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Abstract

In multi-label learning, each instance can be as-
sociated with multiple and non-exclusive labels.
Previous studies assume that all the labels in the
learning process are fixed and static; however,
they ignore the fact that the labels will emerge
continuously in changing environments. In or-
der to fill in these research gaps, we propose a
novel deep neural network (DNN)-based frame-
work, Deep Streaming Label Learning (DSLL),
to classify instances with newly emerged labels
effectively. DSLL can explore and incorporate the
knowledge from past labels and historical models
to understand and develop emerging new labels.
DSLL consists of three components: 1) a stream-
ing label mapping to extract deep relationships
between new labels and past labels with a novel la-
bel correlation-aware loss; 2) a streaming feature
distillation propagating feature-level knowledge
from the historical model to a new model; 3) a
senior student network to model new labels with
the help of knowledge learned from the past. The-
oretically, we prove that DSLL admits tight gener-
alization error bounds for new labels in the DNN
framework. Experimentally, extensive empirical
results show that the proposed method performs
significantly better than the existing state-of-the-
art multi-label learning methods to handle the
continually emerging new labels.

1. Introduction

In traditional supervised learning, a single instance only
possesses a single label; whereas, in many real-world tasks,
one instance can be naturally associated with multiple and
non-exclusive labels. For example, a document may be-
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long to various topics (Zhang & Zhou, 2006; Nam et al.,
2014); an image can contain several individuals’ faces (Xiao
et al.,, 2010); a gene may be related to multiple func-
tions (Barutcuoglu et al., 2006; Cesa-Bianchi et al., 2012).
Multi-label learning has been proposed and studied to han-
dle such kind of tasks, with the goal of predicting a label
vector y € {0,1}™ for a given instance x € R%, where m
is the number of labels, and d is the dimensionality of the
input instance.

A straightforward solution to multi-label learning is bi-
nary relevance (BR) (Tsoumakas et al., 2010) and one-vs-
all (Menon et al., 2019), which treat each label as an inde-
pendent binary classification problem. However, in addition
to a lack of correlations between label information, such ap-
proaches suffer from high computational and storage costs
for large datasets, which would limit the prediction perfor-
mance. As a result, there are two prevalent techniques to
deal with multi-label learning: (1) exploring and exploiting
the correlations across labels (Zhang & Zhou, 2006; Read
et al., 2011; Nam et al., 2019), and (2) reducing the label
space by embedding original high-dimensional label vectors
into the low-dimensional representation (Tsoumakas et al.,
2011; Bhatia et al., 2015; Liu & Shen, 2019). In particular,
deep neural networks (DNNs) (LeCun et al., 2015; Schmid-
huber, 2015) offer a good way to learn the label correlation
and embedding simultaneously, significantly outperforming
classical methods (Nam et al., 2014; Yeh et al., 2017; Chen
et al., 2018).

Overall, existing multi-label learning studies focus on a
fixed set of labels. That is, they assume that all the labels
in the learning process are given at once. However, this
assumption is frequently violated in real-world changing en-
vironments. In practice, with more in-depth data exploration
and understanding, the number of labels gradually increases.
For example, when a photograph is posted on Facebook
or Twitter, the photo will be labeled continuously and dif-
ferently by users who are browsing, and the classification
system needs to be updated accurately according to the new
labels. In the multi-label learning setting, independently
learning only for new labels ignores the correlated informa-
tion from past labels; integrating past labels with emerging
new labels to retrain a new multi-label model would be
prohibitively computationally expensive. Hence, streaming
label learning (SLL) (You et al., 2016) has been proposed
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to handle this problem, which assumes that the new label
vectors are a linear combination of past label vectors and
that the new classifier can inherit the linear combination to
obtain the correlations across labels without retraining the
historical classifier. Nevertheless, the linear representation
between new labels and past labels limits SLL performance,
and the training knowledge from the historical classifiers is
neglected.

In this paper, we propose a novel DNN-based framework,
Deep Streaming Label Learning (DSLL), to effectively
model the emerging new labels. DSLL has the ability to
explore and utilize deep correlations between new labels
and past labels without computationally intensive retraining.
Furthermore, inspired by knowledge distillation (Hinton
et al., 2014; Romero et al., 2015), a technique that distills
knowledge or feature representations from a large teacher
model to a smaller student model, DSLL develops the ap-
proach to leverage the knowledge from previous learning
to model new labels more accurately. DSLL has three com-
ponents: (1) a streaming label mapping to exploit deep
relationships between new labels and past labels with a
novel label correlation-aware loss; (2) a streaming feature
distillation framework to propagate the feature-level knowl-
edge from a past-label classifier (teacher) to a new-label
classifier (student); (3) a senior student network to integrate
the relationships and knowledge learned from the past to
model the newly arrived labels.

