ness before arm At, define the δ-regret at time t as

rδt := max{0, fδ − Et[f(At)]}, (6)

where Et is the expectation conditioned on Ft. The total
δ-regret up to time T is then RδT :=

∑T
t=1 r

δ
t .

Intuitively, the δ-regret is measured against an amended re-
ward function that is created by chopping off a small portion
of the arm space where the reward may become unbounded.
As an example, Figure 1 plots a BMO function and its fδ

value. A problem defined as above with performance mea-
sured by δ-regret is called a BMO bandit problem.

Figure 1. Graph of f(x) = − log(|x|), with δ and fδ annotated.
This function is an unbounded BMO function.

Remark 1. The definition of δ-regret, or a definition of this
kind, is needed for a reward function f ∈ BMO([0, 1)d, µ).
For an unbounded BMO function f , the max value is infinity,
while fδ is a finite number as long as δ is f -admissible.

Remark 2 (Connection to bandits with heavy-tails). In
the definition of bandits with heavy tails (Bubeck et al.,
2013; Medina and Yang, 2016; Shao et al., 2018; Lu et al.,
2019), the reward distribution at a fixed arm is heavy-tail –
having a bounded expectation and bounded (1+β)-moment
(β ∈ (0, 1]). In the case of BMO rewards, the expected
reward itself can be unbounded. Figure 1 gives an instance
of unbounded BMO reward, which means the BMO bandit
problem is not covered by settings of bandits with heavy
tails.

A quick consequence of the definition of δ-regret is the
following lemma. This lemma is used in the regret analysis
when handling the concentration around good arms.

Lemma 1. Let f be the reward function. For any f -
admissible δ ≥ 0, let Sδ :=

{
a ∈ [0, 1)d : f(a) > fδ

}
.

Then we have Sδ measurable and µ(Sδ) = δ.

Before moving on to the algorithms, we put forward the
following assumption.

Assumption 1. We assume that the expected reward func-
tion f ∈ BMO([0, 1)d, µ) satisfies 〈f〉[0,1)d = 0.

Assumption 1 does not sacrifice generality. Since f is a
BMO function, it is locally-integrable. Thus 〈f〉[0,1)d is
finite, and we can translate the reward function up or down
such that 〈f〉[0,1)d = 0.

5. Solve BMO Bandits via Partitioning
BMO bandit problems can be solved by partitioning the
arm space and treating the problem as a finite-arm problem
among partitions. For our purpose, we maintain a sequence

Bandits for BMO Functions

of partitions using dyadic cubes. By dyadic cubes of Rd, we
refer to the collection of all cubes of the following form:

QRd :=
{

Πd
i=1

[
mi2

−k,mi2
−k + 2−k

)}
(7)

where Π is the Cartesian product, and m1, · · · ,md, k ∈
Z. Dyadic cubes of [0, 1)d is Q [0,1)d :={
q∈QRd : q⊂ [0, 1)d

}
. Dyadic cubes of [0, 1)2 are

{[0, 1)2, [0, 0.5)2, [0.5, 1)2, [0.5, 1)× [0, 0.5), · · · }.

We say a dyadic cube Q is a direct sub-cube of a dyadic
cube Q′ if Q ⊆ Q′ and the edge length of Q′ is twice the
edge length of Q. By definition of doubling constant, for
any cube Q, it has Md direct sub-cubes, and these direct
sub-cubes form a partition of Q. If Q is a direct sub-cube
of Q′, then Q′ is a direct super cube of Q.

At each step t, Bandit-BMO-P treats the problem as a finite-
arm bandit problem with respect to the cubes in the dyadic
partition at t; each cube possesses a confidence bound. The
algorithm then chooses a best cube according to UCB, and
chooses an arm uniformly at random within the chosen cube.
Before formulating our strategy, we put forward several
functions that summarize cube statistics.

Let Qt be the collection of dyadic cubes of [0, 1)d at time t
(t ≥ 1). Let (a1, y1, a2, y2, · · · , at, yt) be the observations
received up to time t. We define

• the cube count nt : Qt → R, such that for q ∈ Qt

nt(q) :=

t−1∑
i=1

I[ai∈q]; ñt(q) := max(1, nt(q)). (8)

• the cube average mt : Qt → R, such that for q ∈ Qt

mt(q) :=

{∑t−1
i=1 yiI[ai∈q]
nt(q)

, if nt(q) > 0;

0, otherwise.
(9)

At time t, based on the partition Qt−1 and observations
(a1, y1, a2, y2, · · · , at−1, yt−1), our bandit algorithm picks
a cube (and plays an arm within the cube uniformly at
random). More specifically, the algorithm picks

Qt ∈ arg max
q∈Qt

Ut(q), where (10)

Ut(q) :=mt(q) +Ht(q) + J(q), (11)

Ht(q) :=
(Ψ+DE)

√
2 log(2T 2/ε)√
ñt(q)

,

J(q) := blog (µ(q)/η)c+ ,
Ψ := max

{
log(T 2/ε), 2 log2(1/η)

}
, (12)

where T is the time horizon, DE is the a.s. bound on the
noise, ε and η are algorithm parameters (to be discussed in
more detail later), and bzc+ = max{0, z}. Here Ψ is the
“Effective Bound” of the expected reward, and η controls
minimal cube size in the partition Qt (Proposition 3 in

Appendix A.4). All these quantities will be discussed in
more detail as we develop our algorithm.

After playing an arm and observing reward, we update the
partition into a finer one if needed. Next, we discuss our
partition refinement rules and the tie-breaking mechanism.

Partition Refinement: We start with Q0 = {[0, 1)d}. At
time t, we split cubes in Qt−1 to construct Qt so that the
following is satisfied for any q ∈ Qt

Ht(q) ≥ J(q), or equivalently

(Ψ+DE)
√

2 log(2T 2/ε)√
ñt(q)

≥ blog (µ(q)/η)c+ . (13)

In (13), the left-hand-side does not decrease as we make
splits (the numerator remains constant while the denomina-
tor can only decrease), while the right-hand-side decreases
until it hits zero as we make more splits. Thus (13) can
always be satisfied with additional splits.

Tie-breaking: We break down our tie-breaking mechanism
into two steps. In the first step, we choose a cubeQt ∈ Qt−1

such that:

Qt ∈ arg max
q∈Qt−1

Ut(q). (14)

After deciding from which cube to choose an arm, we uni-
formly randomly play an arm At within the cube Qt. If
measure µ is non-uniform, we play arm At, so that for any
subset S ⊂ Qt, P(At ∈ S) = µ(S)

µ(Qt)
.

The random variables {(Qt′ , At′ , Yt′)}t′ (cube selection,
arm selection, reward) describe all randomness in the learn-
ing process up to time t. We summarize this strategy in
Algorithm 1. Analysis of Algorithm 1 is found in Section
5.1, which also provides some tools for handling δ-regret.
Then in Section 6, we provide an improved algorithm that
exhibits a stronger performance guarantee.

5.1. Regret Analysis of Bandit-BMO-P

In this section we provide a theoretical guarantee on the
algorithm. We will use capital letters (e.g., Qt, At, Yt) to de-
note random variables, and use lower-case letters (e.g. a, q)
to denote non-random quantities, unless otherwise stated.

Theorem 3. Fix any T . With probability at least 1 − 2ε,
for any δ > |QT |η such that δ is f -admissible, the total
δ-regret for Algorithm 1 up to time T satisfies

T∑
t=1

rδt .d Õ
(√

T |QT |
)
, (15)

where the .d sign omits constants that depends on d, and
|QT | is the cardinality of QT .

Bandits for BMO Functions

Algorithm 1 Bandit-BMO-Partition (Bandit-BMO-P)
1: Problem intrinsics: µ(·), DE , d, Md.
2: {µ(·) is the Lebesgue measure. DE bounds the noise.}
3: {d is the dimension of the arm space.}
4: {Md is the doubling constant of the arm space.}
5: Algorithm parameters: η > 0, ε > 0, T .
6: {T is the time horizon. ε and η are parameters.}
7: for t = 1, 2, . . . , T do
8: Let mt and nt be defined as in (9) and (8).
9: Select a cube Qt ∈ Qt such that:

Qt ∈ arg max
q∈Qt−1

Ut(l),

where Ut is defined in (11).
10: Play arm At ∈ Qt uniformly at random. Observe Yt.
11: Update the partition Qt to Qt+1 according to (13).
12: end for

From uniform tie-breaking, we have

E[f(At)|Ft] =
1

µ(Qt)

∫
a∈Qt

f(a) da = 〈f〉Qt , (16)

Ft = σ(Q1, A1, Y1, · · · , Qt−1, At−1, Yt−1, Qt), (17)

where Ft is the σ-algebra generated by random vari-
ables Q1, A1, Y1, · · · , Qt−1, At−1, Yt−1, Qt – all random-
ness right after selecting cube Qt. At time t, the expected
reward is the mean function value of the selected cube.

The proof of the theorem is divided into two parts. In Part I,
we show that some “good event” holds with high probability.
In Part II, we bound the δ-regret under the “good event.”

Part I: For t ≤ T , and q ∈ Qt, we define

Et(q) :=
{∣∣∣〈f〉q −mt(q)

∣∣∣ ≤ Ht(q)
}
, (18)

Ht(q) =
(Ψ+DE)

√
2 log(2T 2/ε)√
ñt(q)

. (19)

In the above, Et(q) is essentially saying that the empirical
mean within a cube q concentrates to 〈f〉q . Lemma 2 shows
that Et(q) happens with high probability for any t and q.
Lemma 2. With probability at least 1− ε

T , the event Et(q)
holds for any q ∈ Qt at any time t.

To prove Lemma 2, we apply a variation of Azuma’s in-
equality (Vu, 2002; Tao and Vu, 2015). We also need some
additional effort to handle the case when a cube q contains
no observations. The details are in Appendix A.3.

Part II: Next, we link the δ-regret to the J(q) term.
Lemma 3. Recall J(q) = log(µ(q)/η). For any partition
Q of [0, 1)d, there exists q ∈ Q, such that

fδ − 〈f〉q ≤ J(q), (20)

for any f -admissible δ > η|Q|, where |Q| is the cardinality
of Q.

