
Enhanced POET: Open-ended Reinforcement Learning

A. Appendix
A.1. Algorithmic Description of the Improved Transfer

Strategy in Section 3.2

Algorithm 1 Improved Transfer

1: Input: candidate agents denoted by their policy param-
eter vectors θ1, θ2, . . . , θM , target environment E with
a score function Score(·), and threshold (i.e. max
of 5 most recent scores of the incumbent agent)

2: Initialize: Set list P Candidates empty
3: for m = 1 to M do
4: Compute direct transfer D
5: if Score(D) > threshold then
6: Compute fine-tuning transfer P
7: if Score(P ) > threshold then
8: add P to P Candidates
9: end if

10: end if
11: end for
12: Return: arg maxθ∈P Candidates Score(θ)

A.2. Training CPPNs with NEAT

CPPNs are trained with the NEAT algorithm (Stanley &
Miikkulainen, 2002), a neuroevolution (Stanley et al., 2019)
algorithm that learns both the architecture (i.e. the topology)
and the weights of CPPNs. Specifically, in this work, the
NEAT-Python library (McIntyre et al.) is used to initialize
and evolve the CPPNs that encode environments. The setup
and choices of hyperparameter are listed in Table 1. Be-
cause POET has its own diversity preservation mechanism,
NEAT is run in POET without its conventional speciation
mechanism. In this work, crossover between CPPNs is not
performed.

A.3. Additional Information about the Domain and
Experiment Setup

A.3.1. ADDITIONAL DETAILS ABOUT THE DOMAIN

The agent, illustrated in Figure 3, has four degrees of free-
dom (i.e. the dimensions of its action space) as the hips and
knees of each leg are controlled by two motors. It has a total
of 24 inputs: readings from 10 LIDAR rangefinders and 14
positional and movement variables from the agent’s body
parts (Klimov, 2016).

Reward is accumulated at each step when the agent attempts
to move from the left end to the right end of an environment.
If the agent falls at any step, the reward for that step is−100.
As long as it does not fall, the step-wise reward is 130 ×
∆x−5×∆Hull Angle−3.5e−4×Applied Torque,
which encourages the agent to move forward while keeping
the hull straight and minimizing motor torque applied at

joints.

An episode terminates when 2,000 time steps (frames) have
elapsed, when the agent’s head touches any obstacle or
ground, or when it arrives at the finish line (the right end of
the obstacle course).

Following Wang et al. (2019a;b), an environment is con-
sidered solved when the agent both reaches the finish line
and obtains a score of 230 or above. The controller (with
24 inputs and 4 outputs all bounded between -1 and 1) is a
fully-connected neural network with with 2 hidden layers
of 40 units each, with tanh activation functions.

A.3.2. POET EXPERIMENT SETUP

The hyperparameters for ES used in POET, and later in
controls when relevant, are listed in Table 2. POET attempts
to generate new environments every 150 iterations (M in
step (1) in Section 3.1), and conducts transfer evaluation
experiments every 25 iterations (N in step (3) in Section
3.1). When any environment-agent pair accepts a transfer or
when a child environment-agent pair is first created, the state
of its Adam optimizer, the learning rate, standard deviation
for noise are reset to their initial values, respectively.

A.4. Additional Details and Results on Evaluation of
Algorithmic Innovations

A.4.1. DEFINITION OF CHALLENGING LEVELS

For the purpose of analyzing the quality of results, this work
adopts the definitions of challenge levels for the simple,
hand-designed EE (i.e. a vector of values that consists of
the surface roughness, the range of stump height, and the
range of gap width) from the original POET paper (Wang
et al., 2019a;b), where environments are classified as either
challenging, very challenging, or extremely challenging,
based on how many conditions they satisfy out of the three
listed in Table 3. Satisfying one of the three conditions
makes an environment challenging; satisfying two of the
three conditions makes an environment very challenging;
and an extremely challenging environment satisfies all three
conditions. Shown in Table 3, each of these conditions
is much more demanding than the corresponding values
used in the original Bipedal Walker Hardcore environment
(Klimov, 2016) in OpenAI Gym (Brockman et al., 2016).

