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S-1. Proofs and Additional Theoretical Results

In this section, we present proofs for propositions and theorems in main paper Sections 4.1.2 and 4.2.

The propositions in Section 4.1.2 illustrate the deep relations between the Gaussian kernel G;: S% x S — R and the
uniform distribution on the unit hypersphere S%. As we will show below in Section S-1.1, these properties directly follow
well-known results on strictly positive definite kernels.

In Section S-1.2, we present a proof for Theorem 1. Theorem 1 describes the asymptotic behavior of Lcontrastive as the
number of negative samples M approaches infinity. The theorem is strongly related to empirical contrastive learning, given
an error term (deviation from the limit) decaying in O(M ~2/3) and that empirical practices often use a large number of
negatives (e.g., M = 65536 in He et al. (2019)) based on the observation that using more negatives consistently leads to
better representation quality (Wu et al., 2018; Tian et al., 2019; He et al., 2019). Our proof further reveals connections
between Lcontrastive ad Lniform Which is defined via the Gaussian kernels.

Finally, also in Section S-1.2, we present a weaker result on the setting where only a single negative is used in Lcontrastive
(i.e.,, M =1).

S-1.1. Proofs for Section 4.1.2

To prove Propositions 1 and 2, we utilize the strict positive definiteness (Bochner, 1992; Stewart, 1976) of the Gaussian
kernel Gy:

Gi(u,v) 2 e~ tu—vlz = e2t'“T”_2t, t > 0.
From there, we apply a known result about such kernels, from which the two propositions directly follow.

Definition (Strict positive definiteness (Bochner, 1992; Stewart, 1976)). A symmetric and lower semi-continuous kernel K
on A x A (where A is infinite and compact) is called strictly positive definite if for every finite signed Borel measure p
supported on A whose energy

Il /5 L B au) duto)

is well defined, we have I [u] > 0, where equality holds only if ;- = 0 on the o-algebra of Borel subsets of A.
Definition. Let M(S9) be the set of Borel probability measures on S¢.

We are now in the place to apply the following two well-known results, which we present by restating Proposition 4.4.1,
Theorem 6.2.1 and Corollary 6.2.2 of Borodachov et al. (2019) in weaker forms. We refer readers to Borodachov et al.
(2019) for their proofs.

Lemma 1 (Strict positive definiteness of G). Fort > 0, the Gaussian kernel Gy(u,v) = e tilu=vli3
positive definite on ST x S%.
Lemma 2 (Strictly positive definite kernels on §¢). Consider kernel K;: S x 8% — (—o0, +00] of the form,

Kp(u,0) £ f(lu—vll3). ()

'MIT Computer Science & Artificial Intelligence Lab (CSAIL). Correspondence to: Tongzhou Wang <tongzhou@mit.edu>.

T . .
= 2t V=2 g strictly

Proceedings of the 37" International Conference on Machine Learning, Online, PMLR 119, 2020. Copyright 2020 by the author(s).



Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere

If K is strictly positive definite on S x 8 and I, [04] is finite, then o4 is the unique measure (on Borel subsets of S%)
in the solution of min,,c rq(s4) Irc, [1t], and the normalized counting measures associated with any K y-energy minimizing
sequence of N -point configurations on S converges weak* to o.

In particular, this conclusion holds whenever f has the property that — f’(t) is strictly completely monotone on (0, 4] and

I, [o4] is finite.

We now recall Propositions 1 and 2.

Proposition 1. o is the unique solution (on Borel subsets of S%) of

min [ = min Gy(u,v)du(v) du(u). 2
i To) = min [ [ G aut) du) @
Proof of Proposition 1. This is a direct consequence of Lemmas 1 and 2. O

Proposition 2. For each N > 0, the N point minimizer of the average pairwise potential is

uy = argmin E Gi(ui, uj).
Up,U2,..., uy ESE 1<i<j<N

The normalized counting measures associated with the {ul; }35_, sequence converge weak* to o,
Proof of Proposition 2. This is a direct consequence of Lemmas 1 and 2. O

S-1.2. Proofs and Additional Results for Section 4.2

The following lemma directly follows Theorem 3.3 and Remarks 3.4 (b)(i) of Serfozo (1982). We refer readers to Serfozo
(1982) for its proof.

Lemma 3. Let A be a compact second countable Hausdorff space. Suppose

1. {un}22 is a sequence of finite and positive Borel measures supported on A that converges weak™ to some finite and
positive Borel measure i (which is same as vague convergence since A is compact);

2. {fn}S2 is a sequence of Borel measurable functions that converges continuously to a Borel measurable f;
3. {fn}n are uniformly bounded over A.
Then, we have the following convergence:
i [ fule)dunle) = [ f)due).
n—=0 JreA r€A
We now recall Theorem 1.
Theorem 1 (Asymptotics of Leontrastive)s For fixed T > 0, as the number of negative samples M — oo, the (normalized)

contrastive loss converges to

lim L:contrastive(f; T, M) - log M
M— o0

@) /7
= lim E —log - —logM
M—oco  (2,y)~Ppos ef(w)Tf(y)/-r + Zz ef(wz YT f(y)/T
{xzi}fiﬁ.’ijpdata
1 _
=— E [f@Tf/@)]+ E [bg E [efGY WTH . )
T (2,Y)~Ppos I~ Pdata X~ ~PDdata

We have the following results:
1. The first term is minimized iff f is perfectly aligned.

2. If perfectly uniform encoders exist, they form the exact minimizers of the second term.



Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere

3. For the convergence in Equation (2), the absolute deviation from the limit (i.e., the error term) decays in O(M’2/3).

Proof of Theorem 1. We first show the convergence stated in Equation (2) along with its speed (result 3), and then the
relations between the two limiting terms and the alignment and uniformity properties (results 1 and 2).

* Proof of the convergence in Equation (2) and the O(M -2/ 3) decay rate of its error term (result 3).

Note that for any z,y € R and {z; }M, "X Ddata, We have

1 _
lim log <M F@T W)/ Ze m)/7> =log E [ef(f” ) f @)/ almost surely, (3)

M—o0 T ~Pdata

by the strong law of large numbers (SLLN) and the Continuous Mapping Theorem.

Then, we can derive

lim Lcontrastive(f; T, M) - log M
M — o0

- B [- 71+ Tim E o F@T W/ L LN p @)@
(r,y)Nppos[ f@ ) 1)/ ] M—=o0  (2,y)~Ppos [ ¢ (M ;
M iid.

= E [~f(@)"f(y)/r] +E

{517 }1 1 ™~ Pdata
(%,Y) ~Ppos

1
i F@T W)/ 4 E' () f(@)/7
]L}liréolog (M ¢ )1
1

——1 B [+ B flg E_[ererrer)],

T (13 7y) ~Ppos T~Pdata T ~Pdata

where we justify the switching of expectation and limit by the convergence stated in Equation (3), the boundedness of
eu' v/ (where u,v € S¢, 7 > 0), and the Dominated Convergence Theorem (DCT).

For convergence speed, we consider both sides:
(‘Ccontrastive(f; T, M) - IOg M) - (A/}lm Econtrastive(f? T, M) - 10g M)

R <M F@T W/ Z S ) (@) r)] E [1Og E [ef(z‘)Tf(z)/TH

(@,y) ~Ppos T~Pdata 7 ~Pdata

— iid. -
{Ii }f‘if’l" Pdata

VT 4 F@) T f(@)/7 f(w’)Tf(w)/T}
< IN]PEM log< Ze >1 E [log E [e }

I ~Pdata T ~Pdata
iid
{=; }L 1~ Pdata

< E |log E [ QLT Zef(r )T (@)/ ] log E [eﬂxff(x)/ﬂ

x~ iid.
pdata_ {x }M X Paata ac ~Pdata

- E _10g E [61/T+ef(w‘)Tf(w)/T]10g E [ef(z—)Tf(x)/TH

L~Pdata | T~ ~Pdata T~ ~Pdata
[1
S E = e2/‘[‘
Z~Pdata L M

1 2/T

= —¢€

M~ “4)
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where the last inequality follows the concavity of log, and

(]\/}I—I>IIOO Econtrastive(f? T, M) - IOg M) - (»Ccontrastive(f; T, M) - IOg M)

= E [k)g E [6f(r’)Tf(r)/r} log <M F@)Tfly Ze f(x)/r>‘|

(Ivy)"‘ppos T ~Pdata

_ iid.
{27 1L, % pgaa

IN

M
el/T E
M + 1 (,y) ~Ppos
{27 1L b

T ~Pdata

E {ef(w’)Tf(w)/T] _ < L s@ s | Zef(ac ) f(w)/r) H
M

1 M
< 2/ Ny E E { F@ ) (@) /r} _ of @) f@)/7
M+1 M+1 z {z; }L li;i\/pdata T MPdata Z
1 5 M3
< = Q2 S VL ( 1/7 _ —1/7') 5
Swr1¢ Tamrgae @ e : ©®)

where the first inequality follows the concavity of log and the last inequality follows the simple bound from Chebychev’s
inequality: denoting i.i.d. random variables ef @) F(2)/7 for T; ~ Ddata as Y; with supp(Y;) C [e1/7, /7], and their
mean as Y = E[Y;], we have

M M
Z —¥ll<p l ZY V> M 2/3( /7 _ 6—1/7)1 (61/T _ 6—1/7)
1=1 i=1

+ (1 —-P % ﬁ;yz —Y|>M23 (el/r _ el/r)]) M2/3 (el/T _ 671/7)

Var [Y;] Vr  —1)r —2/3 ()7 _ _—1/r
M2 . M—4/3(€1/T _ 6—1/7)2 (e —¢€ ) +M (e —-¢€ )

ngz/g (61/7 B 671/7)

IN

where the last inequality is from Var [V;] < i (el/ T eV T)2 given its bounded support.