In the proof of Lemma 3, we suppose, in order to get a con-
tradiction, that there is no such cube. Under this assumption,
there will be contradiction to the definition of fδ .

By Lemma 3, there exists a “good” cube q̃t (at any time
t ≤ T), such that (20) is true for q̃t. Let δ be an arbitrary
number satisfying (1) δ > |QT |η and (2) δ is f -admissible.
Then under event E(q̃t),

fδ =
(
fδ − 〈f〉q̃t

)
+
(
〈f〉q̃t −mt(q̃t)

)
+mt(q̃t)

1
≤J(q̃t) +Ht(q̃t) +mt(q̃t), (21)

where 1 uses Lemma 3 for the first brackets and Lemma 2
(with event Et(q̃t)) for the second brackets.

The event where all “good” cubes and all cubes we
select (for t ≤ T) have nice estimates, namely(⋂T

t=1 Et(q̃t)
)⋂(⋂T

t=1 Et(Qt)
)
, occurs with probability

at least 1 − 2ε. This result comes from Lemma 2 and a
union bound, and we note that Et(q) depends on ε (and
T), as in (19). Under this event, from (18) we have∣∣∣〈f〉Qt −mt(Qt)

∣∣∣ ≤ Ht(Qt). This and (16) give us

E [f(At)|Ft] = 〈f〉Qt ≥mt(Qt)−Ht(Qt). (22)

We can then use the above to get, under the “good event”,

fδ − E[f(At)|Ft]
1
≤mt(q̃t) +Ht(q̃t) + J(q̃t)−mt(Qt) +Ht(Qt)

2
≤mt(Qt)+Ht(Qt)+J(Qt)−mt(Qt)+Ht(Qt)

=2Ht(Qt) + J(Qt) ≤ 3Ht(Qt), (23)

where 1 uses (21) for the first three terms and (22) for the
last three terms, 2 uses that Ut(Qt) ≥ Ut(q̃t) since Qt
maximizes the index Ut(·) according to (14), and the last
inequality uses the rule (13).

Next, we use Lemma 4 to link the number of cubes up to a
time t to the Hoeffding-type tail bound in (23). Intuitively,
this bound (Lemma 4) states that the numbers of points
within the cubes grows fast enough to be bounded by a
function of the number of cubes.

Lemma 4. We say a partitionQ is finer than a partitionQ′
if for any q ∈ Q, there exists q′ ∈ Q′ such that q ⊂ q′. Con-
sider an arbitrary sequence of points x1, x2, · · · , xt, · · · in
a space X , and a sequence of partitions Q1,Q2, · · · of X
such that Qt+1 is finer than Qt for all t = 1, 2, · · · , T − 1.
Then for any T , and {qt ∈ Qt}Tt=1,

T∑
t=1

1

ñt(qt)
≤ e|QT | log

(
1 + (e− 1)

T

|QT |

)
, (24)

Bandits for BMO Functions

where ñt is defined in (8) (using points x1, x2, · · ·), and
|Qt| is the cardinality of partition Qt.

A proof of Lemma 4 is in Appendix B. We can apply Lemma
4 and the Cauchy-Schwarz inequality to (23) to prove Theo-
rem 3. The details can be found in Appendix A.7.

6. Achieve Poly-log Regret via Zooming
In this section we study an improved version of the previous
section that uses the Zooming machinery (Kleinberg et al.,
2008; Slivkins, 2014) and inspirations from Bubeck et al.
(2011a). Similar to Algorithm 1, this algorithm runs by
maintaining a set of dyadic cubes Qt.

In this setting, we divide the time horizon into episodes. In
each episode t, we are allowed to play multiple arms, and
all arms played can incur regret. This is also a UCB strategy,
and the index of q ∈ Qt is defined the same way as (11):

Ut(q) := mt(q) +Ht(q) + J(q) (25)

Before we discuss in more detail how to select cubes and
arms based on the above index Ut(·), we first describe how
we maintain the collection of cubes. LetQt be the collection
of dyadic cubes at episode t. We first define terminal cubes,
which are cubes that do not have sub-cubes in Qt. More
formally, a cube Q ∈ Qt is a terminal cube if there is no
other cube Q′ ∈ Qt such that Q′ ⊂ Q. A pre-parent cube
is a cube in Qt that “directly” contains a terminal cube: For
a cube Q ∈ Qt, if Q is a direct super cube of any terminal
cube, we say Q is a pre-parent cube. Finally, for a cube
Q ∈ Qt, if Q is a pre-parent cube and no super cube of Q
is a pre-parent cube, we call Q a parent cube. Intuitively,
no “sibling” cube of a parent cube is a terminal cube. As a
consequence of this definition, a parent cube cannot contain
another parent cube. Note that some cubes are none of
the these three types of cubes. Figure 2 gives examples of
terminal cubes, pre-parent cubes and parent cubes.

Algorithm Description

Pick zooming rate α ∈
(

0,
(Ψ+DE)

√
2 log(2T 2/ε)

log(Md/η)

]
. The

collection of cubes grows following the rules below: (1) Ini-
tialize Q0 = {[0, 1)d} and [0, 1)d. Warm-up: play nwarm
arms uniformly at random from [0, 1)d so that

(Ψ+DE)
√

2 log(2T 2/ε)
√
nwarm

≥ α log
(
Md

η

)
(Ψ+DE)

√
2 log(2T 2/ε)√

nwarm+1
< α log

(
Md

η

) . (26)

(2) After episode t (t = 1, 2, · · · , T), ensure

(Ψ+DE)
√

2 log(2T 2/ε)√
ñt(Qter)

≥ α log

(
Mdµ(Qter)

η

)
(27)

for any terminal cube Qter. If (27) is violated for a terminal
cube Qter, we include the Md direct sub-cubes of Qter

into Qt. Then Qter will no longer be a terminal cube and
the direct sub-cubes of Qter will be terminal cubes. We
repeatedly include direct sub-cubes of (what were) terminal
cubes into Qt, until all terminal cubes satisfy (27). We

choose α to be smaller than (Ψ+DE)
√

2 log(2T 2/ε)

log(Md/η) so that
(27) can be satisfied with ñt(Qter) = 1 and µ(Qter) = 1.

As a consequence, any non-terminal cube Qpar (regardless
of whether it is a pre-parent or parent cube) satisfies:

(Ψ+DE)
√

2 log(2T 2/ε)√
ñt(Qpar)

< α log

(
Mdµ(Qpar)

η

)
.

(28)

Figure 2. Example of terminal cubes, pre-parent and parent cubes.

After the splitting rule is achieved, we select a parent cube.
Specifically Qt is chosen to maximize the following index:

Qt ∈ arg max
q∈Qt,q is a parent cube

Ut(q).

Within each direct sub-cube of Qt (either pre-parent or
terminal cubes), we uniformly randomly play one arm. In
each episode t, Md arms are played. This algorithm is
summarized in Algorithm 2.

Regret Analysis: For the rest of the paper, we define

Ft := σ

({
Qt′ , {At′,j}Md

j=1, {Yt′,j}
Md
j=1

}t−1

t′=1

, Qt

)
,

which is the σ-algebra describing all randomness right af-
ter selecting the parent cube for episode t. We use Et to
denote the expectation conditioning on Ft. We will show
Algorithm 2 achieves Õ (poly-log(T)) δ-regret with high
probability (formally stated in Theorem 4).

Let At,i be the i-th arm played in episode t. Let us de-
note ∆δ

t,i := fδ − Et[f(At,i)]. Since each At,i is selected
uniformly randomly within a direct sub-cube ofQt, we have

Md∑
i=1

Et[f(At,i)] = Md 〈f〉Qt , (29)

Bandits for BMO Functions

Algorithm 2 Bandit-BMO-Zooming (Bandit-BMO-Z)
1: Problem intrinsics: µ(·), DE , d, Md.
2: {µ(·), DE , d, Md are same as those in Algorithm 1.}
3: Algorithm parameters: η, ε, T > 0, and α ∈(

0,
(Ψ+DE)

√
2 log(2T 2/ε)

log(Md/η)

]
.

4: {η, ε, T are same as those in Algorithm 1. α is the
zooming rate.}

5: Initialize: let Q0 =[0, 1)d. Play warm-up phase (26).
6: for episode t = 1, 2, . . . , T do
7: Let mt, nt, Ut be defined as in (9), (8) and (25).
8: Select parent cube Qt ∈ Qt such that:

Qt ∈ arg max
q∈Qt, q is a parent cube.

Ut(q).

9: for j = 1, 2, . . . ,Md do
10: Locate the j-th direct sub-cube of Qt: Qsubj .
11: Play At,j ∈ Qsubj uniformly at random, and ob-

serve Yt,j .
12: end for
13: Update the collection of dyadic cubes Qt to Qt+1

according to (27).
14: end for

where Et is the expectation conditioning on all randomness
before episode t. Using the above equation, for any t,

Md∑
i=1

∆δ
t,i = Md(f

δ − 〈f〉Qt). (30)

The quantity
∑Md

i=1 ∆δ
t,i is the δ-regret incurred during

episode t. We will bound (30) using tools in Section 5.
In order to apply Lemma 3, we need to show that the parent
cubes form of partition of the arm space (Proposition 1).

Proposition 1. At any episode t, the collection of parent
cubes forms a partition of the arm space.

Since the parent cubes in Qt form a partition of the arm
space, we can apply Lemma 3 to get the following. For any
episode t, there exists a parent cube qmax

t , such that

fδ ≤〈f〉qmax
t

+ log (µ(qmax
t)/η) . (31)

Let us define ẼT :=
(⋂T

t=1 Et(qmax
t)

)⋂(⋂T
t=1 Et(Qt)

)
,

where Et(qmax
t) and Et(Qt) are defined in (18). By Lemma

2 and another union bound, we know the event ẼT happens
with probability at least 1− 2ε.