A.4.2. PERFORMANCE COMPARISON BETWEEN
PATA-EC AND THE ORACLE EC

Recall that PATA-EC is general and can be applied to nearly
any environment and with any encoding. The idea in this
experiment is to apply the new PATA-EC to the environ-
ment in the original POET (which still uses the original,
hand-crafted EE), and then to compare the result to POET’s
performance with the original hand-designed EC on the



Enhanced POET: Open-ended Reinforcement Learning

Hyperparameter Setting

initial connection full
activation default random
activation options identity sin sigmoid square tanh
aggregation default sum
bias init stdev 0.1
bias init type gaussian
bias max value 10.0
bias min value -10.0
bias mutate power 0.1
bias mutate rate 0.75
compatibility disjoint coefficient 1.0
compatibility weight coefficient 0.5
enabled default True
feed forward True
node add prob 0.1
node delete prob 0.075
num inputs 1
num outputs 1
response init mean 1.0
response init type gaussian
response max value 10.0
response min value -10.0
response mutate power 0.2
single structural mutation True
structural mutation surer default
weight init stdev 0.25
weight init type gaussian
weight max value 10.0
weight min value -10.0
weight mutate power 0.1
weight mutate rate 0.75

Table 1. The setup and hyperparameter values for instantiating and evolving CPPNs.

same hand-crafted EE. The question is whether the more
generic PATA-EC can perform reasonably close to an EC
explicitly hand-crafted for this domain. With this setup,
holding everything the same as in the original POET paper
except for the EC, we find that the general PATA-EC can
indeed produce the same diversity and levels of challenge
environments as the original hand-designed EC, although it
is less efficient at doing so. It requires 82.4± 7.31% more
computation, measured in ES steps, to produce the same
level of complexity (Figure 6).

A.4.3. PERFORMANCE COMPARISON BETWEEN
DIFFERENT TRANSFER STRATEGIES

As shown in Wang et al. (2019a;b), periodic transfer at-
tempts are essential to obtaining solutions in extremely
challenging environments, despite being computationally
expensive (Section 3.2). Here the different transfer strate-

gies are compared in the same setup as in original POET
(Wang et al., 2019a;b). POET with the improved transfer
strategy creates (and solves) the same fraction of extremely
challenging environments and achieves a similar diversity
and challeng levels as the original POET, but with only
79.7± 1.67% of the computation (measured in number of
ES steps) of the original POET (Figure 7). Furthermore,
the chance of an existing agent paired with an environment
being replaced by a transferred agent from another envi-
ronment dropped from 50.44 ± 3.39% with the original
POET (this high number suggests many false positives) to
22.31± 2.42%. For comparison, the corresponding number
from Innovation Engines (Nguyen et al., 2016) (which ex-
hibited healthy goal-switching and optimization dynamics)
was a similar 17.9%. A simple alternative, which is remov-
ing all fine tuning (i.e. not running ES at all as part of a
transfer attempt), performs poorly (Figure 7). These results
justify that some fine tuning is indeed necessary for finding



Enhanced POET: Open-ended Reinforcement Learning

Hyperparameter Setting

number of sample points for each ES step 512
weight update method Adam (Kingma & Ba, 2014)
initial learning rate 0.01
lower bound of learning rate 0.001
decay factor of learning rate per ES step 0.9999
initial noise standard deviation for ES 0.1
lower bound of noise standard deviation 0.01
decay factor of noise standard deviation per ES step 0.999

Table 2. Hyperparameters for ES in POET experiments and controls.

MAXIMUM MAXIMUM
STUMP HEIGHT GAP WIDTH ROUGHNESS

POET ≥ 2.4 ≥ 6.0 ≥ 4.5
ORIGINAL BIPEDAL WALKER HARDCORE ENVIRONMENT 2.0 3.0 1.0

Table 3. The challenge level of an environment is based on how many conditions it satisfies out of the three listed here. Satisfying
one, two or all three conditions makes an environment challenging, very challenging, or extremely challenging, respectively (Wang et al.,
2019a;b). The values used in the experiments of POET to determine the challenge level of an environment are 1.2, 2.0, and 4.5 times the
corresponding values used in the original Bipedal Walker Hardcore environment in OpenAI Gym (Klimov, 2016).

Figure 6. Performance comparison between PATA-EC and the oracle EC when applied to the environment in the original POET
(with the hand-crafted simple EE). The domain-general PATA-EC can match the ability of the hand-designed, domain-specific Oracle
EC to generate diverse environments of different challenge levels, although it requires more computation to do so. The number below
each treatment reports the fraction of computation that treatment received relative to that with the Oracle EC (100%). As compute
increases, POET with the domain-general PATA-EC can generate increasingly diverse, challenging environments, eventually matching the
hand-designed, domain-specific Oracle EC in that regard. Definitions of “challenging”, “very challenging”, and “extremely challenging”
environments are the same as those in the original POET (Wang et al., 2019a;b) and are also explained in Appendix A.4.1).

promising stepping stones. They also suggest that there are
efficiency gains when only paying the computational cost
of such fine tuning once the direct transfer test is satisfied.