Combining both sides, we can immediately see that the absolute deviation from the limit decays in O(M ~2/3).
¢ Proof of result 1: The first term is minimized iff f is perfectly aligned.

Note that for u, v € 8%,

||u—v||§ =2-2-ulv.

Then the result follows directly the definition of perfect alignment, and the existence of perfectly aligned encoders (e.g.,
an encoder that maps every input to the same output vector).

* Proof of result 2: If perfectly uniform encoders exist, they form the exact minimizers of the second term.

For simplicity, we define the following notation:

Definition. Vi € M(S?), u € S, we define the continuous and Borel measurable function

U, (u) £ / e " dp(v). ©)
Sd
with its range bounded in [e=1/7, e!/7].

Then the second term can be equivalently written as

E {log E {ef@‘ff@)/ﬂ: E [logUpyop-1(f(@))]

I~ Pdata T~ ~Pdata L ~Pdata



Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere

where paata 0 f L € M(S d) is the probability measure of features, i.e., the pushforward measure of pyata via f.

We now consider the following relaxed problem, where the minimization is taken over M (S?), all possible Borel
probability measures on the hypersphere S%:

i logU d . 7
Lanin [ 1ogU(u) duw )

Our strategy is to show that the unique minimizer of Equation (7) is o4, from which the result 2 directly follows. The
rest of the proof is structured in three parts.

1. We show that minimizers of Equation (7) exist, i.e., the above infimum is attained for some ;. € M(S?).

Let {pm }2°_; be a sequence in M(S?) such that the infimum of Equation (7) is reached in the limit:

mlgnOo o log Uy, (u) dptm (u) = ue/l\ftlfsd) /sd log Uy, (w) dps(u).

From the Helly’s Selection Theorem, let 1* denote some weak™ cluster point of this sequence. Then p,,, converges
weak* to * along a subsequence m € N € N. For simplicity and with a slight abuse of notation, we denote this
convergent (sub)sequence of measures by {p,, 152 4.

We want to show that p* attains the limit (and thus the infimum), i.e.,

/ logUy» (w) dp™ (u) = lim log U, (u) dpn, (). (8)
Sd

n—oo Sd

In view of Lemma 3, since S¢ is a compact second countable Hausdorff space and {logU,,, },, is uniformly
bounded over S¢, it remains to prove that {log U,,, },, is continuously convergent to log U,,- .

Consider any convergent sequence of points {z,, }°°; € R s.t. x,, — 2 where x € S%.
Let 0,, = x,, — x. By simply expanding U,,,, and p,,«, we have

e—H&nH/TUMn (117) g U,U«n (xn) S eH(sn”/TU#n ({E)

Since both the upper and the lower bound converge to U,- () (by the weak * convergence of {/i,}n to p*),
Uy, (x,) must as well. We have proved the continuous convergence of {log U,,,, }» to log U,,«.

Therefore, the limit in Equation (8) holds. The infimum is thus attained at p*:

lim [ logU,, (u)dp, = / log U, (uw) dp™.

n—oo w

. We show that U ,- is constant ;.*-almost surely for any minimizer ;.* of Equation (7).

Let u* be any solution of Equation (7):

u* € argmin /log U, (u)dp.
peM(sd) Ju

Consider the Borel sets where p* has positive measure: 7 = {T' € B(S?%): u*(T) > 0}. Forany T € T, let .
denote the conditional distribution of x* on T', i.e., VA € B(S d),

o HANT)

Note that for any such 7' € T, the mixture (1 — a)p* + o is a valid probability distribution (i.e., in M(S%))
for o € (—p*(T), 1), an open interval containing 0.
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By the first variation, we must have

Oa
0
~ da

= /Sd log U(lfa);t*“ra,u.; (u) dM* (U‘)

0 * *
0= — s log Ui —aypu apz, (w) A((1 — a)p* + apy) (u)
a=0

7] ¥
108U () i )

5 1=0) [ TomUnmaye s (") + 2

a=0

0 *
+ 5‘704/&1 log U(l,a)ﬂurw;(u) dp*(u)

a=0 a=0

0 *
00 5 [ 10800y (0) A (0

+ /sd log U1 — o) oz, (w) dpgp (u)

a=0 a=0
(e i) =@ o,
= /SdlgUu()du()Jr/Sd W)
U= ( e (u
+/$d log U+ (u) dpp (u / v U ( )du*T(u)
_ Uu}(“) . o
/SdUm(u)d“(“”/SlgU () Ay = ) (w) — 1, ©

where the Leibniz rule along with the boundedness of Uy,» and Uy,:  together justify the exchanges of integration
and differentiation.
Let {T,,}°2 , be a sequence of sets in T such that

li_>m Uy (u) dp, (u) = sup/ e () dpg (u) = =U,
n—00 Jga TeT

where the supremum must exist since U+ is bounded above.
Because U, is a continuous and Borel measurable function, we have {u: U, (u) > U*} € B(S?) and thus

pr({u: Uy (u) > U} =
wr, ({u: Ups(u) > U*}) =0, Vn=1,2,...,

otherwise {u: Uy~ (u) > U*} € T.
Asymptotically, U~ is constant 7, -almost surely:

J.

Upe ) = [ U () i, ()
2 [ (o e lw) = [ U0 i, 0)) i, (0
<2(U" = [ Ve ) i, ()

— 0, as n — oo,

dpr,, (u)

where the inequality follows the boundedness of U~ and that p7, ({u: Uy=(u) > U*}) =0
Therefore, given the continuity of log and the boundedness of U,,~, we have

lim log U, (u) dpr, = log U™,

n— oo Sd
Equation (9) gives that Vn = 1,2,.. .,

Uu}n (u)
sa Up=(u)

1 * *
> 7/ Uy, (u)dp”(u )+/ log U+ (u) dpr, —/ log U+ (u) dp
Sd Sd Sd
1 * *
= /sd Uy (u) dpr, (u )—i—/Sd log U= (u) dpy, _/sd log Uy (u) dp™,

1- i + [ logUye (w (i, — )
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U,
Uf*" and that p*({u: Uy~ (u) > U*}) = 0.

Taking the limit of n — oo on both sides, we have

where the inequality follows the boundedness of

1
1= lim 1> — lim Uy (u) dpp, (u) + lim / log Uy (u) dpy, (u) 7/
, 00 [ ga ,

*
n— 00 n—oo [ga 0o S

og Uy (u) dy (u)
=1+logU* — / log Uy« (u) dp™ (u)
Sd

>1+logU* —log/ U (u) dpe™ (u)
Sd

>1

- )

where the last inequality holds because the supremum taken over 7 O {S¢}.
Since 1 = 1, all inequalities must be equalities. In particular,

/ log Uy (w) dp™ (u) = log/ Uy (w) dp™ ().
Sd Sd

That is, for any solution p* of Equation (7), U,,~ must be constant y*-almost surely.
3. We show that o is the unique minimizer of the relaxed problem in Equation (7).

Let S C M(S?) be the set of measures where the above property holds:
S&{pe M(8%): U, is constant j-almost surely } .

The problem in Equation (7) is thus equivalent to minimizing over S

argmin/ log U, (u) dp(u) :argmin/ log U, (u) dpu(u)
HEM(SE) J S HES Sd

= arg min log/ Up(u) dp(u)
pEeS S

= arg min log/ / eu'v/T dp(v) dp(u)
s Jsd

nes

1 1
= arg min ( + log/ / e_ﬁHu—’Uﬂz d#(f()) dﬂ(u)>
HES T Sd J8sd

= argmin/ G 1 (u,v) dp(v) dp(u).
pes  JsdJsd T

By Proposition 1 and 7 > 0, we know that the uniform distribution o is the unique solution to

argmin/ G (u,v)dp(v) dp(u). (10)
peM(S?) Jsd Jsa 27

Since o4 € S, it must also be the unique solution to Equation (7).