Since each episode creates at most a constant number of
new cubes, we have |Qt| = O(t). Using the argument we
used for (23), we have that at any t ≤ T , for any δ > η|Qt|

that is f -admissible, under event ẼT ,

Md∑
i=1

∆δ
t,i = Md

(
fδ − 〈f〉Qt

)
(32)

≤Md

(
2

(Ψ+DE)
√

2 log(2T 2/ε)√
ñt(Qt)

+ log

(
Mdµ(Qt)

η

))

≤Md(1 + 2α) log

(
Mdµ(Qt)

η

)
, (33)

where (32) uses (30) and the last inequality uses (28).

Next, we extend some definitions from Kleinberg et al.
(2008), to handle the δ-regret setting. Firstly, we define
the set of (λ, δ)-optimal arms as

Xδ(λ) :=
(⋃
{Q ⊂ [0, 1]d : fδ − 〈f〉Q ≤ λ}

)
. (34)

We also need to extend the definition of zooming num-
ber (Kleinberg et al., 2008) to our setting. We denote by
Nδ(λ, ξ) the number of cubes of edge-length ξ needed to
cover the set Xδ(λ). Then we define the (δ, η)-Zooming
Number with zooming rate α as

Ñδ,η,α := sup
λ∈
(
η

1
d ,1
]Nδ((1 + 2α) log

(
Mdλ

d/η
)
, λ
)
, (35)

where Nδ
(
(1 + 2α) log

(
Mdλ

d/η
)
, λ
)

is the number
of cubes of edge-length λ needed to cover Xδ((1 +

2α) log(Mdλ
d/η)). The number Ñδ,η,α is well-defined.

This is because the Xδ((1 + 2α) log(Mdλ
d/η)) is a sub-

space of (0, 1]d, and number of cubes of edge-length > η
1
d

needed to cover (0, 1]d is finite. Intuitively, the idea of
zooming is to use smaller cubes to cover more optimal arms,
and vice versa. BMO properties convert between units of
reward function and units in arm space.

We will regroup the ∆t,i terms to bound the regret. To
do this, we need the following facts, whose proofs are in
Appendix A.9.

Proposition 2. Following the Zooming Rule (27), we have
1. Each parent cube of measure µ is played at most
2(Ψ+DE)2 log(2T 2/ε)

α2[log(µ/η)]2
episodes.

2. Under event ẼT , each parent cube Qt selected at episode
t is a subset of Xδ ((1 + 2α) log (Mdµ(Qt)/η)).

For cleaner writing, we set η = 2−dI for some positive
integer I , and assume the event ẼT holds. By Proposition
2, we can regroup the regret in a similar way to that of
Kleinberg et al. (2008). Let Ki be the collection of selected
parent cubes such that for any Q ∈ Ki, µ(Q) = 2−di

(dyadic cubes are always of these sizes). The setsKi regroup
the selected parent cubes by their size. By Proposition
2 (item 2), we know each parent cube in Ki is a subset

Bandits for BMO Functions

of Xδ
(
(1 + 2α) log

(
Md2

−di/η
))

. Since cubes in Ki are
subsets of Xδ

(
(1 + 2α) log

(
Md2

−di/η
))

and cubes in Ki
are of measure 2−di, we have

|Ki| ≤ Nδ
(
(1 + 2α) log

(
Md2

−di/η
)
, 2−i

)
, (36)

where |Ki| is the number of cubes in Ki. For a cube Q, let
SQ be the episodes where Q is played. With probability at
least 1− 2ε, we can regroup the regret as

T∑
t=1

Md∑
i=1

∆δ
t,i ≤

T∑
t=1

(1 + 2α)Md log (Mdµ(Qt)/η) (37)

≤
I−1∑
i=0

∑
Q∈Ki

∑
t∈SQ

(1 + 2α)Md log
(
Md2

−di/η
)
, (38)

where (37) uses (33), (38) regroups the sum as argued above.
Using Proposition 2, we can bound (38) by:

I−1∑
i=0

∑
Q∈Ki

∑
t∈SQ

(1 + 2α)Md log
(
Md2

−di/η
)

≤
I−1∑
i=0

∑
Q∈Ki

|SQ|(1 + 2α)Md log

(
Md2

−di

η

)
1©
≤

I−1∑
i=0

∑
Q∈Ki

2(Ψ +DE)2 log(2T 2/ε)

α2 [log (2−di/η)]
2 (39)

· (1+2α)Md log

(
Md2

−di

η

)
≤
I−1∑
i=0

Nδ
(
(1 + 2α) log

(
Md2

−di/η
)
, 2−di

)
· 2(Ψ +DE)2 log(2T 2/ε)

α2 [log (2−di/η)]
2 ·(1 + 2α)Md log

(
Md2

−di

η

)
(40)

≤2(1 + 2α)Md(Ψ +DE)2

α2
Ñδ,η,α

· log(2T 2/ε)

I−1∑
i=0

log(Md2
−di/η)

[log(2−di/η)]
2 ,

where 1© uses item 1 in Proposition 2, (40) uses (36). Recall
η = 2−dI for some positive integer I . We can use the above
to prove Theorem 4, by using η = 2−dI and

I−1∑
i=0

log(Md2
−di/η)

[log(2−di/η)]
2 =

I−1∑
i=0

logMd[
log

2−di

η

]2 +

I−1∑
i=0

1

log
2−di

η

=

I−1∑
i=0

logMd

d2 (log 2)
2

(I − i)2
+

I−1∑
i=0

1

d(log 2)(I − i)
(41)

=O (1) +O (log I) ,

=O (log log(1/η)) ,

where the first term in (41) is O(1) since
∑∞
i=1

1
i2 = O(1)

and the second term in (41) is O (log I) by the order of a
harmonic sum. The above analysis gives Theorem 4.

Theorem 4. Choose positive integer I , and let η = 2−Id.
For ε > 0 and t ≤ T , with probability ≥ 1 − 2ε, for any
δ > |Qt|η such that δ is f -admissible, Algorithm 2 (with
zooming rate α) admits t-episode δ-regret of:

O
(

1 + 2α

α2
MdΨ

2Ñδ,η,α log

(
T

ε

)
log log(1/η)

)
, (42)

where Ψ = O (log(T/ε) + log(1/η)), Ñδ,η,α is defined in
(35), and O omits constants. Since each episode plays Md

arms, the average δ-regret each arm incurs is independent
of Md.

When proving Theorem 4, the definition of Ñδ,η,α is used
in (40). For a more refined bound, we can instead use

Ñ ′δ,η,α := sup
λ∈(lmin,1]

Nδ
(
(1 + 2α) log

(
Mdλ

d/η
)
, λ
)
,

where lmin is the minimal possible cube edge length dur-
ing the algorithm run. This replacement will not affect
the argument. Some details and an example regarding this
refinement are in Appendix A.10.

In Remark 3, we give an example of regret rate on f(x) =
2 log 1

x , x ∈ (0, 1] with specific input parameters.

Remark 3. Consider the (unbounded, BMO) function
f(x) = 2 log 1

x , x∈ (0, 1]. Pick T ≥ 20. For some t ≤ T ,
the t-step δ-regret of Algorithm 2 is O (poly-log(t)) while
allowing δ = O(1/T) and η = Θ

(
1/T 4

)
. Intuitively, Al-

gorithm 2 gets close to fδ even if fδ is very large. Details
of this example can be found in Appendix A.10.

7. Experiments
We deploy Algorithms 1 and 2 on the Himmelblau’s function
and the Styblinski-Tang function (arm space normalized to
[0, 1)2, function range rescaled to [0, 10]). The results are in
Figure 3. We measure performance using traditional regret
and δ-regret. Traditional regret can be measured because
both functions are continuous, in addition to being BMO.

8. Discussion on Future Directions
8.1. Lower Bound

A classic trick to derive minimax lower bounds for (stochas-
tic) bandit problems is the “needle-in-a-haystack.” In this
argument (Auer, 2002), we construct a hard problem in-
stance, where one arm is only slightly better than the rest of
the arms, making it hard to distinguish the best arm from the
rest of the arms. This argument is also used in metric spaces
(e.g., Kleinberg et al., 2008; Lu et al., 2019). This argument,

Bandits for BMO Functions

Figure 3. Algorithms 1 and 2 on Himmelblau’s function (left) and
Styblinski–Tang function (right). Each line is averaged over 10
runs. The shaded area represents one variance above and below
the average regret. For the Bandit-BMO-Z algorithm, all arms
played incur regret, and each episode has 4 arm trials in it. In
the figures, Bandit-BMO-Zδ (resp. Bandit-BMO-Pδ) plots the
δ-regret (δ = 0.01) for Bandit-BMO-Z (resp. Bandit-BMO-P).
Bandit-BMO-Zt (resp. Bandit-BMO-Pt) plots the traditional regret
for Bandit-BMO-Z (resp. Bandit-BMO-P). For Bandit-BMO-P
algorithm, we use ε = 0.01, η = 0.001, total number of trials
T = 10000. For Bandit-BMO-Z algorithm, we use α = 1, ε =
0.01, η = 0.001, number of episodes T = 2500, with four arm
trials in each episode. Note that we have plotted trials (arm pulls)
rather than episodes. The landscape of the test functions are in
Appendix D.

however, is forbidden by the definition of δ-regret, since
here, the set of good arms can have small measure, and will
be ignored by definition. Hence, we need new insights to
derive minimax lower bounds of bandit problems measured
by δ-regret.

8.2. Singularities of Analytical Forms

In this paper, we investigate the bandit problem where the
reward can have singularities in the arm space. A natural
problem along this line is when the reward function has spe-
cific forms of singularities. For example, when the average
reward can be written as f(x) =

∑k
i=1

1
(x−si)αi where si

are the singularities and αi are the “degree” of singularities.
To continue leveraging the advantages of BMO function and
John-Nirenberg inequalities, one might consider switching
away from the Lebesgue measure and use decomposition
results from classical analysis (e.g., Rochberg and Semmes,
1986).