A.5. Sample Environments

Figure 8 illustrates 12 sample environments that
were created and solved by Enhanced POET with

the CPPN-based EE in a single run. Videos of
agents can be found at https://eng.uber.com/
enhanced-poet-machine-learning. These envi-
ronments are selected based on the following procedure: Let
set A contain all the environments that POET created and
solved in a run, and let S be initialized as a single-element
set that contains only the perfectly flat environment, i.e., the

https://eng.uber.com/enhanced-poet-machine-learning
https://eng.uber.com/enhanced-poet-machine-learning


Enhanced POET: Open-ended Reinforcement Learning

Figure 7. Percentage of environments with different challenge levels created and solved by POET with different transfer strate-
gies. With the improved transfer strategy, POET is able to create and solve environments with the same diversity and challenge levels
as the original POET with less computation. In contrast, removing all fine-tuning transfer performs poorly. The number below each
treatment reports the fraction of computation that treatment received relative to that for original POET (100%).

very first environment that any POET run starts with. At
each iteration of this procedure, we add to S environment
E that satisfies arg maxE∈A,E /∈S mine∈S D(E, e), where
D(·, ·) measures the distance between any given two envi-
ronment. Here we adopt the same distance measure based
on PATA-EC as that used in novelty calculation as stated in
Section 3.2. We repeat the iterative process until number of
environments other than the perfect flat environment in S
reaches a preset value.

The intuition behind this selection process is that we contin-
ually add the environment that is furthest away from those
in S using the distance measure proposed in this work. It
is evident that those environments in Figure 8 exhibit a
broad variety of obstacles that are vastly diverse not only in
overall shapes and heights but also in fine details and local
variations. This collection is a validation of the diversity-
promoting nature of POET, and also a validation that the
proposed distance metric based on PATA-EC does help to
capture how different the environments are from each other.

For comparison with the CPPN-encoded environments il-
lustrated in Figure 8, Figure 9 illustrates 12 sample envi-
ronments that were created and solved in original POET
with the simple, hand-designed encoding that only supports
surface roughness and two regularly-shaped obstacles, i.e.,
stumps and gaps. Each column illustrates six sample envi-
ronments from one run of original POET, where the upper,
middle, bottom two rows illustrate the environments catego-
rized as “challenging”, “very challenging”, and “extremely

challenging” environments, respectively as defined in Ap-
pendix A.4.1.

A.6. Phylogenetic Tree

One way to visualize the diversity POET produces is by
viewing a phylogenetic tree (i.e. a family tree) of the environ-
ments it has created at any given point. Natural phylogenetic
trees have numerous, deep, nested branches. For example,
nature has many phlya (e.g. mammals, plants, fungi, bacte-
ria, etc.), each of which has many different, branches within
it that are long (in that they have persisted over long periods
of evolutionary time). Historic attempts at creating open-
ended explosions of complexity in computer simulations of
evolving systems in the fields of artificial life and compu-
tational evolutionary biology rarely, if ever, produce such
phylogenetic trees (Lenski et al., 2003). Instead, usually
one type of agent becomes more fit than everything else and
replaces all the other types of agents, eliminating diversity
(i.e. pruning all branches of the tree save one). These trees
thus have one long trunk and a few shallow branches at
the end that capture the not-yet-wiped out diversity in the
current population.

Phylogenetic trees produced by POET, in sharp contrast,
more resemble those from nature. Figure 10 shows the phy-
logenetic tree of the first 100 environments of a POET run.
Each node corresponds a unique environment that POET
created with an inserted picture illustrating its landscape.
An edge connects an environment (on the upper end) to its



Enhanced POET: Open-ended Reinforcement Learning

child environment (on the lower end). The shape of nodes
distinguishes whether environments are still in the active
population (circular) or already in the archive (square) at
the iteration when the 100th environment is added to the
population, while the color of the border of each node sug-
gests its time of creation: darker color means being created
later in the process. Note the hierarchical organization, with
major families, families within those, etc. The signature
of open-ended algorithms is there: complex phylogenetic
trees, meaning those that have multiple, deep, hierarchi-
cally nested branches. Of course, this tree is much smaller
than those in nature, but that could be a function of (1) lim-
ited computational resources, and (2) that the environment
search space in these first experiments with Enhanced POET
are limited to obstacle courses only. Both are subjects in the
discussion in Section 7.