Finally, if perfectly uniform encoders exist, o is realizable, and they are the exact encoders that realize it. Hence, in
such cases, they are the exact minimizers of

min E {1og E [ef(””)Tf(z)/TH.

f *~Pdata X~ ~Pdata
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Relation between Theorem 1, L,ji;n and Lynisorm-  The first term of Equation (2) is equivalent with L;jign When o = 2, up
to a constant and a scaling. In the above proof, we showed that the second term favors uniformity, via the feature distribution
that minimizes the pairwise Gaussian kernel (see Equation (10)):

argmin/ G 1 (u,v) dp(v) dp(uw), (11)
pEM(S?) JSsd Jsd T

which can be alternatively viewed as the relaxed problem of optimizing for the uniformity loss L niform:

x7y ~ pdata 2T

arg min L ynitorm (f; QL) =argminE [Gi (f(x), f(y))} ) (12)
f T f

The relaxation comes from the observation that Equation (11) minimizes over all feature distributions on S¢. while
Equation (12) only considers the realizable ones.

Relation between Equation (7) and minimizing average pairwise Gaussian potential (i.e., minimizing £ .iform). In
view of the Proposition 1 and the proof of Theorem 1, we know that the uniform distribution o4 is the unique minimizer of
both of the following problems:

(oah = in tog [ [ ™ due) duu),
Sd JSsd

HEM(SH)

{o4} = min /log/ e“T”/Td,u,(v)du(u).
Sd Sd

HEM(S?)

So pushing the log inside the outer integral doesn’t change the solution. However, if we push the log all the way inside the
inner integral, the problem becomes equivalent with minimizing the norm of the mean, i.e.,

in Ey., U] By, U],
oin, Eup (U] Bun (U]

which is minimized for any distribution with mean being the all-zeros vector 0, e.g., %5u + %5 _u for any v € 8% (where 6,
is the Dirac delta distribution at u s.t. §,(S) = 1g(u), VS € B(S%)). Therefore, the location of the log is important.

Theorem 1 (Single negative sample). If perfectly aligned and uniform encoders exist, they form the exact minimizers of the
contrastive loss Leontrastive(f; 7, M) for fixed 7 > 0 and M = 1.

Proof of Theorem 1. Since M = 1, we have

1 . o
Leontrastive (f37,1) = ( %E [_f(l“)Tf(y) + log (ef(m)Tf(y)/T +el )Tf(m)/T)]
Z,Y)~Ppos T
T~ ~Pdata
1 -
> E [_T +log (e/7 + )Tf(r)/T)] (13)

T~ ~Pdata

1

1

By the definition of perfect alignment, the equality in Equation (13) is satisfied iff f is perfectly aligned.

Consider the function f: (0,4] — R, defined as
() =log(eT + e ).

It has the following properties:
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Optimize (1 —A) - Laiign + A * Luniform

1.4 —— Luniform(t =2) (eXp)
12 Laiign(@=2)

== \/al accuracy
1.0 A1
0.8 —
0.6 1
0.4 1
0.2 1

L

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0

£a|ign Only A Euniform Only

Figure 1: Effect of optimizing different weighted combinations of L,jign (v=2) and Lyniform (t=2) for STL-10. For each
encoder, we show the L,jign and L niform metrics, and validation accuracy of a linear classifier trained on encoder outputs.
Luniform 1 €xponentiated for plotting purposes.

__t
o —f(t) = £ <2 = L(1— (1+e 37)71) s strictly completely monotone on (0, +00):

14+e 2
vt € (0, +00),
1 ¢
Z( —(14e27) ) >0
(,Undii(l,(pre*ﬁ)*l):L(pre*%)*(”“) >0 n=12
dtn 27 (27)nH ’ A

¢ fis bounded on (0, 4].

In view of Lemma 2, we have that the equality in Equation (14) is satisfied iff the feature distribution induced by f (i.e., the
pushforward measure pgata © f ~1)is o4, that is, in other words, f is perfectly uniform.

Therefore,
1
Leontrastive (f;7,1) > —— + / / log (el/T + e“T”/T) do4(u) dog(v) = constant independent of f,
T Sd Jsd
where equality is satisfied iff f is perfectly aligned and uniform. This concludes the proof. O

Difference between conditions of Theorems 1 and 1. We remark that the statement in Theorem 1 is weaker than the
previous Theorem 1. Theorem 1 is conditioned on the existence perfectly aligned and uniform encoders. It only shows
that Leontrastive (f; 7, M = 1) favors alignment under the condition that perfect uniformity is realizable, and vice versa. In
Theorem 1, Leontrastive decomposes into two terms, each favoring alignment and uniformity. Therefore, the decomposition
in Theorem 1 is exempt from this constraint.

S-2. Addtional Experiment Results

Both alignment and uniformity are necessary for a good representation. Figure 1 shows how the final encoder changes
in response to optimizing differently weighted combinations of L,jign and Lyniform on STL-10. The trade-off between
the L,jign and Lyniform indicates that perfect alignment and perfect uniformity are likely hard to simultaneously achieve in
practice. However, the inverted-U-shaped accuracy curve confirms that both properties are indeed necessary for a good
encoder. When L,ign is weighted much higher than Lyniform, degenerate solution occurs and all inputs are mapped to the
same feature vector (exp Luniform = 1). However, as long as the ratio between two weights is not too large (e.g., < 4), we
observe that the representation quality remains relatively good and insensitive to the exact weight choices.
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Input Input Kernel . . Output Output
Operator Spatial Shape #Channel Size | Stride | Padding Spatial Shape | #Channel
Input [hin 5 win] Cin —_— — — [hin 5 win} Cin
Conv. Transpose + BN + ReLU [Pin, Win] Cin 3 2 1 [2hin, 2win] Lcin/2]
Conv. Transpose + BN + ReLU [2hin, 2win] Lein/2] 3 2 1 [4hin, dwin] Lcin/4]
Conv. Transpose + BN + ReLU | [hout/2, Wout/2] Lcin/2"_1J 3 2 1 [hout, Wout] Lcin/27 ]
Conv. [hzout, wout] LCin /QnJ 3 1 1 [houtq wout]

Table 1: NYU-DEPTH-V2 CNN depth predictor architecture. Each Conv. Transpose+BN+ReLU block increases the spatial
shape by a factor of 2, where BN denotes Batch Normalization (Ioffe & Szegedy, 2015). A sequence of such blocks
computes a tensor of the correct spatial shape, from an input containing intermediate activations of a CNN encoder (which
downsamples the input RGB image by a power of 2). A final convolution at the end computes the single-channel depth
prediction.

S-3. Experiment Details

All experiments are performed on 1-4 NVIDIA Titan Xp, Titan X PASCAL, Titan RTX, or 2080 Ti GPUs.

S-3.1. CIFAR-10, STL-10 and NYU-DEPTH-V2 Experiments

For CIFAR-10, STL-10 and NYU-DEPTH-V?2 experiments, we use the following settings, unless otherwise stated in
Tables 3 and 4 below:

Standard data augmentation procedures are used for generating positive pairs, including resizing, cropping, hori-
zontal flipping, color jittering, and random grayscale conversion. This follows prior empirical work in contrastive
representation learning (Wu et al., 2018; Tian et al., 2019; Hjelm et al., 2018; Bachman et al., 2019).

Neural network architectures follow the corresponding experiments on these datasets in Tian et al. (2019). For
NYU-DEPTH-V2 evaluation, the architecture of the depth prediction CNN is described in Table 1.

We use minibatch stochastic gradient descent (SGD) with 0.9 momentum and 0.0001 weight decay.

We use linearly scaled learning rate (0.12 per 256 batch size) (Goyal et al., 2017).
— CIFAR-10 and STL-10: Optimization is done over 200 epochs, with learning rate decayed by a factor of 0.1 at
epochs 155, 170, and 185.
— NYU-DEPTH-V2: Optimization is done over 400 epochs, with learning rate decayed by a factor of 0.1 at epochs
310, 340, and 370.

Encoders are optimized over the training split. For evaluation, we freeze the encoder, and train classifiers / depth
predictors on the training set samples, and test on the validation split.

— CIFAR-10 and STL-10: We use standard train-val split. Linear classifiers are trained with Adam (Kingma &
Ba, 2014) over 100 epochs, with 3; = 0.5, By = 0.999, ¢ = 10~8, 128 batch size, and an initial learning rate of
0.001, decayed by a factor of 0.2 at epochs 60 and 80.