9. Conclusion
We study the bandit problem when the (expected) reward is
a BMO function. We develop tools for BMO bandits, and
provide an algorithm that achieves poly-log δ-regret with
high probability. Our result suggests that BMO functions
can be optimized (with respect to δ-regret) even though they
can be discontinuous and unbounded.

Acknowledgement
The authors thank Weicheng Ye and Jingwei Zhang for
insightful discussions. The authors thank anonymous re-
viewers for valuable feedback.

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. (2011).

Improved algorithms for linear stochastic bandits. In Ad-
vances in Neural Information Processing Systems, pages
2312–2320.

Agrawal, R. (1995). The continuum-armed bandit problem.
SIAM Journal on Control and Optimization, 33(6):1926–
1951.

Agrawal, S. and Goyal, N. (2012). Analysis of Thomp-
son sampling for the multi-armed bandit problem. In
Conference on Learning Theory, pages 39–1.

Alon, N., Matias, Y., and Szegedy, M. (1999). The space
complexity of approximating the frequency moments.
Journal of Computer and System Sciences, 58(1):137–
147.

Assouad, P. (1983). Plongements Lipschitziens dans Rn.
Bulletin de la Société Mathématique de France, 111:429–
448.

Audibert, J.-Y., Munos, R., and Szepesvári, C. (2009).
Exploration–exploitation tradeoff using variance esti-
mates in multi-armed bandits. Theoretical Computer
Science, 410(19):1876–1902.

Auer, P. (2002). Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning
Research, 3(Nov):397–422.

Auer, P. and Ortner, R. (2010). UCB revisited: Improved
regret bounds for the stochastic multi-armed bandit prob-
lem. Periodica Mathematica Hungarica, 61(1-2):55–65.

Auer, P., Ortner, R., and Szepesvári, C. (2007). Improved
rates for the stochastic continuum-armed bandit problem.
In Conference on Computational Learning Theory, pages
454–468. Springer.

Bickel, P. J. et al. (1965). On some robust estimates of loca-
tion. The Annals of Mathematical Statistics, 36(3):847–
858.

Bubeck, S., Cesa-Bianchi, N., and Lugosi, G. (2013). Ban-
dits with heavy tail. IEEE Transactions on Information
Theory, 59(11):7711–7717.

Bubeck, S., Munos, R., Stoltz, G., and Szepesvári, C.
(2011a). X-armed bandits. Journal of Machine Learning
Research, 12(May):1655–1695.

Bandits for BMO Functions

Bubeck, S. and Slivkins, A. (2012). The best of both worlds:
stochastic and adversarial bandits. In Conference on
Learning Theory, pages 42–1.

Bubeck, S., Stoltz, G., and Yu, J. Y. (2011b). Lipschitz
bandits without the Lipschitz constant. In International
Conference on Algorithmic Learning Theory, pages 144–
158. Springer.

Cope, E. W. (2009). Regret and convergence bounds for a
class of continuum-armed bandit problems. IEEE Trans-
actions on Automatic Control, 54(6):1243–1253.

Cwikel, M., Sagher, Y., and Shvartsman, P. (2012). A
new look at the John–Nirenberg and John–Strömberg
theorems for BMO. Journal of Functional Analysis,
263(1):129–166.

Fefferman, R. (1979). Bounded mean oscillation on the
polydisk. Annals of Mathematics, 110(3):395–406.

Garivier, A. and Cappé, O. (2011). The KL–UCB algorithm
for bounded stochastic bandits and beyond. In Conference
on Learning Theory, pages 359–376.

John, F. (1961). Rotation and strain. Communications on
Pure and Applied Mathematics, 14(3):391–413.

Kleinberg, R., Slivkins, A., and Upfal, E. (2008). Multi-
armed bandits in metric spaces. In ACM Symposium on
Theory of Computing, pages 681–690. ACM.

Kleinberg, R. D. (2005). Nearly tight bounds for the
continuum-armed bandit problem. In Advances in Neural
Information Processing Systems, pages 697–704.

Krause, A. and Ong, C. S. (2011). Contextual Gaussian
process bandit optimization. In Advances in Neural In-
formation Processing Systems, pages 2447–2455.

Krishnamurthy, A., Langford, J., Slivkins, A., and Zhang,
C. (2019). Contextual bandits with continuous actions:
Smoothing, zooming, and adapting. In Conference on
Learning Theory, pages 2025–2027. PMLR.

Lai, T. L. and Robbins, H. (1985). Asymptotically efficient
adaptive allocation rules. Advances in Applied Mathemat-
ics, 6(1):4–22.

Lerner, A. K. (2013). The John–Nirenberg inequality with
sharp constants. Comptes Rendus Mathematique, 351(11-
12):463–466.

Li, L., Chu, W., Langford, J., and Schapire, R. E. (2010). A
contextual-bandit approach to personalized news article
recommendation. In International Conference on World
Wide Web, pages 661–670. ACM.

Lu, S., Wang, G., Hu, Y., and Zhang, L. (2019). Optimal al-
gorithms for Lipschitz bandits with heavy-tailed rewards.
In International Conference on Machine Learning, pages
4154–4163.

Maillard, O.-A., Munos, R., and Stoltz, G. (2011). A
finite-time analysis of multi-armed bandits problems with
Kullback-Leibler divergences. In Conference On Learn-
ing Theory, pages 497–514.

Martell, J. An easy proof of the John-Nirenberg
inequality – math blog of Hyunwoo Will Kwon.
http://willkwon.dothome.co.kr/index.
php/archives/618, last accessed on 20/06/2020.

Medina, A. M. and Yang, S. (2016). No-regret algorithms
for heavy-tailed linear bandits. In International Confer-
ence on Machine Learning, pages 1642–1650.

Robbins, H. (1952). Some aspects of the sequential design
of experiments. Bulletin of the American Mathematical
Society, 58(5):527–535.

Rochberg, R. and Semmes, S. (1986). A decomposition
theorem for BMO and applications. Journal of functional
analysis, 67(2):228–263.

Seldin, Y. and Slivkins, A. (2014). One practical algorithm
for both stochastic and adversarial bandits. In Interna-
tional Conference on Machine Learning, pages 1287–
1295.

Shamir, O. (2011). A variant of Azuma’s inequality for
martingales with sub-Gaussian tails. arXiv preprint
arXiv:1110.2392.

Shao, H., Yu, X., King, I., and Lyu, M. R. (2018). Al-
most optimal algorithms for linear stochastic bandits with
heavy-tailed payoffs. In Advances in Neural Information
Processing Systems, pages 8420–8429.

Slavin, L. and Vasyunin, V. (2017). The John–Nirenberg
constant of BMOp, 1 ≤ p ≤ 2. St. Petersburg Mathe-
matical Journal, 28(2):181–196.

Slivkins, A. (2014). Contextual bandits with similarity
information. The Journal of Machine Learning Research,
15(1):2533–2568.

Srinivas, N., Krause, A., Kakade, S., and Seeger, M. (2010).
Gaussian process optimization in the bandit setting: No
regret and experimental design. In International Confer-
ence on Machine Learning.

Stein, E. M. and Murphy, T. S. (1993). Harmonic analy-
sis: real-variable methods, orthogonality, and oscillatory
integrals, volume 3. Princeton University Press.

http://willkwon.dothome.co.kr/index.php/archives/618
http://willkwon.dothome.co.kr/index.php/archives/618

Bandits for BMO Functions

Tao, T. and Vu, V. (2015). Random matrices: universality
of local spectral statistics of non-hermitian matrices. The
Annals of Probability, 43(2):782–874.

Thompson, W. R. (1933). On the likelihood that one un-
known probability exceeds another in view of the evi-
dence of two samples. Biometrika, 25(3/4):285–294.

Vu, V. H. (2002). Concentration of non-Lipschitz func-
tions and applications. Random Structures & Algorithms,
20(3):262–316.

Wang, T., Ye, W., Geng, D., and Rudin, C. (2019). Towards
practical Lipschitz stochastic bandits. arXiv preprint
arXiv:1901.09277.

Wanigasekara, N. and Yu, C. (2019). Nonparametric con-
textual bandits in an unknown metric space. In Advances
in Neural Information Processing Systems.

Bandits for BMO Functions

A. Main Proofs
For readability, we reiterate the lemma statements before presenting the proofs.

A.1. Proof of Lemma 1

Lemma 1 . Let f be the reward function. For any f -admissible δ ≥ 0, let Sδ :=
{
a ∈ [0, 1)d : f(a) > fδ

}
. Then we have

Sδ measurable and µ(Sδ) = δ.

Proof. Recall

F δ :=
{
z ∈ R : µ({a ∈ [0, 1)d : f(a) > z}) = δ

}
, f = inf F δ.

We consider the following two cases.

Case 1: fδ ∈ F δ , then by definition (of F δ), µ(Sδ) = δ.

Case 2: fδ /∈ F δ (F δ is left open). Then by definition of the infimum operation, for any i = 1, 2, 3, · · · , there exists
zi ∈ F δ , such that fδ < zi ≤ fδ + 1

i . Thus limi→∞ zi = fδ . We know that f is Lebesgue measurable, since

f ∈ BMO(Rd, µ)⇒ f is Lebesgue measurable.

Let us define Si :=
{
a ∈ [0, 1)d : f(a) > zi

}
. By this definition, S1 ⊆ S2 ⊆ S3 · · · . Also Si is Lebesgue measurable,

since it is the pre-image of the open set (zi,∞) under the Lebesgue measurable function f . By the above construction of Si,
we have µ(Si) = δ for all i = 1, 2, 3, · · · . By continuity of measure from below,

µ (∪∞i=1Si) = lim
i→∞

µ (Si) . (43)

We also have Sδ = ∪∞i=1Si. This is because

(1) Sδ ⊇ ∪∞i=1Si, since by definition, Si ⊆ Sδ for all i = 1, 2, 3, · · · .;

(2) Sδ ⊆ ∪∞i=1Si, since limi→∞ zi = fδ and therefore every element in Sδ is an element in ∪∞i=1Si.

Hence,

µ(Sδ) = µ (∪∞i=1Si) = lim
i→∞

µ (Si) = δ, (44)

where the last equality uses µ (Si) = δ for all i = 1, 2, 3, · · · .