The red arrows indicate when successful transfers happened
(i.e. existing paired agents being replaced by transferred
agents after fine-tuning) during one of transfer iterations
(after the 100th environment is added, but before the 101th
environment is added). Although most successful transfers
happen between neighboring (more similar) environments,
some agents manage to transfer to environments that are far
from their paired environments (long red arrows in Figure
10).

A.7. Illustration of the Generalization Ability of Agents

Figure 11 illustrates the vectors of scores for how all agents
perform across all the first 80 environments that a POET run
creates and solves. More specifically, the ith column from
left illustrates the vector of scores of all agents evaluated in
the ith environment numbered in the order of being created,
while the ith row from the top indicate the performance of
the agent paired with the ith environment when tested across
all the environments, respectively.

For the purpose of illustration, the raw score is normalized
by 230, the minimum score POET has to achieve to solve the
respective target environment (Wang et al., 2019a;b), and
clipped between 0.0 and 1.0. That way, a normalized score
of 1.0 is equivalent to an agent solving the environment, a
normalized score of 0.0 means the agent achieved a zero or
negative score in the environment, and a normalized score
between 0.0 and 1.0 indicates that the agent makes some
progress, but ultimately fails to solve the environment. The
color intensity of matrix entries linearly scales with the
normalized scores with white for 0.0 and black for 1.0.

In Figure 11, all diagonal entries are 1.0 because all environ-
ments shown are solved by their paired agents, while any
given row reflects the ability of the corresponding agent to
generalize across different environment. The upper-right
triangular portion indicates how agents perform in environ-
ments created later than their paired environments. As envi-

ronments created later are often more challenging, it makes
sense that agents would perform poorly in the environments
created much later than their paired ones (indicated by areas
towards upper right). As a result, that area is mostly white
with some light gray squares near the diagonal. It is also
interesting to see that, based on the lower-left triangular
portion, agents have limited success in environments that
are created earlier than their paired environment as well.
This phenomenon indicates that there are no universal “gen-
eralists” created by POET that are capable of solving all
or most of the environments. Instead, over time POET cre-
ates “specialists” that are mostly specialized to their paired
environments.

A.8. Additional Details and Results about Direct
Optimization Control and the
Ground-Interpolation Curriculum Control

A.8.1. PPO EXPERIMENT SETUP

We adopt the PPO2 implementation from OpenAI Baselines
(Dhariwal et al., 2017). The controller consists of a policy
network and a value network. The policy network has the
same architecture and activation functions as those used in
POET (see A.3.1). The value network shares the input and
the hidden layers with the policy network and it has a sepa-
rate fully-connected layer that connects to the value output.
Hyperparameters listed in Table 4 are chosen based on a grid
search that yields the highest average scores across three en-
vironments randomly sampled from all target environments.
We then hold this set of hyperparameters for all the PPO
runs for all the target environments. Note that, as illustrated
in Figures 12 and 13, PPO with these hyperparameters has
effectively solved early-stage and some middle-stage target
environments either by direct optimization or through the
ground integration curriculum.

A.8.2. EQUIVALENT COMPUTATIONAL BUDGET

For both direct optimization control and the ground inter-
polation curriculum control, each run is given the same
computational budget as POET spent to solve the target
environment, measured in total number of time steps in sim-
ulation. It also includes all the simulation rollouts taken
in order for POET to solve all the ancestor environments
on the direct line leading to the target environment and
all the computations related to transfer attempts into those
environments.

A.8.3. OTHER DETAILS AND RESULTS

As described in Section 6, the 15 target environments were
sampled from the three different stages of POET runs. That
is, for each target environment, we attempted 5 independent
runs from different random seeds using direct optimization
with ES, direct optimization with PPO, ground-integration



Enhanced POET: Open-ended Reinforcement Learning

Hyperparameter Setting

batch size 65536
number of training minibatches per update 4
number of training epochs per update 4
λ 0.95
γ 0.99
value function loss coefficient 0.5
gradient norm clipping coefficient 0.5
learning rate 0.0003
learning rate schedule Anneal linearly to 0

Table 4. Hyperparameters for PPO experiments.

curriculum control with ES, and ground-integration curricu-
lum with PPO, respectively (for a total of 300 runs for all
target enviroments).