— NYU-DEPTH-V2: We use the train-val split on the 1449 labeled images from Nathan Silberman & Fergus (2012).
Depth predictors are trained with Adam (Kingma & Ba, 2014) over 120 epochs, with 81 = 0.5, 82 = 0.999, ¢ =
1078, 128 batch size, and an initial learning rate of 0.003, decayed by a factor of 0.2 at epochs 70, 90, 100, and
110.

At each SGD iteration, a minibatch of K positive pairs is sampled {(z;,y;)}X ;, and the three losses for this minibatch are
calculated as following:

Lcontrastive: FOr each x;, the sample contrastive loss is taken with the positive being y;, and the negatives being {yj } i
For each y;, the sample loss is computed similarly. The minibatch loss is calculated by aggregating these 2K terms:

1 ilog ef @) fyi) /T Zlog ef @) fyi) /T
2K K ¥4 : -
2K - SR ef @ W)/ Yok SR ef@)T W)/
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IMAGENET-100 Classes

n02869837 | n01749939 | n02488291 | n02107142 | n13037406 | n02091831 | n04517823 | n04589890 | n03062245 | n01773797
n01735189 | n07831146 | n07753275 | n03085013 | n04485082 | n02105505 | n01983481 | n02788148 | n03530642 | n04435653
n02086910 | n02859443 | n13040303 | n03594734 | n02085620 | n02099849 | n01558993 | n04493381 | n02109047 | n04111531
n02877765 | n04429376 | n02009229 | n01978455 | n02106550 | n01820546 | n01692333 | n07714571 | n02974003 | n02114855
n03785016 | n03764736 | n03775546 | n02087046 | n07836838 | n04099969 | n04592741 | n03891251 | n02701002 | n03379051
n02259212 | n07715103 | n03947888 | n04026417 | n02326432 | n03637318 | n01980166 | n02113799 | n02086240 | n03903868
n02483362 | n04127249 | n02089973 | n03017168 | n02093428 | n02804414 | n02396427 | n04418357 | n02172182 | n01729322
n02113978 | n03787032 | n02089867 | n02119022 | n03777754 | n04238763 | n02231487 | n03032252 | n02138441 | n02104029
n03837869 | n03494278 | n04136333 | n03794056 | n03492542 | n02018207 | n04067472 | n03930630 | n03584829 | n02123045
n04229816 | n02100583 | n03642806 | n04336792 | n03259280 | n02116738 | n02108089 | n03424325 | n01855672 | n02090622

Table 2: 100 randomly selected IMAGENET classes forming the IMAGENET-100 subset. These classes are the same as the
ones used by Tian et al. (2019).

This calculation follows empirical practices and is similar to Oord et al. (2018); Hénaff et al. (2019), and end-fo-end in
He et al. (2019).

* Laiign: The minibatch alignment loss is straightforwardly computed as
1 X
i S ) = F)lls-
i=1

* Luyniform: The minibatch uniform loss is calculated by considering each pair of {z;}; and {y;};:

1 2 2 1 2 2

L) DR C AN —tlF )~ F I3

: og(K(Kl);e )+ 30 (e 2o :
17] 17

Tables 3 and 4 below describe the full specifications of all 306 STL-10 and 64 NYU-DEPTH-V2 encoders. These
experiment results are visualized in main paper Figure 6, showing a clear connection between representation quality and
Ealign & Luniform metrics.

S-3.2. IMAGENET-100 and Momentum Contrast (MoCo) Variants

IMAGENET-100 details. We use the same IMAGENET-100 sampled by Tian et al. (2019), containing the 100 randomly
selected classes listed in Table 2.

MoCo with L,jig, and Lyniform. At each SGD iteration, let

¢ K be the minibatch size,

o {f(z:)i} X, be the batched query features encoded by the current up-to-date encoder f (i.e., q in Algorithm 1 of He
et al. (2019)),

o {fema(y:) iKzl be the batched key features encoded by the exponential moving average encoder fgya (i.e., k in
Algorithm 1 of He et al. (2019)),

* {queue j }j\;l be the feature queue, where NN is the queue size.
Llign and Lyniform for this minibatch are calculated as following:

* L,iign: The minibatch alignment loss is computed as disparity between features from the two encoders:
1| X
e > Nf (i) = femalyi)lls-
i=1

* Luniform: We experiment with two forms of Lyniform:
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1. Only computing pairwise distance between { f(z;) }; and {queue,};:

LSyl I
—t||f(zi) —queue;
s (7 D0 ) ()
1=1j5=1
2. Also computing pairwise distance inside { f(z;)};:

K N
2 t||f(x )—queue ; || 2 —t
1 )—q If@)-f@HI3) . (16
o8 (awar i =1 o R TRET ¢ a6

Our experiment settings below mostly follow He et al. (2019) and the unofficial implementation by Tian (2019), because the
official implementation was not released at the time of performing these analyses:

» Standard data augmentation procedures are used for generating positive pairs, including resizing, cropping, horizontal
flipping, color jittering, and random grayscale conversion, following Tian (2019).

¢ Encoder architecture is ResNet50 (He et al., 2016).

* We use minibatch stochastic gradient descent (SGD) with 128 batch size, 0.03 initial learning rate, 0.9 momentum and
0.0001 weight decay.

* Optimization is done over 240 epochs, with learning rate decayed by a factor of 0.1 at epochs 120, 160, and 200.
* We use 0.999 exponential moving average factor, following He et al. (2019).

 For evaluation, we freeze the encoder, and train a linear classifier on the training set samples, and test on the validation
split. Linear classifiers are trained with minibatch SGD over 60 epochs, with a learning rate of 10, decayed by a factor
of 0.2 at epochs 30, 40, and 50.

Table 5 below describes the full specifications of all 45 IMAGENET-100 encoders. These experiment results are visualized
in main paper Figure 8a, showing a clear connection between representation quality and Lajign & Luyniform metrics.

S-3.3. BOOKCORPUS and Quick-Thought Vectors Variants

BOOKCORPUS details. Since the original BOOKCORPUS dataset (Zhu et al., 2015) is not distributed anymore, we use
the unofficial code by Kobayashi (2019) to recreate our copy. Our copy ended up containing 52,799,513 training sentences
and 50,000 validation sentences, compared to the original copy used by Quick-Thought Vectors (Logeswaran & Lee, 2018),
which contains 45,786,400 training sentences and 50,000 validation sentences.

Quick-Thought Vectors with L,jig, and Lyniform- With Quick-Thought Vectors, the positive pairs are the neighboring
sentences. At each optimization iteration, let

 {z;}K | be the K consecutive sentences forming this minibatch, where K be the minibatch size,
¢ f and g be the two RNN sentence encoders.

The original Quick-Thought Vectors (Logeswaran & Lee, 2018) does not [2-normalize on encoder outputs during training
the encoder. Here we describe the calculation of Lcontrastive, Lalign, and Luniform for [2-normalized encoders, in our modified
Quick-Thought Vectors method. Note that this does not affect evaluation since features are [2-normalized before using in
downstream tasks, following the original Quick-Thought Vectors (Logeswaran & Lee, 2018). For a minibatch, these losses
are calculated as following:

* Leontrastive With temperature:

% cross_entropy(softmax({f(z1) g(z;)};),{0,1,0,...,0})

K—1
1 1 1
+ 7 cross,entropy(softmax({f(zi)Tg(xj)}j),{0,...,0,570,5, 0,...,0 hH+
; S—— ——
=2 (i —2) 0 (K —i—1)0%

+ % cross_entropy(softmax({f(zx) g(x;)};),{0,...,1,0}).
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This is almost identical with the original contrastive loss used by Quick-Thought Vectors, except that this does not
additionally manually masks out the entries f(x;)"g(x;) with zeros, which is unnecessary with /2-normalization.

* L,lign: The minibatch alignment loss is computed as disparity between features from the two encoders encoding
neighboring sentences (assuming K >= 2):

K-

L o) = gaal 4 2 3 (1 ims) = gl + 170 — s )IE) + ) — a3

=2

* Luniform: We combine the uniformity losses for each of f and g by summing them (instead of averaging since f and g
are two different encoders):

2 1 f (i) — f () 12 2 —tllg(a)—g(z;)|2
K(K—1);e 2+K(K—1);e .

Our experiment settings below mostly the official implementation by Logeswaran & Lee (2018):

» Sentence encoder architecture is bi-directional Gated Recurrent Unit (GRU) (Cho et al., 2014) with inputs from a
620-dimensional word embedding trained jointly from scratch.

* We use Adam (Kingma & Ba, 2014) with 3; = 0.9, B2 = 0.999, ¢ = 1078, 400 batch size, 0.0005 constant learning
rate, and 0.5 gradient norm clipping.

* Optimization is done during 1 epoch over the training data.

* For evaluation on a binary classification task, we freeze the encoder, and fit a logistic classifier with (2 regularization
on the encoder outputs. A 10-fold cross validation is performed to determine the regularization strength among
{1,271 ...,278} following Kiros et al. (2015) and Logeswaran & Lee (2018). The classifier is finally tested on the
validation split.