A.2. Lemma 5 and Proof of Lemma 5

This lemma is Proposition 34 by Tao and Vu (2015), and can be derived using Lemma 3.1 by Vu (2002). We prove a proof
below for completeness. We will use this lemma to prove Lemma 2.

Lemma 5 (Proposition 34 by Tao and Vu (2015)). Consider a martingale sequence X1, X2, · · · adapted to filtration
F1,F2 · · · . For constants c1, c2, · · · <∞, we have

P

|Xn −X0| > λ

√√√√ n∑
i=1

c2i

 ≤ 2 exp

(
−λ

2

2

)
+

n∑
i=1

P (|Xi −Xi−1| > ci) . (45)

Bandits for BMO Functions

Proof. Define the “good event” Gn := {|Xi −Xi−1| ≤ ci, for all i ≤ n}. Rewrite the above probability as

P

|Xn −X0| > λ

√√√√ n∑
i=1

c2i


=P

 |Xn −X0| > λ

√√√√ n∑
i=1

c2i

∣∣∣∣∣∣Gn
P(Gn) + P

 |Xn −X0| > λ

√√√√ n∑
i=1

c2i

∣∣∣∣∣∣Gn
 (1− P(Gn))

≤P

 |Xn −X0| > λ

√√√√ n∑
i=1

c2i

∣∣∣∣∣∣Gn
+ (1− P(Gn)) . (46)

In (46), the first term can be bounded by applying Azuma’s inequality for martingales of bounded difference, and the
second term is the probability of there existing at least one difference being large. For the first term, we define X ′i :=
XiI[|Xi −Xi−1| ≤ ci]. It is clear that {X ′i}i is also martingale sequence adapted to F1,F2, · · · . Using this new sequence,
we have

P

 |Xn −X0| > λ

√√√√ n∑
i=1

c2i

∣∣∣∣∣∣Gn
 = P

|X ′n −X ′0| > λ

√√√√ n∑
i=1

c2i

 ≤ 2 exp

(
−λ

2

2

)
,

where the last inequality is a direct consequence of Azuma’s inequality.

Finally, we take a union bound and a complement to get P
(
Gt
)
≤
∑n
i=1 P (|Xi −Xi−1| > ci). This finishes the proof.

A.3. Proof of Lemma 2

In order to prove Lemma 2, we need a variation of Azuma’s inequality (Lemma 5 in Appendix A.2, Proposition 34 by Tao
and Vu (2015)).

Lemma 2. Pick T ≥ 1 and ε ∈ (0, 1). With probability at least 1− ε
T , the event Et(q) holds for any q ∈ Qt at any time t,

where

Et(q) :=
{∣∣∣〈f〉q −mt(q)

∣∣∣ ≤ Ht(q)
}
,

Ht(q) =
(Ψ+DE)

√
2 log(2T 2/ε)√
ñt(q)

.

Proof. Case I: We first take care of the case when q contains at least one observation. Define

F ′i := σ(Q1, A1, Y1, · · · , Qi−1, Ai−1, Yi−1, Qi, Ai).

By our partition refinement rule, we have that for any t, t′ such that t ≥ t′ and q ∈ Qt, there exists q′ ∈ Qt′ such that q ⊆ q′.
Thus for any i ≤ t, and any q ∈ Qt, we have either Qi ⊇ q or Qi ∩ q = ∅ (Qi is the cube played at time i ≤ t). Thus, we
have

E
[
YiI[Ai∈q]|F

′
i

]
=

{
〈f〉q I[Ai∈q], if Qi ⊇ q, i.e., Qi contains q and the value depends on whether q contains Ai,
0, if Qi ∩ q = ∅, i.e., in this case I[Ai∈q] = 0 since Ai ∈ Qi and Qi ∩ q = ∅,

(47)

= 〈f〉q I[Ai∈q],

where I[Ai∈q] is F ′i-measurable. In (47), the two cases are exhaustive as discussed above.

Therefore the sequence
{(
Yi − 〈f〉q

)
I[Ai∈q]

}
i

is a (skipped) martingale difference sequence adapted to F ′i , with the

skipping event I[Ai∈q] being F ′i-measurable.

Bandits for BMO Functions

Let A′ be a uniform random variable drawn from the cube q. We have

P
(∣∣∣(f(Ai)− 〈f〉q

)
I[Ai∈q]

∣∣∣ > Ψ
)

=

{
P
(∣∣∣f(A′)− 〈f〉q

∣∣∣ > Ψ
)
, if Ai ∈ q,

0, otherwise .

≤ P
(∣∣∣f(A′)− 〈f〉q

∣∣∣ > Ψ
)

=
µ
(
a ∈ q :

∣∣∣(f(a)− 〈f〉q
)∣∣∣ > Ψ

)
µ(q)

≤ µ(q) exp (−Ψ)

µ(q)
≤ ε

T 2
, (48)

where (48) is from the John-Nirenberg inequality.

Next, since ∣∣∣(Yi − 〈f〉q) I[Ai∈q]∣∣∣ ≤ ∣∣∣(f(Ai)− 〈f〉q
)
I[Ai∈q]

∣∣∣+
∣∣(Yi − f(Ai)) I[Ai∈q]

∣∣ ,
we have

P
(∣∣∣(Yi − 〈f〉q) I[Ai∈q]∣∣∣ ≤ Ψ +DE

)
≥ P

(∣∣∣(f(Ai)− 〈f〉q
)
I[Ai∈q]

∣∣∣+
∣∣(Yi − f(Ai)) I[Ai∈q]

∣∣ ≤ Ψ +DE

)
≥ P

(∣∣∣(f(Ai)− 〈f〉q
)
I[Ai∈q]

∣∣∣ ≤ Ψ and
∣∣(Yi − f(Ai)) I[Ai∈q]

∣∣ ≤ DE

)
= 1− P

(∣∣∣(f(Ai)− 〈f〉q
)
I[Ai∈q]

∣∣∣ > Ψ or
∣∣(Yi − f(Ai)) I[Ai∈q]

∣∣ > DE

)
≥ 1− P

(∣∣∣(f(Ai)− 〈f〉q
)
I[Ai∈q]

∣∣∣ > Ψ
)
− P

(∣∣(Yi − f(Ai)) I[Ai∈q]
∣∣ > DE

)
,

(49)

where (49) uses a union bound.

By a union bound and the John-Nirenberg inequality, for any i ≤ t, and q ∈ Qt, we have

P
(∣∣∣(Yi − 〈f〉q) I[Ai∈q]∣∣∣ > Ψ +DE

)
= 1− P

(∣∣∣(Yi − 〈f〉q) I[Ai∈q]∣∣∣ ≤ Ψ +DE

)
≤ P

(∣∣∣(f(Ai)− 〈f〉q
)
I[Ai∈q]

∣∣∣ > Ψ
)

+ P
(∣∣(f(Ai)− Yi) I[Ai∈q]

∣∣ > DE
)

(50)

= P
(∣∣∣(f(Ai)− 〈f〉q

)
I[Ai∈q]

∣∣∣ > Ψ
)

(51)

≤ ε

T 2
, (52)

where (50) uses (49), (51) uses the boundedness of noise (N1), and (52) uses (48).

To put it all together, we can apply Lemma 5 to the (skipped) martingale
{∑i

j=1

(
Yj − 〈f〉q

)
I[Aj∈q]

}
i=1,2,···

(with

ci = Ψ + DE , λ =
√

2 log(2T 2/ε), and Xi =
(
Yi − 〈f〉q

)
I[Ai∈q]) to get for T ≥ 2 and a cube q ∈ Qt such that

nt(q) > 0,

P

(∣∣∣∣∣
t−1∑
i=1

(
Yi − 〈f〉q

)
I[Ai∈q]

∣∣∣∣∣ > (Ψ +DE)
√
nt(q)

√
2 log(2T 2/ε)

)
(53)

≤2 exp

(
−2 log(2T 2/ε)

2

)
+

t−1∑
i=1

P
(∣∣∣(Yi − 〈f〉q) I[Ai∈q]∣∣∣ > Ψ +DE

)
(54)

≤ ε

T 2
+ (t− 1)

ε

T 2
≤ ε

T
,

where (53) uses Lemma 5, (54) uses (52) for the summation term.

Bandits for BMO Functions

Since nt(q) > 0, we use

mt(q) =
1

nt(q)

t−1∑
i=1

YiI[Ai∈q],

to rewrite (53) by dividing both sides by nt(q) to get

P

(∣∣∣mt(q)− 〈f〉q
∣∣∣ > (Ψ +DE)√

nt(q)

√
2 log(2T 2/ε)

)
≤ ε

T
.

Case II: Next, we consider the case where q contains no observations.

In order to do this, we need Propositions 3 and 4, which are proved in A.4 and A.5.

Proposition 3. Following (13), the minimal cube measure is at least η. Thus the maximal number of cubes produced by
Algorithm 1 is 1

η , since the arm space is of measure 1.

Proposition 4. For a function f ∈ BMO(Rd, µ), and rectangles q
0
, q

1
, · · · , q

k
such that q

0
⊆ q

1
⊆ q

2
⊆ · · · ⊆ q

k
, and

constant K ≥ 1 such that Kµ(q
i
) ≥ µ(q

i+1
) for all i ∈ [0, k − 1], we have∣∣∣〈f〉q0 − 〈f〉qk ∣∣∣ ≤ Kk ‖f‖ .

Let’s continue with the proof of Lemma 2. By the lower bound on cube measure (Proposition 3), we know that µ(q) ≥ η
for any q generated by the algorithm. Let us construct a sequence of hyper-rectangles q = q

0
, q

1
, · · · , q

k
⊆ [0, 1)d, such

that q
i
⊆ q

i+1
for i = 0, 1, · · · , k, µ(q

i+1
) = 2µ(q

i
), and q

k
= [0, 1)d. Since q is generated by the algorithm, we know

µ(q) ≥ η (Proposition 3). For this sequence of hyper-rectangles, k ≤ log2(1/η).