In order to verify the effectiveness and performance of
DSLL, both theoretical and experimental analyses are con-
ducted. From the theoretical perspective, we present proofs
that the generalizability of modeling emerging new labels
can be significantly improved with the knowledge extracted
from past labels. In contrast to linear frameworks (Yu et al.,
2014), proofs for a nonlinear model can be challenging,
especially in DNNs. We analyze the excess risk bounds
for the proposed learning model by leveraging the latest
deep learning theory. From the experimental perspective,
we perform a comprehensive empirical evaluation of our
model on a variety of benchmark datasets, using prevalent
metrics and comparisons with well-established or state-of-
the-art multi-label learning algorithms. The results show
that our approach considerably outperforms other methods
and demonstrates the significance of utilizing knowledge
learned from past labels and their corresponding classifiers
in modeling new labels.

The rest of the paper is organized as follows. Section 2
summarizes the previous related work. Section 3 formulates
the problem and describes the proposed model. Section 4
presents the theoretical analysis. Section 5 presents the
experimental results validating the model and providing sev-
eral insights. We conclude in Section 6. Detailed proofs are
provided in the Appendix to the Supplementary Materials.

2. Related Work

Multi-label Learning. Obvious baselines for multi-label
learning (MLL) are provided by the one-vs-all tech-
nique (Menon et al., 2019) and binary relevance (Tsoumakas
et al., 2010), which seek to learn an independent classifier
for each label. As expected, the huge training and pre-
diction costs for a large number of labels and the lack of
ability to discover the correlations between labels are lim-
itations. Label embedding (LE) is a popular strategy for
MLL that projects the label vectors onto a lower subspace
with the latent embedding of corresponding information and
utilizes a decompression mapping to lift the embedded label
vectors back to the original label space (Tsoumakas et al.,
2011; Prabhu & Varma, 2014). SLEEC (Bhatia et al., 2015)
is the state-of-the-art LE method that captures the embed-
ding of labels by preserving the local distances between a
few nearest label neighbors, and SML (Liu & Shen, 2019)
further improves the convergence rate of SLEEC. Deep
learning is another popular end-to-end learning approach.
BP-MLL (Zhang & Zhou, 2006) introduces the neural net-
work architecture to learn relevant features automatically.
Since then, other DNN techniques have been applied to
multi-label learning (Nam et al., 2014). C2AE (Yeh et al.,
2017) is a state-of-the-art DNN-based approach that inte-
grates canonical correlation analysis (Andrew et al., 2013)
and autoencoder to utilize features and label embedding
jointly. In summary, all these MLL studies explicitly and
implicitly focus on a fixed set of labels, which is frequently
violated in the changing environments. Although traditional
multi-label algorithms can be adapted to handle emerging
new labels, they can suffer from the lack of correlations
between past labels and new labels for only learning new la-
bels or prohibitive computational costs caused by retraining
the model with whole labels.

Streaming Label Learning. To model newly arrived la-
bels expediently and effectively, streaming label learning
(SLL) (You et al., 2016) has been proposed, which aims
to employ the knowledge from past labels. SLL assumes
that: (1) a label is represented as a linear combination of
other labels, and (2) the relationship (linear combination)
between labels can be inherited by classifiers of different
labels. Constrained by these hypotheses, SLL trains a linear
classifier for new labels with the relationship between past
labels and new labels. However, the linear representation
across labels limits the SLL performance, and the training
knowledge from classifiers of past labels is neglected. Note
that while Zhu et al. (2018) proposed a method, in which
instances with emerging new labels are regarded as outliers,
this is different to the SLL problem.

Knowledge Distillation. Knowledge distillation (KD) aims
to transfer the knowledge from an existing powerful clas-
sifier (called a feacher) to a lightweight classifier (called
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Figure 1. The overall DSLL architecture. The proposed framework has three components: 1) streaming label mapping, designed to
capture the relationship between new labels and past labels with the proposed label correlation-aware loss, where hard is the ground truth
of past labels and soft is the prediction provided by the past-labels classifier (teacher); 2) streaming feature distillation, which transforms
the knowledge from the teacher to the new-label classifier (student), employing the outputs of the intermediate layer of the teacher as hint
to guide those of the student; 3) the senior student network, which leverages the relationship and knowledge to finally model new labels.

The red dotted lines denote the backpropagation path during learning.

a student). For instance, Ba & Caruana (2014) trained a
shallow student network to mimic the logits provided by a
deep teacher network. Hinton et al. (2014) proposed a more
general framework by training a small student to predict
softened labels of the output of a large teacher network.
FitNet (Romero et al., 2015) employed the intermediate
layer representation of the teacher as a hint to guide stu-
dent training. Due to its effectiveness, KD has been being
used in many fields such as object detection (Chen et al.,
2017), model compression (Heo et al., 2019), image classi-
fication (Liu et al., 2018), machine translation (Zhou et al.,
2020), and meta-learning (Bai et al., 2020). In this work, we
propose streaming feature distillation, where the past-label
classifier acted as a teacher helps guide a student network to
model new labels. It not only extracts knowledge from the
intermediate layer of the teacher, but also takes advantage
of the softened output provided by the well-trained teacher
to construct the relationship between new and past labels.

