
Haar Graph Pooling: Supplementary Material

Yu Guang Wang 1 2 Ming Li 3 Zheng Ma 4 Guido Montúfar 5 2 Xiaosheng Zhuang 6 Yanan Fan 1

A. Efficient Computation for HaarPooling
For the HaarPooling introduced in Definition 1, we can de-
velop a fast computational strategy by virtue of fast adjoint
Haar transforms. Let G0→K be a coarse-grained chain of
the graph G0. For convenience, we label the vertices of the
level-j graph Gj by Vj :=

{
v
(j)
1 , . . . , v

(j)
Nj

}
.

An efficient algorithm for HaarPooling The HaarPool-
ing can be computed efficiently by using the hierarchical
structure of the chain, as we introduce as follows. For
j = 1, . . . ,K, let c(j)k be the number of children of v(j)k , i.e.
the number of vertices of Gj−1 which belongs to the cluster
v
(j)
k , for k = 1, . . . , Nj . For j = 0, we let c(0)k ≡ 1 for
k = 1, . . . , N0. Now, for j = 0, . . . ,K and k = 1, . . . , Nj ,
define the weight for the node v(j)k of layer j by

w
(j)
k :=

1√
c
(j)
k

. (1)

Let W0→K := {w(j)
k | j = 0, . . . ,K, k =

1, . . . , Nj}. Then, for j = 0, . . . ,K, the weighted chain
(Gj→K ,Wj→K) becomes a filtration if each parent of the
chain Gj→K has at least two children.

Let j = 0, . . . ,K. For the jth HaarPooling layer, let
{φ(j)` }

Nj

`=1 be the Haar basis for the jth layer, which we also
call the Haar basis for the filtration (Gj→K ,Wj→K) of a
graph G. For k = 1, . . . , Nj , we letX(v

(j)
k) = X(v

(j)
k , ·) ∈

Rdj the feature vector at node v(j)k . We define the weighted

*Equal contribution 1School of Mathematics and Statistics,
University of New South Wales, Sydney, Australia 2Max Planck
Institute for Mathematics in the Sciences, Leipzig, Germany
3School of Teacher Education, Zhejiang Normal University, Jin-
hua, China 4Department of Physics, Princeton University, New
Jersey, USA 5Department of Mathematics and Department of
Statistics, University of California, Los Angeles 6Department of
Mathematics, City University of Hong Kong, Hong Kong. Cor-
respondence to: Ming Li <ming.li.ltu@gmail.com>, Yu Guang
Wang <yuguang.wang@unsw.edu.au>, Guido Montúfar <montu-
far@math.ucla.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

sum for feature X ∈ RNj×dj for dj ≥ 1 by

S(j)
(
X, v

(j)
k

)
:= X(v

(j)
k), v

(j)
k ∈ Gj , (2)

and recursively, for i = j + 1, . . . ,K and v(i)k ∈ Gi,

S(i)
(
X, v

(i)
k

)
:=

∑
v
(i−1)

k′ ∈v(i)
k

w
(i−1)
k′ S(i−1)

(
X, v

(i−1)
k′

)
.

(3)
For each vertex v(i)k of Gi, the S(i)

(
X, v

(i)
k

)
is the weighted

sum of the S(i−1)
(
X, v

(i−1)
k′

)
at the level i − 1 for those

vertices v(i−1)k′ of Gi−1 whose parent is v(i)k .

Theorem 1. For 0 ≤ j ≤ K − 1, let {φ(i)` }
Ni

`=1 for
i = j + 1, . . . ,K be the Haar bases for the filtration
(Gj→K ,Wj→K) at layer i. Then, the compressive Haar
transform for the jth HaarPooling layer can be computed
by, for the feature X ∈ RNj×dj and ` = 1, . . . , Nj ,

(
ΦT

j X
)
`

=

Ni∑
k=1

S(i)
(
X, v

(i)
k

)
w

(i)
k φ

(i)
` (v

(i)
k), (4)

where i is the largest possible number in {j + 1, . . . ,K}
such that φ(i)` is the `th member of the orthonormal basis
{φ(i)` }

Ni

`=1 for l2(Gi), v(i)k are the vertices of Gi and the
weights w(i)

k are given by Equation (1).

We give the algorithmic implementation of Theorem 1 in Al-
gorithm 1, which provides a fast algorithm for HaarPooling
at each layer.