Then by Proposition 4, ∣∣∣〈f〉q − 〈f〉[0,1)d

∣∣∣ ≤ 2 log2(1/η) ‖f‖ . (55)

Thus by definition of the functions mt, nt for cubes with no observations, for a cube q such that nt(q) = 0,∣∣∣〈f〉q −mt(q)
∣∣∣ 1©

=
∣∣∣〈f〉q∣∣∣ 2©

=
∣∣∣〈f〉q − 〈f〉[0,1)d

∣∣∣ 3©
≤ 2 log2(1/η) ‖f‖

4©
≤ Ψ√

max(1, nt(q))

5©
≤

(Ψ +DE)
√

2 log(2T 2/ε)√
max(1, nt(q))

,

where 1© is due to mt(q) = 0 when nt(q) = 0 by definition, 2© is from Assumption 1
(
〈f〉[0,1)d = 0

)
, 3© is from (55),

and 4© is from 2 log2(1/η) ≤ Ψ (Eq. 12) and nt(q) = 0. Recall we assume ‖f‖ = 1 for cleaner representation. We have
finished the proof of Lemma 2.

A.4. Proof of Proposition 3

Proposition 3. Following (13), the maximal number of cubes produces by Algorithm 1 is 1
η . The minimal cube measure is at

least η.

Proof. This proposition is an immediate consequence of our partition refinement rule (13). The cube measures cannot be
smaller than η. Otherwise, the RHS of the rule (13) will be nonpositive and no more splits will happen.

A.5. Proof of Proposition 4

Proposition 4 is a property of BMO functions, and can be found in textbooks (e.g., Stein and Murphy, 1993).

Proposition 4. For a function f ∈ BMO(Rd, µ), and rectangles q0 , q1 , · · · , qk such that q0 ⊆ q1 ⊆ q2 ⊆ · · · ⊆ qk , and a
constant K ≥ 1 such that Kµ(qi) ≥ µ(qi+1) for all i ∈ [0, k − 1], we have∣∣∣〈f〉q

0
− 〈f〉q

k

∣∣∣ ≤ Kk ‖f‖ .

Bandits for BMO Functions

Proof. The proof is a consequence of basic properties of BMO function. For any two regular rectangles q
i

and q
i+1

(i = 0, 1, 2, · · · , k − 1),

∣∣∣〈f〉q
i
− 〈f〉q

i+1

∣∣∣ =

∣∣∣∣∣ 1

µ(qi)

∫
q
i

fdµ− 〈f〉q
i+1

∣∣∣∣∣
=

∣∣∣∣∣ 1

µ(qi)

∫
q
i

(
f − 〈f〉q

i+1

)
dµ

∣∣∣∣∣
≤ 1

µ(qi)

∫
q
i

∣∣∣f − 〈f〉q
i+1

∣∣∣ dµ
≤ K

µ(qi+1)

∫
q
i

∣∣∣f − 〈f〉q
i+1

∣∣∣ dµ (56)

≤ K

µ(qi+1)

∫
q
i+1

∣∣∣f − 〈f〉q
i+1

∣∣∣ dµ (57)

≤ K ‖f‖ ,

where (56) uses Kµ(qi) ≥ µ(q
i+1

) and (57) uses q
i
⊆ q

i+1
. Next, we use the triangle inequality and repeat the above

inequality k times to get

∣∣∣〈f〉q
0
− 〈f〉q

k

∣∣∣ ≤ k∑
i=1

∣∣∣〈f〉qi−1
− 〈f〉qi

∣∣∣ ≤ Kk ‖f‖ .

A.6. Proof of Lemma 3

Lemma 3. For any partition Q of [0, 1)d, there exists q ∈ Q, such that

fδ ≤ 〈f〉q + log(µ(q)/η), (58)

for any f -admissible δ > η|Q|, where |Q| is the cardinality of Q.

Proof. We use fδ and Sδ as in Lemma 1.

Suppose, in order to get a contradiction, that for every cube q ∈ Q, (58) is violated.

Define

S(q) :=
{
a ∈ q : f(a) > 〈f〉q + log(µ(q)/η)

}
,

S̃(q) :=
{
a ∈ q : f(a) > fδ

}
.

Suppose the lemma statement is false. For all q ∈ Q, fδ > 〈f〉q + log(µ(q)/η). Thus we have for all q ∈ Q,

S̃(q) ⊆ S(q).

We have, by the John-Nirenberg inequality,

µ(S(q)) ≤ µ
({
a ∈ q : |f(a)− 〈f〉q | > log(µ(q)/η)

})
≤ η.

Since Q is a partition (of [0, 1)d), we have

µ(∪q∈QS(q)) =
∑
q∈Q

µ(S(q)) ≤
∑
q∈Q

η = |Q|η.

Bandits for BMO Functions

On the other hand, by definition of fδ and disjointness of the sets S̃(q), we have

µ(∪q∈QS̃(q)) = µ
(
Sδ
)

= δ.

Since δ > |Q|η, we have

µ(∪q∈QS̃(q)) > µ(∪q∈QS(q)),

which is a contradiction to S̃(q) ⊂ S(q) for all q. This finishes the proof.

A.7. Proof of Theorem 3

Theorem 3. Fix any T . With probability at least 1− 2ε , for any δ > |QT |η such that δ is f -admissible, the total δ-regret
for Algorithm 1 up to time T is

T∑
t=1

rδt ≤ Õ
(√

T |QT |
)
, (59)

where QT is the cardinality of QT .

Proof. Under the “good event” Egood :=
(⋂T

t=1 E(Qt)
)
∩
(⋂T

t=1 E(qmax
t)

)
, we continue from (23) and get

T∑
t=1

rδt ≤
T∑
t=1

3
(Ψ+DE)

√
2 log(2T 2/ε)√
ñt(Qt)

(60)

≤3 (Ψ +DE)
√

2 log(2T 2/ε)
√
T ·

√√√√ T∑
t=1

1

max(1, nt−1(Qt))
(61)

≤3 (Ψ +DE)
√

2 log(2T 2/ε)
√
T ·

√
e|QT | log

(
1 + (e− 1)

T

|QT |

)
(62)

where (60) uses (23), where (61) uses the Cauchy-Schwarz inequality, (62) uses (24).

What remains is to determine the probability under which the “good event” happens. By Lemma 2 and a union bound, we
know that the event Egood happens with probability at least 1− 2ε.

A.8. Proof of Proposition 1

Proposition 1. At any episode t, the collection of parent cubes forms a partition of the arm space.

Proof. We first argue that any two parent cubes do not overlap. By definition, all parent cubes are dyadic cubes. By
definition of dyadic cubes (7), two different dyadic cubes Q and Q′ such that Q ∩Q′ 6= ∅ must satisfy either (i) Q′ ⊆ Q or
(ii) Q ⊆ Q′. From the definition of parent cubes and pre-parent cubes, we know a parent cube cannot contain another parent
cube. Thus for two parent cubes Q and Q′, Q ∩Q′ 6= ∅ implies Q = Q′. Thus two different parent cubes cannot overlap.

We then argue that the union of all parent cubes is the whole arm space. We consider the following cases for this argument.
Consider any pre-parent cube Q. (1) If Q is already a parent cube, then it is obviously contained in a parent cube (itself).
(2) At time episode t, if Q ∈ Qt is a pre-parent cube but not a parent cube, then by definition it is contained in another
pre-parent cube Q1. If Q1 is a parent cube, then Q is contained in a parent cube. If Q1 is not a parent cube yet, then Q1 is
contained in another pre-parent cube Q2. We repeat this argument until we reach [0, 1)d which is a parent cube as long as it
is a pre-parent cube. For the boundary case when [0, 1)d is a terminal cube, it is also a parent cube by convention. Therefore,
any pre-parent cube is contained in a parent cube.

Next, by definition of pre-parent cubes and the zooming rule, any terminal cube is contained in a pre-parent cube. Thus any
terminal cube is contained in a parent cube.

Since terminal cubes cover the arm space by definition, the parent cubes cover the whole arm space.

Bandits for BMO Functions

A.9. Proof of Proposition 2

Proposition 2. Following the Zooming Rule (27), we have

1. Each parent cube of measure µ is played at most 2(Ψ+DE)2 log(2T 2/ε)

α2[log(µ/η)]2
episodes.

2. Under event ẼT , each parent cube Qt selected at episode t is a subset of Xδ ((1 + 2α) log (Mdµ(Qt)/η)).

Proof. For item 1, every time a parent cube Q of measure µ is selected, all Md of its direct sub-cubes are played. The direct
sub-cubes are of measure µ

Md
, and each such cube can be played at most 2(Ψ+DE)2 log(2T 2/ε)

α2[log(µη)]
2 times. Beyond this number,

rule (27) will be violated, and all the direct sub-cubes can no longer be terminal cubes. Thus Q will no longer be a parent
cube (since Q is no longer a pre-parent cube), and is no longer played.

Item 2 is a rephrasing of (33). Assume that event ẼT =
(⋂T

t=1 Et(qmax
t)

)⋂(⋂T
t=1 Et(Qt)

)
is true. Let Qt be the parent

cube for episode t. By (21), we know, under event ẼT , there exists a “good” parent cube qmax
t such that

fδ ≤ mt(q
max
t) +Ht(q

max
t) + J(qmax

t).

By the concentration result in Lemma 2, we have, under event ẼT ,

〈f〉Qt ≥ mt(Qt)−Ht(Qt).

Combining the above two inequalities gives

fδ − 〈f〉Qt ≤ mt(q
max
t) +Ht(q

max
t) + J(qmax

t)−mt(Qt) +Ht(Qt)

≤ mt(Qt) +Ht(Qt) + J(Qt)−mt(Qt) +Ht(Qt) (63)
≤ J(Qt) + 2Ht(Qt)

≤ (1 + 2α) log(Mdµ(Qt)/η), (64)

where (63) uses Ut(Qt) ≥ Ut(qmax
t) by optimistic nature of the algorithm, and (64) uses rule (28).