3. Deep Streaming Label Learning

Conventional multi-label learning encounters the following
dilemmas in the face of newly-arrived labels: (1) integrating
past labels and new labels to retrain a new multi-label model
requires massive computational resources; (2) independently
learning for the new labels would neglect the knowledge
acquired from past labels and historical models. This section
will detail the proposed Deep Streaming Label Learning to
handle the continuously emerged labels, which can solve
these challenging problems.

3.1. Problem Formulation

First, we state the MLL with emerging new labels prob-
lem. Assume an initial training data set is denoted by
D = {(z1,Y1), - (Tn,Yn)}, Where z; € X C RIX!
is a real vector representing an input feature (instance) and
y; € Y C {0,1}™*! is the corresponding output label vec-
tor (i € [n], defined as i € {1,...,n}). Moreover, y] = 1 if
the j-th label is assigned to the instance x; and yf = 0 oth-
erwise. The input matrix is X = [z, ..., x,,] € R4*" and
the initial output matrix is Y = [y, ..., yn] € {0, 1}7*".
By observing D, multi-label learning aims to derive a proper
learning model M,,, that generates the prediction on a la-
bel vector for a test instance. Then new labels data ar-
rive in a streaming fashion. For simplicity, we denote
yrev = [y;nH, y:”“, ey yf”““] as the new k-labels vector
for instance x;, where £k > 1. The MLL problem in the
changing environment is to derive a learning model on the
continually emerging new labels.

3.2. Overall Structure

We propose DSLL, designed to accommodate emerging
new labels. Our overall learning framework is illustrated in
Figure 1. DSLL can overall be regarded as a new label clas-
sifier consisting of three components. First, we construct
streaming label mapping S,, to capture and maintain the
relationships from past labels to new labels, followed by the
proposed label correlation loss function to preserve cross-
label dependency (Section 3.3). As shown in Figure 1(a),
S, projects past label vectors y to new label vectors y™".
In the testing process, we can only use the prediction value
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g provided by the past-label classifier as the input of S,,,
since label vectors are unknown. Therefore, in the train-
ing process, we jointly employ the true past label vectors y
(hard) and the prediction y (soft) as the input of the mapping
S, to improve its accuracy and robustness. The shallow
label mapping network has much fewer parameters than the
large classifier, which can extract label correlation without
computationally intensive retraining. Second, we present
the streaming feature distillation, a hint-based learning ap-
proach (Romero et al., 2015), where past-label classifier
serves as a teacher network to guide the student network.
Streaming feature distillation encourages the feature repre-
sentation of the student to mimic that of the teacher network
at the intermediate layer, which boosts the final performance
of the new-label classifier (Section 3.4). Besides, streaming
feature distillation network, as the initialization of the new-
label classifier, facilitates the convergence of DSLL. Finally,
we learn integrally the label relationships obtained by S,,
and the knowledge acquired from the teacher by training a
senior student network with the cross-entropy loss function
to model the newly-arrived labels (Section 3.5).

3.3. Streaming Label Mapping with Label-correlation
Loss

Exploring and exploiting the relationship between labels
has been demonstrated to be advantageous and crucial for
boosting MLL performance (Zhang & Zhou, 2014; Yeh
etal., 2017; Menon et al., 2019; Zhu et al., 2019). We pro-
pose the streaming label mapping S,,, : R™*! — {0, 1}*
to captures deep relationships between new labels and past
labels effectively and inexpensively. Taking advantage of
the relationships, DSLL can model new labels more accu-
rately and avoids the huge computational cost associated
with retraining all the labels to obtain label correlations. In
the training process of S,,, as shown in Figure 1(a), we use
a combination of the soft label vector 7 provided by the
past-label classifier and the hard label vector y’ denoting
ground truth of the past label as the input 37

¥ =ay +(1-a)y,

where j € [m] and o € [0, 1] balance the importance
of soft predictions and the true hard labels. Note that
(U1, .., 9] = [g*,..,9%]", i € [n]. Distinct from KD,
which places the soft labels as the target to learn (Hin-
ton et al., 2014; Heo et al., 2019), here we employ both
soft labels and hard labels as the input, aiming to make the
streaming label mapping more robust in learning the rela-
tionship between labels. This is because, on the one hand,
the hard past labels keep the unbroken latent relationship
with newly-arrived labels, and on the other hand, in the
testing process, the hard labels are unknown and S,,, only
relies on the soft labels provided by the past-label classifier.
Therefore, joint training of hard labels and soft labels can

improve the accuracy and robustness of the streaming label
mapping and boosts DSLL performance (See Section 5.2).
Specifically, S, consists of a fully connected network with
ReLU activation function in the hidden layers and sigmoid
function in the output layer.