B. Proofs
Proof for Equation (6) in Section 4. We only need to prove
the first formula. The second is obtained by definition. To
simplify notation, we let f = X in

j . By construction of Haar
basis, for some layer j, the first Nj+1 basis vectors

φ
(j)
` (v) = φ

(j+1)
` (p)/

√
|PaG(v)|, for p = PaG(v).

Haar Graph Pooling

Algorithm 1 Fast HaarPooling for One Layer
Input: Input feature X in

j for the jth pooling layer given
j = 0, . . . ,K − 1 in a GNN with total K HaarPooling
layers; the chain Gj→K associated with the HaarPooling;
numbers Ni of nodes for layers i = j, . . . ,K.

Output: ΦT
j X

in
j from Definition 1.

Step 1: Evaluate the sums for i = j, . . . ,K recursively,
using Equations (2) and (3):
S(i)

(
X in

j , v
(i)
k

)
∀v(i)k ∈ Vi .

Step 2:
for ` = 1 to Nj+1 do

Set NK = 0.
Compute i such that Ni+1 + 1 ≤ ` ≤ Ni.
Evaluate

∑Ni

k=1 S(i)(X in
j , v

(i)
k)w

(i)
k φ

(i)
` (v

(i)
k) in Equa-

tion (4) by the two steps:
(a) Compute the product for all v(i)k ∈ Vi:
T`(X

in
j , v

(i)
k) = S(i)(X in

j , v
(i)
k)w

(i)
k φ

(i)
` (v

(i)
k).

(b) Evaluate sum
∑Ni

k=1 T`(X
in
j , v

(i)
k).

end for

Then, the Fourier coefficient of f for the `th basis vector is
the inner product〈
f, φ

(j)
`

〉
=
∑
v∈Gj

f(v)φ
(j)
` (v)

=
∑

p∈Gj+1

∑
p=PaG(v)

f(v)φ
(j+1)
` (p)/

√
|PaG(v)|

=
∑

p∈Gj+1

f̃(p)φ
(j+1)
` (p) =

〈
f̃ , φ

(j+1)
`

〉
where we have let

f̃(p) :=
1√

|PaG(v)|

∑
p=PaG(v)

f(v).

This then gives

Nj+1∑
`=1

∣∣∣〈f, φ(j)`

〉∣∣∣2 =

Nj+1∑
`=1

∣∣∣〈f̃ , φ(j+1)
`

〉∣∣∣2 . (5)

Since {φ`}
Nj+1

`=1 forms an orthonormal basis for `2(Gj+1),

∥∥ΦT
j f
∥∥2 =

Nj+1∑
`=1

∣∣∣〈f̃ , φ(j+1)
`

〉∣∣∣2 =
∥∥f̃∥∥2 =

∑
p∈Gj+1

∣∣f̃(p)
∣∣2

=
∑

p∈Gj+1

∣∣∣∣∣∣ 1√
|PaG(v)|

∑
p=PaG(v)

f(v)

∣∣∣∣∣∣
2

.

This proves the left formula in Equation (6) in Section 4.

Proof of Theorem 1. By the relation between φ(i)` and φ(j)` ,
for i = j + 1, . . . ,K and ` = 1, . . . , Nj+1,

(
ΦT

j X
)
`

=

Nj∑
k=1

X(v
(j)
k)φ

(j)
` (v

(j)
k)

=

Nj+1∑
k′=1

 ∑
PaG(v

(j)
k)=v

(j+1)

k′

X(v
(j)
k)

w
(j+1)
k′ φ

(j+1)
` (v

(j+1)
k′)

=

Nj+1∑
k′=1

S(j+1)(X, v
(j+1)
k′)w

(j+1)
k′ φ

(j+1)
` (v

(j+1)
k′)

=

Nj+2∑
k′′=1

 ∑
PaG(v

(j+1)

k′)=v
(j+2)

k′′

S(j+1)(X, v
(j+1)
k′)w

(j+1)
k′


× w(j+2)

k′′ φ
(j+2)
` (v

(j+2)
k′′)

=

Nj+2∑
k′′=1

S(j+2)(X, v
(j+2)
k′′)w

(j+2)
k′′ φ

(j+2)
` (v

(j+2)
k′′)

· · · · · ·

=

Ni∑
k=1

S(i)(X, v(i)k)w
(i)
k φ

(i)
` (v

(i)
k),

where v(j+1)
k′ is the parent of v(j)k and v(j+2)

k′′ is the parent
of v(j+1)

k , and we recursively compute the summation to
obtain the last equality, thus completing the proof.