A.10. Elaboration of Remark 3

Remark 3. Consider the (unbounded, BMO) function f(x) = 2 log 1
x , x∈(0, 1]. Pick T ≥ 20. For some t ≤ T , the t-step

δ-regret of Algorithm 2 is O (poly-log(t)) while allowing δ = O(1/T) and η = Θ
(
1/T 4

)
. Intuitively, Algorithm 2 gets

close to fδ even if fδ is very large.

Firstly, recall the zooming number is defined as

Ñδ,η,α := sup
λ∈
(
η

1
d ,1
]Nδ((1 + 2α) log

(
Mdλ

d/η
)
, λ
)
. (65)

While this number provide a regret bound, it might overkill by allowing λ to be too small. We define a refined zooming
number

Ñ ′δ,η,α := sup
λ∈(lmin,1]

Nδ
(
(1 + 2α) log

(
Mdλ

d/η
)
, λ
)
, (66)

where lmin is the minimal possible cube edge length during the algorithm run. We will use this refined zooming number in
this example. Before proceeding, we put forward the following claim.

Claim. Following rule (28), the minimal cube measure µmin at time T is at least Ω

(
2−

Ψ
√

2 log(2T2/ε)
α log 2

)
.

Bandits for BMO Functions

Proof of Claim. In order to reach the minimal possible measure, we consider keep playing the cube with minimal measure
(and always play a fixed cube if there are ties) and follow rule (28). Let ti be the episode where i-th split happens. Since we
keep playing the cube with minimal measure,

(Ψ +DE)
√

2 log(2T 2/ε)

ti
≈d α log

(
Md2

−di

η

)
.

By taking difference between consecutive terms,

(Ψ +DE)
√

2 log(2T 2/ε)

ti
−

(Ψ +DE)
√

2 log(2T 2/ε)

ti+1
≈d α logMd,

where ≈d omits dependence on d.

Let imax be the maximal number of splits for T episodes. By using t0 = 1 and timax
≤ T , the above approximate equation

gives

imax∑
i=0

(
(Ψ +DE)

√
2 log(2T 2/ε)

ti
−

(Ψ +DE)
√

2 log(2T 2/ε)

ti+1

)
≈d imaxα logMd (67)

(Ψ +DE)
√

2 log(2T 2/ε) &d imaxα logMd, (68)

where the approximations omit possible dependence on d. This gives, by using Md = 2d,

imax .d
(Ψ +DE)

√
2 log(2T 2/ε)

α logMd
≤

(Ψ +DE)
√

2 log(2T 2/ε)

αd log 2
. (69)

Since each split decrease the minimal cube measure by a factor of Md = 2d, we have

µmin & 2−dimax & 2−
(Ψ+DE)

√
2 log(2T2/ε)

α log 2 . (70)

Now we finished the proof of the claim.

Consider the function f(x) = 2 log 1
x , x∈(0, 1].

Recall

Xδ(λ) :=
{
q ⊆ (0, 1] : 〈f〉q ≥ f

δ − λ
}
.

For this elementary decreasing function f(x), we have fδ = 2 log 1
δ , and 〈f〉(0,x] = 2 + 2 log 1

x for x ∈ (0, 1]. Thus,

Xδ(λ) =

{
x ∈ (0, 1] : log x ≤ 1 +

λ

2
+ log δ

}
.

By a substitution of λ← (1 + 2α) log(Mdλ
d/η), and using d = 1 and Md = 2, we have

Xδ((1 + 2α) log(2λ/η)) =

{
x ∈ (0, 1] : x ≤ e

(
2λ

η

) 1+2α
2

δ

}
. (71)

Consider the first t (t ≤ T) step δ-regret. For simplicity, let t = T β for some β < 1, |Qt| = t, η = 1
T 4 and δ = 2t

T 4 = 2T β−4.
We can do this since any δ > 0 is f -admissible. Next we will study the zooming number Ñδ,η,α under this setting. Back to
(71) with the above numbers,

Xδ((1 + 2α) log(2λ/η)) =
{
x ∈ (0, 1] : x ≤ 2

3+2α
2 e · λ

1+2α
2 T 4α+β−2

}
.

Bandits for BMO Functions

As an example, we take α = 1
4 and β = 1

2 , which gives Xδ((1 + 2α) log(2λ/η)) =
{
x ∈ (0, 1] : x ≤ 27/4eλ3/4T−1/2

}
.

By the choice of (δ, η, α) and the claim above, for T large enough (T ≥ 20 is sufficient), we have

µmin & 2−
Ψ
√

2 log(2T2/ε)
α log 2

& 2−(log T)2

& T−2, (72)

where the last step uses T−2 ≤ 2−(log T)2

for T ≥ 20. To bound Ñ ′δ,η,α, we consider the following two cases.

Case I: 27/4e · λ3/4T−1/2 ≤ 1, i.e., λ . T 2/3. In this case, we need to use intervals of length λ to cover(
0, 27/4e · λ3/4T−1/2

]
. We need O

(
λ−1/4T−1/2

)
intervals to cover it, which is at most O (1), since λ & T−2 by

(72).

Case II: 27/4e · λ 3
4T−

1
2 > 1, i.e., λ & T 2/3. In this case, we need to use intervals of length λ to cover (0, 1]. We need

O
(
λ−1

)
intervals to cover it, which is at most O (1), since λ & T 2/3 ≥ 1.

In either case, we have Ñ ′δ,η,α = O(1). Plugging back into Theorem 4 gives, with high probability, for the first t =
√
T

steps, the δ-regret (δ = O(1/T)) is of order poly-log(T), which is poly-log(t) since T = t2.

B. Additional Proof: Proof of Lemma 4
The proof is due to Lemma 1 by Wang et al. (2019). We present the proof for completeness.

Lemma 4. We say a partition Q is finer than a partition Q′ if for any q ∈ Q, there exists q′ ∈ Q′ such that q ⊂ q′. For an
arbitrary sequence of points x1, x2, · · · in a space X , and a sequence of partitions Q1,Q2, · · · of the space X such that
Qi+1 is finer than Qi for all i, we have, for any T ,

T∑
t=1

1

ñt(Qt)
≤ e|QT | log

(
1 + (e− 1)

T

|QT |

)
, (73)

where ñt is defined in (8) (using points x1, x2, · · ·), and |Qt| is the cardinality of partition Qt.

We use a constructive trick to derive (73). For each T , we construct a hypothetical noisy degenerate Gaussian process. We
are not assuming our payoffs are drawn from these Gaussian processes. We only use these Gaussian processes as a proof
tool. To construct these noisy degenerate Gaussian processes, we define the kernel functions kT : A×A → R with respect
to the partition QT ,

kT (x, x′) =

{
1, if x and x′ are contained in the same element of QT ,
0, otherwise.

(74)

The kernel kT is positive semi-definite as shown in Proposition 5.

Proposition 5. The kernel defined in (74) is positive semi-definite for any T ≥ 1.

Proof. For any x1, . . . , xn in where the kernel kT (·, ·) is defined, the Gram matrix K =
[
kT (xi, xj)

]
n×n can be written

into block diagonal form where diagonal blocks are all-one matrices and off-diagonal blocks are all zeros with proper
permutations of rows and columns. Thus without loss of generality, for any vector v = [v1, v2, . . . , vn] ∈ Rn, v>Kv =∑B
b=1

(∑
j:ij in block b vij

)2

≥ 0 where the first summation is taken over all diagonal blocks and B is the total number of
diagonal blocks in the Gram matrix.

Pick any t and T . For a sequence of points x1, x2, · · · , xt up to time t, and the partition QT , define

n0
T,t(x) :=

t∑
t′=1

I[xt′ and x are in the same element ofQT]. (75)

Bandits for BMO Functions

In particular, going back to the definition in (8), we have

n0
t,t−1(x) = nt(x) (76)

for any x and t.

Now, at any time T , let us consider the model ỹ(x) = g(x)+e where g is drawn from a Gaussian process g ∼ GP (0, kT (·, ·))
and e ∼ N (0, s2

T) is the noise. Suppose that the arms and hypothetical payoffs (x1, ỹ1, x2, ỹ2, . . . , xt, ỹt) are observed
from this Gaussian process. The posterior variance for this Gaussian process after the observations at x1, x2, . . . , xt is

σ2
T,t(x) = kT (x, x)− kT (K + s2

T I)−1k

where k = [kT (x, x1), . . . , kT (x, xt)]
>, K = [kT (xi, xj)]t×t and I is the identity matrix. In other words, σ2

T,t(x) is the
posterior variance using points up to time t with the kernel defined by the partition at time T .

After some matrix manipulation, we know that

σ2
T,t(x) = 1− 1[11> + s2

T I]−11,

where 1 = [1, · · · , 1]>
1×n0

T,t(x)
. By the Sherman-Morrison formula, [11> + s2

T I]−1 = s−2
T I − s−4

T 11>

1+s−2
T n0

T,t(x)
. Thus the

posterior variance is

σ2
T,t(x) =

1

1 + s−2
T n0

T,t(x)
. (77)

Following the arguments in (Srinivas et al., 2010), we derive the following results. Since xt is deterministic, H(ỹt,xt) =
H(ỹt). Since, by definition of a Gaussian process, ỹt follows a multivariate Gaussian distribution,

H(ỹt) =
1

2
log
[
(2πe)t det

(
K + s2

T I
)]

(78)

where K =
[
kT (xi, xj)

]
t×t. On the other hand, we can recursively compute H(ỹt) by

H(ỹt) = H(ỹt|ỹt−1) +H(ỹt−1)

= H(ỹt|xt, ỹt−1,xt−1) +H(ỹt−1)

=
1

2
log
(
2πe

(
s2
T + σ2

T,t−1(xt)
))

+H(ỹt−1)

=
1

2

t∑
τ=1

log
(
2πe

(
s2
T + σ2

T,τ−1(xτ)
))

(79)

By (78) and (79),

t∑
τ=1

log
(
1 + s−2σ2

T,τ−1(xτ)
)

= log
[
det
(
s−2K + I

)]
. (80)

For the block diagonal matrix K of size t× t, let hi denote the size of block i and B′ be the total number of diagonal blocks.
Then we have

det
(
s−2K + I

)
=

B′∏
i=1

det
(
s−21hi1

>
hi + Ihi×hi

)
=

B′∏
i=1

(
1 + s−2hi

)
(81)

≤
(

1 +
s−2t

|PT |

)|PT |
(82)

Bandits for BMO Functions

where (81) is due to the matrix determinant lemma and the last inequality is that the geometric mean is no larger than the
arithmetic mean and that |Pt| ≥ B′. Therefore,

t∑
τ=1

log
(
1 + s−2σ2

T,τ−1(xτ)
)
≤ |PT | log

(
1 +

s−2t

|PT |

)
.