Inspired by Zhang & Zhou (2006), we present a novel label

correlation-aware loss at the sigmoid output of the streaming
label mapping, which is defined as follows:

~ ’new)

Ls(9,y

~ 1
v,

i=1 (p)ev;txv;”

H(Sm(gi)p_Sm(gi)q)_bHE (1)

where Y;Jr (or Y¥;7) denotes the index set of new labels as-
sociated (or non-associated) with x;. Formally, Y, = {j |
y! =1}and Y, ={j |y =0}, je{m+1,...m+k};
b=max Y— min ) is a constant'. Given the past label vec-
tor g; as input, S,,,(9; )P —S, (9;)? returns the discrepancy
between the output of the mapping S,,, on one label asso-
ciated with x; (p € Yﬁ) and one label not associated with
it (¢ € Y;7). Note that (S,,(g;)?) € [—1,1] due to the
sigmoid function after the output layer. Therefore, minimiz-
ing the label correlation-aware loss is equal to maximizing
S (9i)P—Sm(9:)?, which implicitly learns the paired cor-
relation between different labels and enforces the preserva-
tion of cross-label dependency.

3.4. Streaming Feature Distillation

Hinton et al. (2014) proposed a knowledge distillation (KD)
method using only the final output of the teacher network.
Hint learning (Romero et al., 2015) demonstrates that using
the intermediate representation of the teacher as a hint to
guide that of the student can improve the final performance
of the student. We propose the streaming feature distillation,
a hint based learning, which transforms knowledge from the
past-label classifier (as a teacher) to the new-label classifier
(as a student) to boost the performance of the new-label
classifier. As shown on the left side of Figure 1(b), the hint
layer is represented as the output of a teacher’s intermediate
layer guiding a hidden layer of the student, the guided layer,
to mimic it. Since the selected hint layer may have more
outputs (neurons) than the guided layer, we add an adapta-
tion matrix parameterized by W 444, after the guided layer
to match the output size of the hint layer. Then, we train the
student parameters up to the guided layer by minimizing the
following loss function:

Ly Raguideds W adapt) = [|[RHint — WAdaptRGuidedH; )

where R ;¢ and Rguyideq represent the output of the hint
layer in the teacher and the output of the guided layer in
the student, respectively. Finally, the student parameters

'for current settings, b = 1
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up to the guided layer would be saved as the pre-trained
parameters and kept fine-tuned with a slow learning rate
in later training. Streaming feature distillation outperforms
training from scratch because the pre-trained model already
extracts a great deal of feature-level knowledge.

3.5. Learning from the Past

The senior student network is designed to integrally digest
the knowledge learned from past labels and the historical
classifier. As shown in Figure 1(b), the senior student re-
ceives the outputs of both the streaming label mapping and
the student network as inputs and generates the prediction
for new labels. In particular, we add one hidden layer after
the streaming label mapping as a nonlinear transformation
S¢, which can transform the outputs of the streaming label
mapping to a higher space. Overall, training the senior stu-
dent can be considered as the process from instance x; and
the output of streaming label mapping to the corresponding
new label vector y;'“. In the learning stage, the parameters
of the senior student, the transformation S; and the student
(included the pre-trained guided layer) would be trained
simultaneously by minimizing the cross-entropy loss as fol-
lows:

n m-+k
Lcp = Z > —yllog(]) — (1 —y!)log(1 —37),
i=1 j=m+1

where y“f is the prediction of jth label corresponding to the
instance x; generated by the senior student, and y; indicates
the ground truth.

The red dotted line from the senior student in Figure 1(b)
denotes the backpropagation path. The streaming label
mapping is kept frozen to preserve the relationships between
new labels and past labels. The student parameters up to the
guided layer could be trained at a slow learning rate to fine-
tune. Interestingly, we find that having a transformation S,
is practical for achieving effective label mapping, especially
in the case of dimension raising (see Section 5.2).

4. Theoretical Analysis

In this section, we theoretically analyze the excess risk
bounds for our learning model and provide a generaliza-
tion error bound for the new-label classifier DSLL. Our
analysis demonstrates that the generalizability for modeling
the emerging new labels can be improved with the knowl-
edge extracted from past labels. In contrast to linear frame-
works (Yu et al., 2014), it is a bigger challenge to provide
proofs for nonlinear models, especially DNNs.

For notational simplicity, we denote yr¢¥ = [y/"!
y™ 2y € {0,1}" as the new k-labels vector for

1.2 d 1.2
=[x, x7, . 2l Y, y7, ...,y as the

PR ]

instance x;, and x;

i-th tuple input vector combined from «x; and the past la-
bel vector y;. We use ¢(z)=max{0,z} to represent the
ReL.U function, and extend it to vectors v € R? by letting
d(v) = (d(v1), ..., P(vq)). We use Leyens to denote the in-
dicator function for event. We define the following network
as the basic composition unit of the DSLL model,

hio = ¢(Ax]) fori € [n]
gii = Wbt Bl = ¢(W ™YY fori € [n],1 € [L]
j; = Bhr fori € [n],

where A € Ru1*(4+m) 5 the weight matrix for the input
layer, W; € R%+1*% js the weight matrix for the [-th
hidden layer, B € R** %~ is the weight matrix for the output
layer, and wu; is the number of neurons in the hidden layer
l. For notational convenience, we use h; ! to denote input
vector, W to denote the corresponding weight matrix for
the input layer, and ug to denote the input data dimension.

gi0 = Ax;

Recently, there has been some work on deep learning the-
ory (Zou et al., 2019; Cao & Gu, 2020; Du et al., 2019).
Allen-Zhu et al. (2019) present a more simple and intuitive
analysis. To simplify the proof as (Allen-Zhu et al., 2019),
we define the following diagonal sign matrix to linearize
the DNN corresponding to each instance ;.