C. Experimental Setting
The hyperparameters include batch size; learning rate,
weight decay rate (these two for optimization); the max-
imal number of epochs; patience for early stopping. Ta-
ble 1 shows the choice of hyperparameters for classification
benchmark datasets.

D. Property Comparison of Pooling Methods
Here we provide a comparison of the properties of HaarPool-
ing with existing pooling methods. The properties in the
comparison include time complexity and space complexity,
and whether involving the clustering, hierarchical pooling
(which is then not a global pooling), spectral-based, node
feature or graph structure, and sparse representation. We
compare HaarPooling (denoted by HaarPool in the table) to
other methods (SortPool, DiffPool, gPool, SAGPool, and
EigenPool).

• The SortPool (i.e., SortPooling) is a global pooling
which uses node signature (i.e., Weisfeiler-Lehman
color of vertex) to sort all vertices by the values of the
channels of the input data. Thus, the time complexity

Haar Graph Pooling

Table 1. Hyperparameter setting

Data Set MUTAG PROTEINS NCI1 NCI109 MUTAGEN

batch size 60 50 100 100 100
max #epochs 30 20 150 150 50
early stopping 15 20 50 50 50
learning rate 0.01 0.001 0.001 0.01 0.01
weight decay 0.0005 0.0005 0.0005 0.0001 0.0005

Table 2. Property comparison for pooling methods

Method Time Complexity Space Com-
plexity

Clustering-based Spectral-
based

Hierarchical
Pooling

Use Node
Feature

Use Graph
Structure

Sparse Rep-
resentation

SortPool O(|V |2) O(|V |) X
DiffPool O(|V |2) O(k|V |2) X X
gPool O(|V |2) O(|V | + |E|) X X
SAGPool O(|E|) O(|V | + |E|) X X X
EigenPool O(|V |2) O(|V |2) X X X X X

HaarPool O(|V |) O(|V |2ε) X X X X X X

‘|V |’ is the number of vertices of the input graph; ‘|E|’ is the number of edges of the input graph; ‘ε’ in HaarPooling is the sparsity of
the compressive Haar transform matrix; ‘k’ in the DiffPool is the pooling ratio.

(worst case) of SortPool is O(|V |2) and space com-
plexity is O(|V |). Other pooling methods mentioned
here are all hierarchical pooling.

• DiffPool and gPool both use the node feature and have
time complexity O(|V |2). The DiffPool learns the as-
signment matrices in an end-to-end manner and has
space complexity O(k|V |2) for pooling ratio k. The
gPool projects all nodes to a learnable vector to gener-
ate scores for nodes, and then sorts the nodes by the pro-
jection scores; the space complexity is O(|V |+ |E|).

• SAGPool uses the graph convolution to calculate the
attention scores of nodes and then selects top-ranked
nodes for pooling. The time complexity of SAGPool
is O(|E|), and the space complexity is O(|V | + |E|)
due to the sparsity of the pooling matrix.

• EigenPool, which considers both the node feature and
graph structure, uses the eigendecomposition of sub-
graphs (from clustering) of the input graph, and pools
the input data by the Fourier transforms of the assem-
bled basis matrix. Due to the computational cost of
eigendecomposition, the time complexity of EigenPool
is O(|V |2), and the space complexity is O(|V |2).

• HaarPool which uses the sparse representation of data
by compressive Haar basis has linear time complexity

O(|V |) (up to a log |V | term), and the space complex-
ity is O(|V |2ε), where ε is the sparsity of compressive
Haar transform matrix and is usually very small. Haar-
Pooling can be even faster in practice, as the cost of
the compressive Haar transform is dependent on the
sparsity of the Haar basis matrix. The sparsity of the
compressive Haar basis matrix is mainly reliant on the
chain/tree for the graph. From our construction, the
compressive Haar basis matrix is always highly sparse.
Thus, the computational cost does not skyrocket as the
size of the graph increases.

In Table 2, the HaarPool is the only pooling method which
has time complexity proportional to the number of nodes
and thus has a faster implementation.