Table 6 below describes the full specifications of all 108 BOOKCORPUS encoders along with 6 settings that lead to training
instability (i.e., NaN occurring). These experiment results are visualized in main paper Figure 8b, showing a clear connection
between representation quality and Lajign & Luniform metrics. For the unnormalized encoders, the features are normalized
before calculated L,jign and Lyniform metrics, since they are nonetheless still normalized before being used in downstream
tasks (Logeswaran & Lee, 2018).
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Table 3: Experiment specifications for all 306 STL-10 encoders. We report the encoder representation quality measured by
accuracy of linear and k-nearest neighbor (k-NN) with k = 5 classifiers on either encoder outputs or fc7 activations, via
both a 5-fold cross validation of the training set and the held out validation set.
For encoder initialization, “rand” refers to standard network initialization, and symbols denote finetuning from a pretrained
encoder, obtained via the experiment row marked with the same symbol. Initial learning rates (LRs) are usually either
fixed as 0.12 or computed via a linear scaling (0.12 per 256 batch size). Dimensionality (abbreviated as “Dim.”) shows the
ambient dimension of the output features, i.e., they live on the unit hypersphere of one less dimension. The last three rows
show encoders that are used to initialize finetuning, but are not part of the 285 encoders plotted in main paper Figure 3, due
to their unusual batch size of 786. Their accuracy and L,jign & Luniform metrics follow the same trend shown in Figure 6a.

Losses Batch Training Set 5-Fold Cross Val. Accuracy 1 Validation Set Accuracy 1

F— Lai Loni Init. |Epochs Size Initial LR |Dim. Ou}put Output f?7 fc7 Ou.tpul Output f.07 fc7
gn uniform + Linear | + 5-NN | + Linear | +5-NN | 4 Linear | + 5-NN | + Linear | + 5-NN
— 1.25- L,(a=2) L,(t=2) rand| 200 2 | 0.0009375 | 128 — — — — 19.31% | 22.56% | 47.58% | 35.30%
— 1.25- L,(a=2) Ly(t=2) rand| 200 3 10.00140625| 128 — — — — 43.97% | 42.89% | 56.89% | 47.63%
— 1.25- L,(a=2) Ly(t=2) rand| 200 4 0.001875 | 128 — — — — 53.96% | 52.89% | 62.86% | 55.06%
L(7=0.07) — — rand| 200 16 0.0075 128 — — — — 70.46% | 70.54% | 75.54% | 69.63%
L(7=0.5) — — rand| 200 16 0.0075 128 — — — — 69.59% | 70.04% | 76.23% | 68.38%
— Li(a=2) Ly(t=2) rand| 200 16 0.0075 128 — — — — 74.68% | 74.34% | 79.06% | 73.68%
— 1.25- L,(a=1) Ly(t=2) rand| 200 16 0.0075 128 — — — — 74.75% | 73.00% | 77.84% | 71.70%
— 1.25- L,(a=2) Ly(t=2) rand| 200 16 0.0075 128 — — — — 73.93% | 74.09% | 79.25% | 73.38%
L(7=0.5) — — rand| 200 16 0.12 128 — — — — 67.30% | 66.36% | 71.53%| 66.38%
— Li(a=2) Ly(t=2) rand| 200 16 0.12 128 — — — — 71.93% | 71.24% | 75.49% | 69.89%
— 1.25- L,(a=1) L,(t=2) rand| 200 16 0.12 128 — — — — 71.85% | 70.21% | 74.65% | 69.88%
L(7=0.07) — — rand| 200 32 0.015 128 — — — — 71.80% | 72.04% | 77.29% | 70.74%
L(7=0.5) — rand| 200 32 0.015 128 — — — — 73.39% | 73.39% | 79.43% | 73.85%
— Li(a=2) Ly(t=2) rand| 200 32 0.015 128 — — — — 78.04% | 76.60% | 82.23% | 76.04%
— 1.25- L,(a=1) Ly(t=2) rand| 200 32 0.015 128 — — — — 78.71% | 76.45% | 81.66% | 76.25%
L(7=0.5) — — rand| 200 32 0.12 128 — — — — 70.43% | 69.66% | 74.95% | 69.69%
— Li(a=2) Ly(t=2) rand| 200 32 0.12 128 — — — — 75.40% | 73.70% | 78.56% | 73.21%
— 1.25- Ly(a=1) Ly(t=2) rand| 200 32 0.12 128 — — — — 75.83% | 73.95% | 78.48% | 73.55%
L(7=0.5) — — rand| 200 64 0.03 128 — — — — 74.59% | 74.48% | 80.64% | 75.52%
— Li(a=2) Ly(t=2) rand| 200 64 0.03 128 — — — — 79.25% | 77.84% | 82.84% | 76.53%
— Li(a=2) L4(t=2) rand| 200 64 0.12 128 — — — — 77.80% | 75.75% | 81.45% | 75.49%
— 1.25- L,(a=1) Ly(t=2) rand| 200 64 0.12 128 — — — — 78.66% | 76.19% | 81.40% | 75.30%
— Li(a=2) L,(t=2) rand| 200 64 0.03 512 — — — — 80.44% | 78.05% | 83.04% | 77.29%
— 0.5 Ly(a=2) Ly(t=2) rand| 200 64 0.03 1024 — — — — 81.48% | 78.49% | 82.88% | 77.11%
— Li(a=2) L,(t=2) rand| 200 64 0.03 1024 — — — — 80.81% | 77.80% | 83.18% | 77.15%
L(7=0.07) — — rand| 200 | 128 0.06 128 — — — — 73.14% | 73.73% | 79.90% | 72.58%
L(7=0.5) — — rand| 200 | 128 0.06 128 — — — — 7526% | 74.88% | 80.98% | 75.36%
— Li(a=2) Ly(t=2) rand| 200 | 128 0.06 128 — — — — 79.55% | 78.09% | 83.39% | 76.96%
L(7=0.07) — — rand| 200 | 128 0.12 128 — — — — 73.11% | 73.84% | 78.44% | 72.11%
L(7=0.5) — — rand| 200 | 128 0.12 128 — — — — 75.65% | 74.80% | 80.74% | 74.58%
L(T7=0.687) — — rand| 200 | 128 0.12 128 — — — — 74.13% | 73.14% | 79.81% | 74.10%
— — Ly(t=2) rand| 200 | 128 0.12 128 — — — — 79.05% | 76.61% | 81.77% | 73.83%
— Li(a=2) L4(t=2) rand| 200 | 128 0.12 128 — — — — 79.74% | 71.78% | 82.710% | 75.23%
— 1.25- L,(a=1) Ly(t=2) rand| 200 | 128 0.12 128 — — — — 80.19% | 77.91% | 82.75% | 75.91%
— 0.75 - Lo(a=2) L4(t=2) rand| 200 | 256 0.12 64 — — — — 78.40% | 78.26% | 83.46% | 76.25%
L(7=0.07) — — rand| 200 | 256 0.12 128 — — — — 75.23% | 75.86% | 80.64% | 73.56%
L(7=0.5) — — rand| 200 | 256 0.12 128 — — — — 76.09% | 75.81% | 81.49% | 75.52%
L(7=0.6) — — rand| 200 | 256 0.12 128 — — — — 75.61% | 74.56% | 81.09% | 75.36%
— — L,(t=2) rand| 200 | 256 0.12 128 — — — — 79.94% | 77.95% | 82.66% | 73.65%
— 0.75 - Lo(a=2) Ly(t=2) rand| 200 | 256 0.12 128 — — — — 80.54% | 78.55% | 83.54% | 76.81%
— Li(a=2) L,(t=2) rand| 200 | 256 0.12 128 — — — — 80.76% | 78.57% | 84.24% | 76.60%
— 1.25- L,(a=1) Ly(t=2) rand| 200 | 256 0.12 128 — — — — 81.29% | 78.49% | 83.55% | 74.08%
— 0.5 L,(a=2) Ly(t=2) rand| 200 | 256 0.12 256 — — — — 81.79% | 79.13% | 84.11% | 76.60%
— 0.75 - Lo(a=2) L,(t=2) rand| 200 | 256 0.12 256 — — — — 81.48% | 79.61% | 83.86% | 76.79%
— Li(a=2) Ly(t=2) rand| 200 | 256 0.12 256 — — — — 80.95% | 78.74% | 83.69% | 77.11%
— Li(a=2) Ly(t=2) rand| 200 | 256 0.12 512 — — — — 81.33% | 78.76% | 83.81% | 76.88%
— 0.5-Ly(a=2) Ly(t=2) rand| 200 | 360 | 0.16875 [8192 — — — — 82.49% | 78.96% | 83.86% | 76.68%
— 0.5 Ly(a=2) Ly(t=2) rand| 200 | 512 0.24 4096 — — — — 82.34% | 78.84% | 84.06% | 75.74%
L(7=0.07) — — rand| 200 | 768 0.36 2 — — — — 29.46% | 25.50% | 59.95% | 52.83%
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L(T=0.5) — — rand| 200 | 768 0.36 2 — — — — 30.66% | 25.39% | 48.61% | 42.49%
— 0.5 La(a=2) Ly(t=2) rand| 200 | 768 0.36 2 — — — — 27.85% | 26.04% | 49.29% | 43.10%