Definition 4.1 (diagonal sign matrix). For each i € [n]
andl € {0,1,..., L}, we denote by D' the diagonal sign

matrix where (Di): =Ly, pi-1), >0 for each k € [w].

As a result, we have b, = D!W;h"! = Dlg! and
(Dﬁ) IZ:]I( g1 >0- DSLL integrates three effective networks:
Streaming Student W s, Streaming Label Mapping Wy,

and Senior Student W 5. These three networks constitute
the DSLL model W structure, defined as

W =W, [WE Wi
which uses x*, the tuples of data x and past labels y, as
the input to predict the new labels y"““. According to

Definition 4.1, each input tuple « corresponds to a network
parameter in which the prediction is obtained by

9" =f;(x;,W)=BD W .. DIW DAz},

DSLL learns a classifier W by minimizing the empirical
risk,

i€n].

n  m+tk

Z > Uyl f (W),

1=15=m+1
where £(-) denotes the loss function, and we can obtain
W =argminyy ey, L(W).
Our goal is to show that the learned W is generalizable, i.e.,

L(W)< inf L(W)+e,
Wew

where L(W
as:

) is the population risk of a classifier, defined
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Table 1. Statistics of five real-world datasets.

Dataset \ Domain  #Training #Testing #Feature #Labels #Card-Features #Card-Labels

yeast biology 1,500 917 103 14 103.00 4.24

MirFlickr | image 10,417 2,083 1,000 38 539.33 4.74

Delicious web 12,920 3,185 500 983 18.17 19.03

EURIlex text 15,479 3,869 5,000 3,993 5.31 236.69

Wikil0 text 14,146 6,616 101,938 30,938 673.45 18.64
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Figure 2. Performance comparison of learning new labels with different batch sizes by considering 50% of labels as past labels. m

indicates the number of new labels.

mtk . .
Sty fi @ W)

Jj=m+1

E(W):]E(wx ,ynew)
And we give the following theorem.

Theorem 1. Suppose we learn a new classifier W in terms

of k new labels using formulation W:argminWEWﬁ(W)
over a set of n training instances. Then, with a probability
of at least 1—0, we have

L(W)< inf L(W)+0 (\/E(%ﬂy\/@) +0O k:\/%

where 7y, and vy, are real constant numbers related to the
number of neurons in the output layer. We assume, without
loss of generality, that E[||=|3] <1, E[|jy"* ||| <k.

Refer to Appendix A in the Supplementary Materials for
the proof. Theorem 1 demonstrates that knowledge learned
from past labels helps to improve the generalizability to
model new labels without compromising model accuracy.

5. Experiments

In this section, we conduct extensive experiments to demon-
strate the performance of the proposed method with re-
spect to handling new labels. All the computations are
performed on a 64-Bit Linux workstation with 10-core Intel
Core CPU i7-6850K 3.60GHz processor, 256 GB memory,
and 4 Nvidia GTX 1080 Ti GPUs.

5.1. Experimental Setup

Datasets. We use five readily available multi-label bench-
mark datasets from different application domains, including
three regular-scale datasets>> (Yeast, MirFlickr and Deli-
cious) and two large-scale datasets* (EURIex and Wiki10).
The statistics of these five real-world data sets are summa-
rized in Table 1.

Baselines. In our experiments, we compare the proposed
methods with ten well-established or state-of-the-art multi-
label learning algorithms:

e Binary relevance (BR) (Tsoumakas et al., 2010) is a
set of m independent logistic regression classifiers.

o Classifier chains (CC) (Read et al., 2011) transforms
the multi-label learning problem into a chain of binary
classification problems to incorporate label dependen-
cies into the classification process.

e RAKEL (Tsoumakas et al., 2011) considers a set of k
labels in a multi-label training set as one of the classes
of a new single-label classification task.

e ML-kKNN (Zhang & Zhou, 2007) identifies each unseen
instance’s k nearest neighbors in the training set and
utilizes the maximum a posteriori principle to deter-
mine the label set for the unseen instance.

e SLEEC (Bhatia et al., 2015) is a well-known
embedding-based method, which learns the label em-
bedding by preserving the pairwise distances between
a few nearest label neighbors.

2http://mulan.sourceforge.net/
3https://github.com/chihkuanyeh/C2AE
*http://manikvarma.org/downloads/XC/XMLRepository.html
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Table 2. Ranking performance of each comparison algorithm for learning new labels with different batch sizes by regarding 50% of labels
as past labels. #label denotes the number of new labels. | (1) means the smaller (larger) the value, the better the performance.