Figure 12 reports the normalized scores (following the same
normalization method in Appendix A.7) and percentage
solved by direct optimization for target environments at dif-
ferent stages. As with environments discovered by original
POET, direct optimization can only solve target environ-
ments selected at the earlier stages of a POET run (when
the produced environments are often less challenging), but
neither ES nor PPO could solve more challenging target
environments selected at later stages of POET runs. The
normalized scores of direct optimization on middle and late
stage target environments are significantly lower than 1.0,
and the percentage of middle and late stage target environ-
ments solved by direct optimization are significantly below
100% (p < 0.01; Wilcoxon signed rank test).

The ground interpolation curriculum control follows a setup
similar to that of the direct-path curriculum-building control
in the original POET (Wang et al., 2019a;b). For each run,
the agent starts in a perfectly flat environment. When in
one environment the agent achieves a score above the repro-
duction eligibility threshold of POET (i.e. the condition for
when an environment-agent pair is eligible to reproduce in
POET), it moves to the next environment (whose scaling
factor is increased by 0.02 from the current one). The run
stops when the agent reaches and solves the target environ-
ment, or when the computational budget (Appendix A.8.2)
is used up.

Figure 13 illustrates the scaling factor of the last-solved
environment that is closest to the target environment along
the path, and the percentage of target environments that are
solved by the ground-interpolation curriculum. Statistical
tests demonstrate that the ground-interpolation curriculum
controls significantly underperform POET in solving late-
stage target environment (p < 0.01; Wilcoxon signed rank
test).



Enhanced POET: Open-ended Reinforcement Learning

Figure 8. Sample environments created and solved in a single run by Enhanced POET with the CPPN-based EE. These environ-
ments exhibit a wide diversity of macro and micro environmental features.



Enhanced POET: Open-ended Reinforcement Learning

Figure 9. Sample environments in original POET. The simple, hand-designed EE can only support a finite set of types of obstacles,
i.e., rough surfaces, stumps with fixed width and variable heights, and gaps with variable widths. This search space sustains some, but
limited, diversity. Each column shows six sample environments from one run, where the upper, middle, and bottom two rows illustrate
two “challenging”, “very challenging”, and “extremely challenging” environments, respectively, according to the challenge levels defined
in Appendix A.4.1.



Enhanced POET: Open-ended Reinforcement Learning

Figure 10. Phylogenetic tree of the first 100 environments of a POET run. Each node contains a landscape picture (zooming in the
digital version enables seeing more detail) depicting a unique environment, with outgoing edges on its bottom connecting to its children.
The circular or square shape of a node indicates that the environment is in the active population or the archive, respectively, while the
color of the border of each node suggests its time of creation: darker color means being created later in the process. The red arrows label
successful transfers during a single transfer iteration, specifically between the addition of the 100th and 101st environment.



Enhanced POET: Open-ended Reinforcement Learning

Figure 11. Illustration of the vectors of scores of how all agents perform across all the first 80 environments that a POET run
creates and solves. Environments are ordered from left to right by the time of creation, while rows corresponds to their respective paired
agents. Each square in the plot indicates the normalized score that the agent in that row performs in the environment of its respective
column. The normalized score is between 0.0 and 1.0, and color-coded linearly as a grayscale between white and black. Normalization of
raw scores is described in Appendix A.7.



Enhanced POET: Open-ended Reinforcement Learning

(a) Normalized scores of direct optimization on target environments. Symbols: median. Shaded regions: 95% bootstrapped confidence
interval.

(b) Percentage of target environments solved by direct optimization. Symbols: mean. Shaded regions: 95% bootstrapped confidence
interval.

Figure 12. POET generates and solves challenges that direct optimization cannot solve. Target environments were selected from
different stages of POET runs (see text) and are all solved by POET (blue). Direct optimization with ES (orange) and PPO (green)
respectively, can only solve those selected at the earlier stages of a POET run (which are therefore often less challenging), but could not
solve more challenging target environments selected at later stages of POET runs.



Enhanced POET: Open-ended Reinforcement Learning

(a) Scaling factors of last solved environments on the ground-interpolation curriculum towards target environments. Symbols: median.
Shaded regions: 95% bootstrapped confidence intervals.

(b) Percentage of target environments solved by the ground-interpolation curriculum. Symbols: mean. Shaded regions: 95% bootstrapped
confidence intervals.

Figure 13. Performance comparisons between Enhanced POET and controls with the ground-interpolation curriculum. Even
with curricula customized to each challenging environment (linearly interpolating the ground), both ES (orange) and PPO (green) are
unable to match the performance of the Enhanced POET (blue) with its implicit, self-generated curricula.