— Li(a=2) Ly(t=2) rand| 200 | 768 0.36 2 — — — — 29.05% | 23.94% | 45.39% | 38.48%
L(7=0.07) — — rand| 200 | 768 0.36 3 — — — — 39.59% | 39.66% | 63.24% | 56.64%
L(T=0.5) — — rand| 200 | 768 0.36 3 — — — — 42.29% | 39.70% | 68.35% | 59.82%
— 0.5 La(a=2) Ly(t=2) rand| 200 | 768 0.36 3 — — — — 41.10% | 39.63% | 65.64% | 56.04%

— Li(a=2) Ly(t=2) rand| 200 | 768 0.36 3 — — — — 41.40% | 41.45% | 67.88% | 58.78%
L(7=0.07) — — rand| 200 | 768 0.36 4 — — — — 46.94% | 47.08% | 64.35% | 58.10%
L(T=0.5) — — rand| 200 | 768 0.36 4 — — — — 53.39% | 55.41% | 73.93% | 67.89%
— 0.5 La(a=2) Ly(t=2) rand| 200 | 768 0.36 4 — — — — 47.19% | 51.69% | 70.00% | 62.36%
L(7=0.07) — — rand| 200 | 768 0.36 16 — — — — 64.20% | 68.73% | 75.66% | 69.55%
L(r=0.5) — — rand| 200 | 768 0.36 16 — — — — 71.93% | 73.54% | 80.53% | 74.66%
— 0.5-L,(a=2) Ly(t=2) rand| 200 | 768 0.36 16 — — — — 65.41% | 70.41% | 77.18% | 70.55%

— Li(a=2) Ly(t=2) rand| 200 | 768 0.36 16 — — — — 70.25% | 74.99% | 81.59% | 74.52%

— 0.5-L,(a=2) Ly(t=2) rand| 200 | 768 0.36 32 — — — — 70.30% | 73.50% | 79.63% | 72.21%

— Li(a=2) Ly(t=2) rand| 200 | 768 0.36 32 — — — — 73.65% | 76.93% | 82.81% | 75.19%

— Li(a=25) Ly(t=2) rand| 200 | 768 0.36 32 — — — — 73.71% | 77.40% | 82.93% | 75.86%

— 0.75 - Lo(a=2) Ly(t=2) rand| 200 | 768 0.36 64 — — — — 77.33% | 78.35% | 84.00% | 76.63%