D micro-AUC 1
atasets #label
BR CC RAKEL ML-ENN SLEEC SML SLL BP-MLL DNN-BCE C2AE DSLL
2 | 0.6703 0.6750 0.6914 0.6731 0.7003 0.7114  0.7209 0.7228 0.7616 0.7624  0.7793
3 | 07140 0.6972 0.7162 0.7074 0.8003 0.8287  0.7302 0.8437 0.8521 0.8590  0.8641
yeast 4 | 0.6978  0.7096 0.7113 0.7027 0.7751 0.7955  0.7401 0.8216 0.8383 0.8384  0.8530
5 | 0.6883  0.6979 0.7061 0.6964 0.7775 0.7889  0.7203 0.8139 0.8325 0.8318  0.8507
6 | 0.6768 0.6743 0.7059 0.6834 0.7645 0.7751  0.7133 0.8115 0.8079 0.8199  0.8229
3 | 0.6589  0.5049 0.6572 0.6296 0.5476  0.6123  0.7291 0.7448 0.7592 0.8051  0.8122
6 | 0.7100 0.5045 0.7187 0.6624 0.6400  0.6959  0.8388 0.8476 0.8606 0.8628  0.8713
MirFlickr 9 | 0.7311 0.5071 0.7170 0.6754 0.7001 0.7331  0.8671 0.8692 0.8778 0.8890  0.8972
12 | 0.7151  0.5057 0.7223 0.6692 0.6862  0.7116  0.8630 0.8600 0.8763 0.8807  0.8886
15 | 0.7157  0.5051 0.7253 0.6611 0.6805 0.7015  0.8624 0.8584 0.8787 0.8749  0.8873
100 | 0.7133  0.5658 0.6382 0.5707 0.7813 0.8274  0.7981 0.8776 0.8615 0.8545  0.8820
200 | 0.7080  0.5606 0.6400 0.5692 0.7815 0.8258  0.7956 0.8626 0.8677 0.8321  0.8888
Delicious 300 | 0.7177  0.5719 0.6493 0.5925 0.7941 0.8387  0.8068 0.8792 0.8655 0.8777  0.9037
400 | 0.7159  0.5705 0.6515 0.5916 0.7964  0.8141  0.8059 0.8736 0.8909 0.8656  0.9048
500 | 0.7144  0.5679 0.6445 0.5868 0.7926  0.8124  0.8030 0.8762 0.8697 0.8657  0.9011
200 | 0.6936  0.7308 0.7015 0.6255 0.8591 0.8216  0.8813 0.8130 0.8201 0.8561  0.8884
400 | 0.6738  0.7294 0.6821 0.6228 0.8481 0.8611  0.8905 0.8257 0.8423 0.8633  0.8928
EURlex 600 | 0.6769  0.7321 0.6743 0.6256 0.8547 0.8735  0.8995 0.8218 0.8472 0.8414  0.9001
800 | 0.6825  0.7349 0.6575 0.6283 0.8548 0.8775  0.9016 0.8289 0.8491 0.8637  0.9034
1000 | 0.6733  0.7361 0.6708 0.6258 0.8406  0.8691  0.9115 0.8246 0.8431 0.8456  0.9106
1k | 0.6293  0.6535 0.6403 0.5694 0.8092  0.8113  0.8345 0.6978 0.7830 0.8274  0.8406
2k | 0.5928 0.6244 0.6029 0.5510 0.7505 0.7557  0.7876 0.6545 0.6968 0.7937  0.8013
Wikil0 3k | 0.5703  0.6078 0.5815 0.5405 0.7567 0.7192  0.7417 0.6505 0.7197 0.7939  0.8023
4k | 0.5567  0.6008 0.5687 0.5364 0.7198 0.7105  0.7366 0.6556 0.7307 0.7944  0.7996
5k | 0.5502  0.5984 0.5651 0.5345 0.7087 0.7194  0.7350 0.6463 0.7228 0.7824  0.7865
Datasets #label Ranking loss |
BR CcC RAKEL ML-kNN  SLEEC SML SLL BP-MLL DNN-BCE C2AE DSLL
2 | 03064 0.2912 0.2519 0.2966 0.1527 0.1493  0.1668 0.1538 0.1494 0.1483  0.1439
3 | 03059 0.3217 0.2863 0.3064 0.0927 0.0901 0.1674 0.0840 0.0818 0.0812  0.0807
yeast 4 | 03409 03722 0.3535 0.3433 0.1137 0.1093  0.1891 0.1111 0.1077 0.1114  0.1065
5 | 03694 04113 0.3787 0.3731 0.1245 0.1179  0.2189 0.1230 0.1163 0.1242  0.1147
6 | 04080 0.4606 0.4049 0.4136 0.1558 0.1508  0.2382 0.1492 0.1536 0.1514  0.1475
3 | 03032 0.5336 0.2842 0.3157 0.2393 0.2253  0.1179 0.1051 0.1025 0.0881  0.0809
6 | 0.2868 0.5786 0.2735 0.3337 0.2488 0.2189  0.0586 0.0571 0.0565 0.0569  0.0562
MirFlickr 9 | 0.3366 0.6854 0.3194 0.3981 0.2186  0.2386  0.0672 0.0663 0.0609 0.0580  0.0570
12 | 04011 0.7816 0.3784 0.4690 0.2692  0.2528  0.0877 0.0865 0.0857 0.0772  0.0750
15 | 0.4209 0.7966 0.3873 0.4929 0.2857 0.2710  0.0899 0.0909 0.0837 0.0858  0.0812
100 | 0.4135 0.6551 0.4550 0.6521 0.2333 0.2235  0.1438 0.0916 0.0890 0.0929  0.0830
200 | 05115  0.8147 0.5603 0.7988 0.2712  0.2523  0.1771 0.1168 0.1217 0.1224  0.1140
Delicious 300 | 0.5248  0.8303 0.5710 0.7918 0.2759  0.2594  0.1758 0.1093 0.1071 0.1073  0.1031
400 | 0.5311  0.8360 0.5711 0.7978 0.2661 0.2608  0.1778 0.1102 0.1079 0.1050  0.1082
500 | 0.5383  0.8435 0.5841 0.8096 0.2784  0.2679  0.1822 0.1109 0.1154 0.1094  0.1067
200 | 0.1473  0.1281 0.1403 0.1787 0.0654  0.0743  0.0198 0.0879 0.0337 0.0205  0.0138
400 | 0.2493  0.2048 0.2386 0.2880 0.1101 0.0901  0.0299 0.1062 0.0380 0.0274  0.0226
EURlex 600 | 0.3468  0.2898 0.3494 0.4041 0.1552  0.1325  0.0404 0.1848 0.0562 0.0531  0.0313
800 | 0.4072  0.3400 0.4384 0.4780 0.1871 0.1618  0.0483 0.1530 0.0609 0.0495  0.0330
1000 | 0.4861  0.3960 0.4939 0.5619 0.2375 0.2085  0.0585 0.2326 0.0754 0.0721  0.0370
1k | 04746  0.4375 0.4213 0.5520 0.0918 0.1082  0.0867 0.2259 0.1011 0.0483  0.0421
2k | 0.6205 0.5642 0.5705 0.6818 0.2385 0.2052  0.1259 0.3373 0.2225 0.0648  0.0606
WikilO 3k | 0.7324  0.6577 0.6823 0.7766 0.3306  0.2573  0.1897 0.3727 0.1911 0.0715  0.0642
4k | 0.8167 0.7246 0.7569 0.8424 0.4037 0.3029  0.2123 0.3899 0.1831 0.0751  0.0687
Sk | 0.8538  0.7495 0.7941 0.8698 0.4313 0.4368  0.2234 0.4525 0.1972 0.0833  0.0816