Since the function h(λ) = λ
log(1+λ) is increasing for non-negative λ,

λ ≤
s−2
T

log(1 + s−2
T)

log(1 + λ)

for λ ∈ [0, s−2
T]. Since σT,t(x) ∈ [0, 1] for all x,

σ2
T,t(x) ≤ 1

log(1 + s−2
T)

log
(
1 + s−2

T σ2
T,t(x)

)
(83)

for t, T = 0, 1, 2, · · · . Since the partitions grow finer, for T1 ≤ T2, we have

nT1,t(x) ≥ nT2,t(x), ∀x. (84)

This gives σ2
T1,t

(x) ≤ σ2
T2,t

(x). Suppose we query at points x1, · · · , xT in the Gaussian process GP(0, kT (·, ·)). Then,

T∑
t=1

1

ñt(xt)
≤

T∑
t=1

1 + s−2
T

1 + s−2
T nt(xt)

=

T∑
t=1

1 + s−2
T

1 + s−2
T n0

t,t−1(xt)
(85)

≤
T∑
t=1

1 + s−2
T

1 + s−2
T n0

T,t−1(xt)
(86)

≤
(
1 + s−2

T

) T∑
t=1

σ2
T,t−1(xt) (87)

≤
1 + s−2

T

log(1 + s−2
T)

T∑
t=1

log
(
1 + s−2

T σ2
T,t−1(xt)

)
(88)

≤
1 + s−2

T

log(1 + s−2
T)
|QT | log

(
1 + s−2

T

T

|QT |

)
, (89)

where (85) uses (76), (86) uses (84), (87) uses (77), (88) uses (83), and (89) uses (80) and (82).

Finally, we optimize over sT . Since s−2
T = e− 1 minimizes 1+s−2

T

log(1+s−2
T)

, (89) gives

T∑
t=1

1

ñt(xt)
≤ e|PT | log

(
1 + (e− 1)

T

|PT |

)
.

C. Additional Proof: Proof of Theorem 1
In this part, we provide a proof to the John-Nirenberg inequality (Theorem 1). Proofs to the John-Nirenberg inequality can
be found in many textbooks on BMO functions or harmonic analysis (e.g., Stein and Murphy, 1993). Here, we present a
proof by Martell for completeness.
Theorem 1. (John-Nirenberg inequality) Let µ be the Lebesgue measure. Let f ∈ BMO

(
Rd, µ

)
. Then there exists

constants C1 and C2, such that, for any hypercube Q ⊂ Rd and any λ > 0,

µ
({
x ∈ Q :

∣∣∣f (x)− 〈f〉Q
∣∣∣λ}) ≤ C1µ(Q) exp

{
− λ

C2‖f‖

}
.

Bandits for BMO Functions

Proof. The proof uses dyadic decomposition. By scaling, without loss of generality, we assume ‖f‖ = 1. Recall that µ is
the Lebesgue measure. For a cube Q ⊂ Rd, and ω > 0, define

E (Q,ω) =
{
x ∈ Q : |f (x)− 〈f〉Q | > ω

}
, (90)

ϕ (ω) = sup
Q

µ (E (Q,ω))

µ(Q)
(91)

We want to show that ϕ (ω) . e−
ω
c . First take ω > e > 1. Then

1

µ(Q)

∫
Q

∣∣∣f − 〈f〉Q∣∣∣ dµ ≤ ‖f‖ = 1 ≤ ω

for any Q. Subdivide Q dyadically and stop when

1

µ(Q′)

∫
Q′

∣∣∣f − 〈f〉Q′ ∣∣∣ > ω. (92)

Collect all such cubes (Q′) to form a set Q = {Qj}j . Note that the cubes in Q are disjoint. It could be Q = ∅. Note that
Q ⊂ DQ \ {Q} , where DQ denotes the family of all dyadic cubes of Q.

Now we introduce the following Hardy–Littlewood type maximum MQ, such that for a BMO function g,

MQg(x) := sup
Q′∈DQ,Q′3x

1

µ(Q′)

∫
Q′
gdµ. (93)

Take g =
∣∣∣f − 〈f〉Q∣∣∣ . Then by definition of Qj , we have

{x ∈ Q : MQg(x) > ω} =
⋃

Qj∈Q
Qj . (94)

For almost every x ∈ E (Q,ω), we have

ω <
∣∣∣f − 〈f〉Q∣∣∣ = g (x) ≤MQg (x) . (95)

So

E (Q,ω) ⊂
⋃

Qj∈Q
Qj almost everywhere. (96)

Let Q̃j be a parent cube of Qj . Then since µ(Q̃j) = 2dµ(Qj),

ω <

∫
Qj

∣∣∣f − 〈f〉Q∣∣∣ dµ (97)

≤ µ(Q̃j)

µ(Qj)

∫
Q̃j

∣∣∣f − 〈f〉Q∣∣∣ dµ ≤ 2dω. (98)

Thus, for Qj ∈ Q, ∣∣∣f (x)− 〈f〉Q
∣∣∣ ≤ ∣∣∣f (x)− 〈f〉Qj

∣∣∣+
∣∣∣〈f〉Qj − 〈f〉Q∣∣∣ (99)

≤
∣∣∣f (x)− 〈f〉Qj

∣∣∣+

∫
Qj

∣∣∣f − 〈f〉Q∣∣∣ dµ (100)

≤
∣∣∣f (x)− 〈f〉Qj

∣∣∣+ 2dω. (101)

Bandits for BMO Functions

Now, pick ζ > 2dω. For x ∈ E (Q, ζ), we have, for Qj ∈ Q

ζ <
∣∣∣f (x)− 〈f〉Q

∣∣∣ ≤ ∣∣∣f (x)− 〈f〉Qj
∣∣∣+ 2dω. (102)

Hence for x ∈ E(Q, ζ),
∣∣∣f (x)− 〈f〉Qj

∣∣∣ > ζ − 2dω is necessary when
∣∣∣f (x)− 〈f〉Q

∣∣∣ > ω.

Since ζ > ω, by (96) we have

µ(E (Q, ζ)) = µ(E (Q, ζ) ∩ E (Q,ω)) (103)

≤
∑
j

µ(E (Q, ζ) ∩Qj) (104)

≤
∑
j

µ
({
x ∈ Qj :

∣∣∣f (x)− 〈f 〉Qj
∣∣∣ > ζ − 2dω

})
µ(Qj)

µ(Qj) (105)

≤ ϕ
(
ζ − 2dλ

)∑
j

≤ µ(Qj), (106)

where (104) is due to disjointness of Qj and (96), and (105) uses that, for x ∈ E(Q, ζ),∣∣∣f (x)− 〈f〉Q
∣∣∣ > ω ⇒

∣∣∣f (x)− 〈f〉Qj
∣∣∣ > ζ − 2dω,

as discussed above.

Then we have

µ (E (Q, ζ)) ≤ ϕ
(
ζ − 2dω

) 1

ω

∑
j

∫
Qj

∣∣∣f − 〈f〉Q∣∣∣ dµ (107)

≤ 1

ω
ϕ
(
ζ − 2dω

)
µ(Q), (108)

where we use (106) and (92) for (107), and use the definition of BMO functions and ‖f‖ = 1 for (108).

Hence for ζ > 2dω, we obtain

µ(E (Q, ζ))

µ(Q)
≤ 1

ω
ϕ
(
ζ − 2dω

)
. (109)

By taking supremum over Q on the left-hand-on of the above equation, we have

ϕ (ζ) ≤
ϕ
(
ζ − 2dω

)
ω

. (110)

Put ω = e. Note that ϕ (ζ) ≤ 1 for all ζ > 0 by Definition in (91). Then for 0 < ζ ≤ e · 2d, we have

ϕ (ζ) ≤ e · e−
ζ

2de . (111)

The above statement is true by the proof of contradiction. Assume

ϕ (ζ) > e · e−
ζ

2de = e1− ζ

2de (112)

Since for all ζ > 0, ϕ (ζ) ≤ 1, we have 1− ζ
2de

< 0 always true. This implies

ζ > e · 2d (113)

This is to say if ζ > 0, then ζ > e · 2d. Hence (112) implies the domain ζ ∈ (−∞, 0] ∪ (e · 2d,+∞). This shows (111).

Bandits for BMO Functions

Next, note that

(0,∞) = (0, e · 2d] ∪

[∞⋃
k=1

(
e · 2d+k−1, e · 2d+k

]]
. (114)

So for e · 2d < ζ ≤ e · 2d+1, ϕ (ζ) ≤ e · e−
ζ

2de . Since we have,

ϕ (ζ) ≤ 1

e
ϕ
(
ζ − e · 2d

)
, e · 2d+1 < ζ ≤ e · 2d+1. (115)

We see that ϕ
(
ζ − e · 2d

)
≤ e · e−

(ζ−2de)
2de for ζ > e · 2d. Hence, for e · 2d < ζ < e · 2d+1, we have

ϕ (ζ) ≤ e · e−
ζ

2de .

Iterate this procedure, and we obtain the desired claim, which is, ∀ζ > 0,

µ(E (Q, ζ))

µ(Q)
≤ e · e−

ζ

2de for every cube Q. (116)

D. Landscape of Test Functions in Section 7

Figure 4. Landscapes of test functions used in Section 7. Left: (Rescaled) Himmelblau’s function. Right: (Rescaled) Styblinski-Tang
function.