— Li(a=2) Ly(t=2) rand| 200 | 768 0.36 64 — — — — 77.94% | 78.23% | 83.51% | 76.59%
L(7=0.005) — — rand| 200 | 768 0.36 128 | 67.88% | 70.15% | 74.64% | 68.19% | 68.14% | 71.13% | 75.14% | 68.88%
L(7=0.01) — — rand| 200 | 768 0.36 128 | 69.63% | 70.62% | 75.68% | 68.99% | 69.86% | 70.98% | 76.13% | 69.65%
L(7=0.07) — — rand| 200 | 768 0.36 128 | 75.01% | 75.11% | 80.93% | 73.20% | 75.46% | 75.58% | 81.34% | 73.93%
L(7=0.08) — — rand| 200 | 768 0.36 128 | 76.12% | 76.06% | 81.72% | 73.95% | 76.58% | 76.79% | 81.81% | 74.43%
L(7=0.09) — — rand| 200 | 768 0.36 128 | 77.15% | 77.15% | 82.52% | 73.96% | 77.74% | 77.46% | 83.23% | 74.81%
L(r=0.1) — — rand| 200 | 768 0.36 128 | 77.55% | 77.40% | 82.93% | 74.29% | 77.83% | 77.81% | 83.39% | 75.19%
L(r=0.11) — — rand| 200 | 768 0.36 128 | 78.48% | 78.20% | 83.29% | 74.99% | 79.01% | 78.73% | 83.73% | 75.60%
Lc(7=0.125) — — rand| 200 | 768 0.36 128 | 79.05% | 78.06% | 83.30% | 74.53% | 79.59% | 78.55% | 84.09% | 75.55%
L(7=0.13) — — rand| 200 | 768 0.36 128 | 79.46% | 78.55% | 83.98% | 75.16% | 79.80% | 78.60% | 84.45% | 75.98%
Lc(7=0.15) — — rand| 200 | 768 0.36 128 | 79.81% | 78.47% | 83.62% | 74.64% | 80.16% | 78.99% | 84.19% | 75.20%
L(7=0.16) — — rand| 200 | 768 0.36 128 | 79.54% | 78.38% | 83.35% | 74.42% | 80.04% | 78.68% | 83.88% | 75.06%
L(7=0.175) — — rand| 200 | 768 0.36 128 | 79.74% | 78.20% | 83.56% | 74.80% | 80.29% | 78.49% | 83.96% | 75.81%
L(7=0.19) — — rand| 200 | 768 0.36 128 | 80.14% | 78.30% | 83.52% | 75.39% | 80.46% | 78.75% | 83.89% | 76.33%
L(7=0.2) — — rand| 200 | 768 0.36 128 | 79.64% | 71.80% | 83.37% | 75.07% | 79.99% | 77.96% | 83.73% | 75.98%
L(7=0.25) — — rand| 200 | 768 0.36 128 | 79.27% | 77.24% | 82.70% | 75.33% | 79.50% | 77.49% | 83.10% | 76.31%
L(7=0.3) — — rand| 200 | 768 0.36 128 | 78.79% | 77.01% | 82.58% | 75.16% | 78.98% | 77.18% | 82.84% | 75.74%
L(1=0.5) — — rand| 200 | 768 0.36 128 | 76.57% | 75.30% | 81.18% | 75.30% | 76.66% | 75.61% | 81.61% | 75.71%
L(1=0.75) — — rand| 200 | 768 0.36 128 | 74.59% | 73.41% | 79.72% | 74.27% | 74.63% | 73.52% | 80.18% | 75.01%
L(r=1) — — rand| 200 | 768 0.36 128 | 72.88% | 72.14% | 79.16% | 74.08% | 73.00% | 72.31% | 79.54% | 74.61%
L(r=2) — — rand| 200 | 768 0.36 128 | 67.79% | 67.15% | 77.04% | 71.65% | 67.13% | 66.77% | 71.35% | 71.84%
L(T=2.5) — — rand| 200 | 768 0.36 128 | 66.11% | 65.30% | 75.80% | 70.59% | 65.33% | 65.30% | 76.31% | 70.93%
L(T=5) — — rand| 200 | 768 0.36 128 | 55.56% | 55.74% | 70.29% | 65.25% | 55.75% | 55.83% | 70.75% | 65.58%
L(7=0.07) 0.5-L,(a=2) — rand| 200 | 768 0.36 128 | 75.13% | 75.59% | 81.52% | 73.55% | 75.59% | 76.26% | 82.10% | 74.33%
L(r=0.1) 0.5 Ly(a=2) — rand| 200 | 768 0.36 128 | 77.76% | 78.02% | 83.28% | 74.56% | 78.04% | 78.44% | 83.73% | 75.33%
L(T=0.5) 0.5-L,(a=2) — rand| 200 | 768 0.36 128 | 74.86% | 73.92% | 80.16% | 74.55% | 74.96% | 73.93% | 80.63% | 75.13%
L(r=0.5) 0.5 La(a=2) — rand| 200 | 768 0.36 128 | 74.69% | 74.10% | 80.53% | 74.77% | 74.80% | 74.28% | 80.91% | 75.31%
L(T=0.5) Li(a=2) — rand| 200 | 768 0.36 128 | 73.31% | 72.84% | 79.82% | 73.73% | 73.54% | 72.94% | 80.26% | 74.58%
L(7=0.07) 04-Ly(a=2) 0.2 Ly(t=2) |rand| 200 | 768 0.36 128 | 75.77% | 75.98% | 81.50% | 73.48% | 76.11% | 76.45% | 82.08% | 74.00%
L(r=0.1) 04-L,(a=2) 0.2-L,(t=2) |rand| 200 | 768 0.36 128 | 78.17% | 77.61% | 83.04% | 74.54% | 78.64% | 78.10% | 83.26% | 75.45%
L(1=0.5) 04-L,(a=2) 0.2- L,(t=2) |rand| 200 | 768 0.36 128 | 77.73% | 76.23% | 81.96% | 75.10% | 77.98% | 76.60% | 82.38% | 75.45%
L(7=0.07) 0.3-L,(a=2) 0.4-L,(t=2) |rand| 200 | 768 0.36 128 | 75.93% | 75.55% | 81.45% | 73.18% | 76.13% | 76.00% | 81.95% | 74.11%
L(r=0.1) 0.3 L,(a=2) 0.4-L,(t=2) |rand| 200 | 768 0.36 128 | 77.98% | 77.18% | 82.77% | 74.12% | 78.38% | 77.79% | 83.51% | 74.99%
L(T=0.5) 0.3-L,(a=2) 0.4-L,(t=2) |rand| 200 | 768 0.36 128 | 78.69% | 76.99% | 82.57% | 75.12% | 79.03% | 77.38% | 82.93% | 75.46%
L(7=0.07) 0.2 Ly(a=2) 0.6 L,(t=2) |rand| 200 | 768 0.36 128 | 75.71% | 75.22% | 80.94% | 72.80% | 76.05% | 75.60% | 81.56% | 73.46%
L(r=0.1) 0.2-L,(a=2) 0.6-L,(t=2) |rand| 200 | 768 0.36 128 | 78.38% | 77.85% | 82.87% | 74.36% | 78.84% | 78.54% | 83.10% | 74.73%
L(7=0.5) 0.2 Ly(a=2) 0.6 L,(t=2) |rand| 200 | 768 0.36 128 | 79.72% | 77.94% | 83.03% | 75.32% | 80.04% | 78.24% | 83.28% | 75.66%
L(7=0.07) 0.1-L,(a=2) 0.8-Ly(t=2) |rand| 200 | 768 0.36 128 | 76.19% | 75.62% | 81.15% | 73.09% | 76.90% | 76.21% | 81.61% | 74.48%
L(r=0.1) 0.1-L,(a=2) 0.8 Ly(t=2) |rand| 200 | 768 0.36 128 | 78.59% | 78.02% | 83.18% | 74.63% | 78.68% | 78.48% | 83.76% | 75.49%
L(T=0.5) 0.1-L,(a=2) 0.8-Ly(t=2) |rand| 200 | 768 0.36 128 | 80.25% | 78.32% | 83.35% | 74.26% | 80.43% | 78.71% | 83.76% | 75.44%
L(7=0.07) — Ly(t=2) rand| 200 | 768 0.36 128 | 76.31% | 75.78% | 81.59% | 72.79% | 76.69% | 76.33% | 82.23% | 73.63%
CC(T=O 1) — Ly(t=2) rand| 200 | 768 0.36 128 | 78.55% | 77.94% | 8321% | 74.67% | 79.03% | 78.45% | 83.75% | 75.71%
(r=0.5) — Ly(t=2) rand| 200 | 768 0.36 128 | 79.93% | 78.25% | 82.92% | 75.22% | 80.30% | 78.54% | 83.34% | 76.04%
(T 0.5) — Ly(t=2) rand| 200 | 768 0.36 128 | 80.84% | 78.87% | 83.72% | 75.56% | 81.06% | 79.05% | 84.14% | 76.48%
(r=0.5) — 2-Ly(t=2) |rand| 200 | 768 0.36 128 | 77.49% | 76.15% | 80.99% | 74.41% | 78.09% | 76.83% | 81.63% | 75.11%
045«Lc('r:0,07) 0.5-L,(a=2) — rand| 200 | 768 0.36 128 | 75.40% | 75.53% | 81.53% | 73.91% | 75.74% | 76.19% | 82.00% | 74.63%
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0.5 Lc(7=0.1) 0.5-Ly(a=2) — rand| 200 | 768 0.36 128 | 77.710% | 77.70% | 83.39% | 75.27% | 78.06% | 78.26% | 83.93% | 76.21%
0.5 Lc(7=0.5) 0.5 La(a=2) — rand| 200 | 768 0.36 128 | 73.86% | 73.12% | 80.08% | 74.54% | 74.05% | 73.18% | 80.53% | 75.14%
0.5-L(7=0.07) | 0.4-Ly(a=2) 0.2-L,(t=2) |rand| 200 | 768 0.36 128 | 76.12% | 76.22% | 81.75% | 73.68% | 76.46% | 76.75% | 82.36% | 74.44%
0.5-Lc(r=0.1) 04-Ly(a=2) 0.2 L,(t=2) |rand| 200 | 768 0.36 128 | 78.40% | 78.01% | 83.39% | 7521% | 78.83% | 78.30% | 83.74% | 75.84%
0.5 Lc(7=0.5) 04-L,(a=2) 0.2-Ly,(t=2) |rand| 200 | 768 0.36 128 | 78.35% | 76.49% | 82.02% | 75.60% | 78.60% | 77.18% | 82.65% | 76.19%
0.5 L(7=0.07) | 0.3 Ly(a=2) 0.4-L,(t=2) |rand| 200 | 768 0.36 128 | 76.59% | 75.74% | 81.48% | 73.59% | 77.20% | 76.43% | 82.03% | 74.36%
0.5 Lc(7=0.1) 0.3-L,(a=2) 0.4-L,(t=2) |rand| 200 | 768 0.36 128 | 78.85% | 77.43% | 82.98% | 74.87% | 79.20% | 77.95% | 83.29% | 75.60%
0.5 Lc(7=0.5) 0.3 La(a=2) 0.4-L,(t=2) |rand| 200 | 768 0.36 128 | 79.53% | 77.56% | 82.84% | 75.19% | 79.711% | 77.95% | 83.19% | 76.08%