SML (Liu & Shen, 2019) is the state-of-the-art
embedding-based method, which further improves the
convergence rate of SLEEC.

SLL (You et al., 2016) is the original streaming label
learning method, which leverages the linear relation-
ship between past labels and new labels.

BP-MLL (Zhang & Zhou, 2006) introduces a shallow
neural network as the multi-label model trained to min-

AdaGrad, Dropout, and other deep learning techniques
to train a DNN-based model.

e C2AE (Yeh et al., 2017) is the state-of-the-art deep

learning method for multi-label classification, which
integrates the DNN architectures of canonical correla-
tion analysis and autoencoder to learn the deep latent
space.

imize a ranking loss. Here, we deepen the network to
boost performance.
e DNN-BCE (Nam et al., 2014) makes use of ReL.U,

The codes of baseline methods are provided by the authors
or scikit-multilearn (Szymanski & K., 2017).

Evaluation Metrics. The predictive accuracy of multi-label
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Table 3. The proposed method component comparison, including streaming feature distillation (KD, Section 3.4), cross-entropy loss
(CE), our proposed label correlation-aware loss (LC) for label mapping (Section 3.3), and transformation layer S; after label mapping
(Section 3.5). L?(’,lftd represents using both hard and soft label vectors in label mapping, while Ly, qrq and L, f; respectively represent the
cases where only one of the label vectors is used. (1) means the smaller (larger) the value, the better the performance.

Baseline | KD CE LC LC-S: [| Lhara | Lsoge | LEoFT [ KD+LC-S+LEg7T
Average precision T | 0.3824 | 0.4018 || 04113 | 0.4182 | 0.4287 || 0.4159 | 0.4427 | 0.4592 0.4925
Coverage | | 0.2415 | 0.2349 |[ 0.2245 | 0.2221 | 0.2188 || 0.2352 | 0.2289 | 0.2237 0.2153

learning can be evaluated in different ways. Bipartition-
based metrics assess a model’s ability to predict sets of
labels, whereas ranking-based metrics evaluate MLL meth-
ods, which instead produce rankings of labels. There-
fore, our proposed method was evaluated in terms of both
bipartition-based metrics, i.e., Hamming loss, macro-F1,
micros-F1, and instance-F1, and ranking-based metrics,
i.e., Precision@k, coverage, ranking loss, average precision
(AP), macro-AUC, and micro-AUC (Wu & Zhou, 2017; Jain
et al., 2016). Note that the coverage score is 1 greater than
the one given in (Tsoumakas et al., 2010) to extends it to
handle the cases where an instance has zero true labels; it
is then normalized by the number of labels such that all the
evaluation metrics vary between [0,1]. The details of these
metrics can be referred in Appendix B.1.

Settings. To handle newly arrived labels, we investigated
the models with different batch sizes following previous
settings (You et al., 2016). The batch size refers to the
number of new labels emerging in a dynamic environment.
In particular, for each dataset, we selected randomly 50%
(for Delicious 483) labels as past labels and constructed a
classifier for the past labels. Then, the remaining labels
were treated as new labels with different batch sizes. MLL
methods can be extended to handle these new labels through
independent modeling. More detailed settings are provided
in the Appendix B.

5.2. Results

The results will show the performance evaluation in terms
of ranking and classification. Then, we shall describe the
ablation studies for different components in DSLL.

Ranking performance evaluation. First, we evaluate the
results obtained by DSLL and other methods for dealing
with new labels using the ranking-based metrics. Limited
by space, we only show the average results of two measures:
ranking loss and micro-AUC (Table 2). The results evalu-
ated by Precision@Fk, AP, macro-AUC, and coverage can be
found in the Appendix B.2 of the Supplementary Materials.
The results show that DSLL largely outperforms the other
approaches with respect to handling newly arrived labels. In
this setting, traditional multi-label learning methods could
not utilize the knowledge from past labels and classifiers.
Although SLL takes advantage of the relationship between

past labels and new labels, the linear representation limits
its performance. Nevertheless, DSLL not only learns the
correlations across new and past labels but also distills the
knowledge from the past classifier.

Classification performance evaluation. Second, we com-
pare the classification results as evaluated by bipartition-
based metrics, where the prediction value of a label belongs
to {0,1} rather than a ranking value or a probability value.
Figure 2 shows the micro-F1 results of learning new labels
with different batch sizes. Other results of the bipartition-
based metrics (Hamming loss, macro-F1, and instance-F1)
can be found in the Supplementary Materials. We can see
that DSLL consistently outperforms other multi-label learn-
ing methods with respect to all measures. Several machine
learning approaches, e.g., BR and ML-ENN, perform poorly
on datasets with a large number of labels because the inter-
relationships between labels are not effectively employed.
Note that SLEEC, SML, and SLL only focus on ranking
results; if adopting a naive thresholding policy (e.g., a thresh-
old of 0.5), they underperform compared to baselines, i.e.,
BR (Nam et al., 2017). Hence, classification performance
evaluation excludes the results of SLEEC, SML, and SLL.

Ablation study. Finally, as shown in Table 3, we compare
different strategies for learning knowledge from the past
in DSLL to evaluate the effectiveness of various parts of
our proposed framework. AP and coverage (Wu & Zhou,
2017) are used to measure the performance on the MirFlickr
dataset, where 19 labels are used as past labels and 9 labels
as new labels. We choose a fully-connected deep network as
the baseline, and another network distills the knowledge at
the intermediate layer of the past-label classifier to encour-
age the network to converge to a better value, denoted KD
in Table 3. We compare the label correlation-aware loss in
Equation (1), denoted LC, with the cross-entropy loss (CE)
to achieve slightly better performance. Moreover, we find
that the transformation layer S; proposed in Section 3.5 is
critical for effective relationship representations, which can
be used with LC to obtain a 1.7% improvement. Note that
a 1% improvement in multi-label classification is consid-
ered significant. In the process of streaming label mapping,
we discover that the performance of using both hard and
soft label vectors denoted ngﬁ, is better than using only
one of the two, which is supported by the results shown
in Table 3. This is because that the labels are unknown in
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the testing stage, the soft labels predicted by the past-label
classifier are sent to the streaming label mapping as the in-
put. Therefore, learning the combination of hard labels and
soft labels can improve the robustness of the model in the
testing. Finally, we find that our proposed overall method
(KD+LC-St+ng}f) significantly outperforms the baseline
and others with part strategies.

6. Conclusion

In this paper, we propose a novel framework, Deep Stream-
ing Label Learning (DSLL), to address the multi-label learn-
ing problem with new labels. DSLL distills the knowledge
from past labels and their classifiers to effectively model
new emerging labels without retraining the whole multi-
label classifier, which has three components: a streaming
label mapping, a streaming feature distillation, and a senior
student. Our theoretical derivations prove that DSLL frame-
work can provide a tight excess risk bound for new labels.
Extensive empirical results show that DSLL significantly
outperforms current state-of-the-art methods, and demon-
strate the significance of leveraging knowledge learned from
the past when modeling new labels.
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