0.5-L(7=0.07) | 0.2-Ly(a=2) 0.6-L,(t=2) |rand| 200 | 768 0.36 128 | 77.07% | 76.49% | 81.78% | 73.10% | 77.44% | 76.98% | 82.33% | 73.85%
0.5 Lc(r=0.1) 0.2 Li(a=2) 0.6 L,(t=2) |rand| 200 | 768 0.36 128 | 78.55% | 78.04% | 83.20% | 74.30% | 78.91% | 78.38% | 83.81% | 75.18%
0.5 Lc(7=0.5) 0.2-L,(a=2) 0.6-Ly,(t=2) |rand| 200 | 768 0.36 128 | 80.47% | 78.36% | 83.42% | 75.82% | 80.88% | 78.51% | 83.83%| 76.65%
0.5+ L(7=0.07) | 0.1-Ly(a=2) 0.8 Ly(t=2) |rand| 200 | 768 0.36 128 | 76.30% | 76.43% | 81.72% | 73.35% | 76.56% | 77.11% | 82.11% | 74.00%
0.5 Lc(7=0.1) 0.1-L,(a=2) 0.8-Ly(t=2) |rand| 200 | 768 0.36 128 | 78.71% | 78.00% | 83.35% | 74.46% | 79.29% | 78.44% | 83.81% | 75.45%
0.5 Lc(7=0.5) 0.1-Ly(a=2) 0.8 Ly(t=2) |rand| 200 | 768 0.36 128 | 80.51% | 78.99% | 83.57% | 7547% | 80.95% | 79.44% | 83.98% | 76.45%
0.5 Lc(7=0.07) — Ly(t=2) rand| 200 | 768 0.36 128 | 75.48% | 76.10% | 81.47% | 72.97% | 75.80% | 76.86% | 82.06% | 73.81%
0.5 Lc(7=0.1) — Ly(t=2) rand| 200 | 768 0.36 128 | 77.78% | 78.07% | 83.23% | 74.51% | 78.38% | 78.46% | 83.89% | 75.49%
0.5 Lc(7=0.5) — Ly(t=2) rand| 200 | 768 0.36 128 | 78.04% | 76.18% | 81.89% | 73.67% | 18.43% | 76.44% | 82.33% | 74.44%
— Li(a=2) — rand| 200 | 768 0.36 128 | 10.00% | 10.36% | 11.07% | 14.20% | 10.00% | 9.40% | 12.53% | 14.27%
— 0.9875 - La(=2) | 0.025- L,(t=2) |rand| 200 | 768 0.36 128 | 10.00% | 9.90% | 11.04% | 13.72% | 10.00% | 10.94% | 13.03% | 13.64%
— 0.975 - Ly(a=2) | 0.05-L,(t=2) |rand| 200 | 768 0.36 128 | 10.00% | 9.98% | 10.65% | 14.29% | 10.00% | 9.75% | 12.11% | 14.77%
— 0.9-L,(a=2) 0.1-Ly(t=2) |rand| 200 | 768 0.36 128 | 10.00% | 10.08% | 10.10% | 13.62% | 10.00% | 9.95% | 10.00% | 13.49%
— 0.95 - L,(a=2) 0.1-Ly(t=2) |rand| 200 | 768 0.36 128 | 10.00% | 10.51%| 10.15% | 13.27% | 10.00% | 9.85% | 10.00% | 11.99%
— Li(a=2) 0.1-Ly(t=2) |rand| 200 | 768 0.36 128 | 10.00% | 9.93% | 10.39% | 14.38% | 10.00% | 10.26% | 10.00% | 14.03%
— 0.56 - Lo(=2) | 0.12-L,(t=2) |rand| 200 | 768 0.36 128 | 75.93% | 75.10% | 80.88% | 74.87% | 75.99% | 75.41% | 81.40% | 75.66%
— 0.88- Li(@=2) | 0.12-Ly(t=2) |rand| 200 | 768 0.36 128 | 10.00% | 10.13% | 10.00% | 12.89% | 10.00% | 11.18% | 10.03% | 12.43%
— 0.9375 - Lo(a=2) | 0.125- L,(t=2) |rand| 200 | 768 0.36 128 | 10.00% | 10.52% | 1042% | 13.71% | 10.00% | 9.14% | 10.05% | 14.26%
— 0.57- La(@=2) | 0.14-Ly(t=2) |rand| 200 | 768 0.36 128 | 76.35% | 75.51% | 81.07% | 7527% | 76.55% | 75.86% | 81.69% | 75.70%
— 0.86- Ly(=2) | 0.14-L,(t=2) |rand| 200 | 768 0.36 128 | 10.00% | 9.07% | 10.33% | 14.24% | 10.00% | 9.91% | 10.73% | 15.08%
— 0.855 - Ly(a=2) | 0.145- L,(t=2) |rand| 200 | 768 0.36 128 | 10.00% | 10.67% | 10.30% | 14.11% | 10.00% | 9.35% | 11.70% | 13.30%
— 0.85- Ly(=2) | 0.15-L,(t=2) |rand| 200 | 768 0.36 128 | 10.00% | 10.17%| 10.00% | 12.97% | 10.00% | 10.05% | 10.00% | 13.16%
— 0.925- Ly(a=2) | 0.15-Ly(t=2) |rand| 200 | 768 0.36 128 | 10.00% | 9.79% | 10.10% | 13.11% | 10.00% | 9.73% | 10.11% | 12.91%
— 0.845 - Ly(a=2) | 0.155- L,(t=2) |[rand| 200 | 768 0.36 128 | 74.56% | 74.06% | 80.10% | 74.93% | 74.99% | 74.39% | 80.44% | 75.83%
— 0.58- Lo(@=2) | 0.16- Ly(t=2) |rand| 200 | 768 0.36 128 | 77.03% | 76.34% | 81.25% | 75.26% | 71.33% | 76.76% | 81.80% | 75.89%
— 0.84- Ly(a=2) | 0.16-L,(t=2) |rand| 200 | 768 0.36 128 | 74.49% | 74.03% | 80.30% | 74.72% | 74.73% | 74.10% | 80.70% | 75.13%
— 0.9125 - Lo(=2) | 0.175- L,(t=2) |rand| 200 | 768 0.36 128 | 10.00% | 9.41% | 10.39% | 13.64% | 10.00% | 10.14% | 10.10% | 14.14%
— 0.59 - Ly(@=2) | 0.18-L,(t=2) |rand| 200 | 768 0.36 128 | 77.25% | 76.38% | 81.39% | 75.41% | 77.65% | 77.06% | 81.68% | 76.19%
— 0.82- Li(w=2) | 0.18-Ly(t=2) |rand| 200 | 768 0.36 128 | 76.09% | 75.10% | 80.99% | 75.63% | 76.45% | 75.48% | 81.45% | 76.48%
— 0.91-Ly(a=2) | 0.18-L,(t=2) |rand| 200 | 768 0.36 128 | 75.11% | 74.63% | 80.50% | 75.28% | 75.40% | 75.04% | 80.85% | 75.83%
— 0.9075 - La(a=2) | 0.185- L,(t=2) |rand| 200 | 768 0.36 128 | 75.29% | 74.83% | 80.64% | 75.04% | 75.69% | 75.41% | 80.93% | 75.65%
— 0.905 - Ly(a=2) | 0.19-Ly(t=2) |rand| 200 | 768 0.36 128 | 75.69% | 74.61% | 80.80% | 74.98% | 75.99% | 74.95% | 81.21% | 75.59%
— 0.9025 - La(a=2) | 0.195- L,(t=2) |rand| 200 | 768 0.36 128 | 75.81% | 74.93% | 80.75% | 74.66% | 76.06% | 75.29% | 81.16% | 75.14%
— 0.8-L,(a=2) 0.2-Ly(t=2) |rand| 200 | 768 0.36 128 | 76.52% | 75.96% | 81.05% | 75.38% | 76.75% | 76.24% | 81.29% | 75.83%
— 0.9 Li(a=2) 0.2 L,(t=2) |rand| 200 | 768 0.36 128 | 75.92% | 75.02% | 80.85% | 75.36% | 76.15% | 75.29% | 81.15% | 76.24%
— Li(a=2) 0.2-L,(t=2) |rand| 200 | 768 0.36 128 | 75.14% | 74.29% | 80.39% | 74.76% | 75.46% | 74.44% | 80.64% | 75.34%
— 0.7 La(a=2) 0.3-Ly(t=2) |rand| 200 | 768 0.36 128 | 78.61% | 77.00% | 82.14% | 75.73% | 78.94% | 77.50% | 82.26% | 76.34%
— 0.6-L,(a=2) 0.4-L,(t=2) |rand| 200 | 768 0.36 128 | 79.36% | 77.80% | 82.63% | 75.55% | 79.60% | 77.93% | 82.86% | 76.63%
— 0.8 L,(a=2) 04-L,(t=2) |rand| 200 | 768 0.36 128 | 79.24% | 77.52% | 82.44% | 7523% | 79.65% | 77.89% | 82.69% | 75.71%
— Li(a=2) 0.4-L,(t=2) |rand| 200 | 768 0.36 128 | 78.45% | 77.09% | 82.30% | 75.38% | 78.85% | 77.53% | 82.86% | 76.02%
— 0.5 La(a=2) 0.5- Ly(t=2) |rand| 200 | 768 0.36 128 | 80.03% | 78.47% | 83.12% | 75.14% | 80.39% | 78.70% | 83.56% | 75.70%
— 0.75 - Lo(a=2) 0.5-Ly(t=2) |rand| 200 | 768 0.36 128 | 79.72% | 77.30% | 82.69% | 75.44% | 79.96% | 77.55% | 83.35% | 76.14%
— Li(a=2) 0.5- Ly(t=2) |rand| 200 | 768 0.36 128 | 79.09% | 77.50% | 82.80% | 75.46% | 79.27% | 77.96% | 83.10% | 76.45%
— 04-L,(a=2) 0.6-Ly(t=2) |rand| 200 | 768 0.36 128 | 80.23% | 78.67% | 83.49% | 75.61% | 80.45% | 78.83% | 84.01% | 76.61%
— 0.5 La(a=2) 0.6 L,(t=2) |rand| 200 | 768 0.36 128 | 80.37% | 78.82% | 83.05% | 75.54% | 80.48% | 79.11% | 83.33% | 76.50%
— 0.7 Ly(a=2) 0.6-Ly(t=2) |rand| 200 | 768 0.36 128 | 80.29% | 78.16% | 83.40% | 75.59% | 80.59% | 78.66% | 83.83% | 76.24%
— 0.3 La(a=2) 0.7- L4(t=2) |rand| 200 | 768 0.36 128 | 80.16% | 78.91% | 83.39% | 76.21% | 80.58% | 79.51% | 83.78% | 77.03%
— 0.2-L,(a=2) 0.8-Ly(t=2) |rand| 200 | 768 0.36 128 | 74.67% | 78.15% | 82.53% | 75.83% | 75.13% | 78.63% | 83.03% | 76.45%
— 0.5 La(a=2) 0.8 Ly(t=2) |rand| 200 | 768 0.36 128 | 80.59% | 78.73% | 83.73% | 76.05% | 81.08% | 79.10% | 84.04% | 76.88%
— 0.6-L,(a=2) 0.8-Ly(t=2) |rand| 200 | 768 0.36 128 | 80.29% | 78.74% | 83.53% | 75.75% | 80.65% | 78.89% | 83.89% | 76.86%
— 0.1-Ly(a=2) 0.9-L,(t=2) |rand| 200 | 768 0.36 128 | 69.77% | 75.72% | 80.55% | 73.38% | 70.29% | 76.13% | 80.88% | 74.14%
— 0.08- Ly(=2) | 0.92-L,(t=2) |rand| 200 | 768 0.36 128 | 67.65% | 73.97% | 79.35% | 71.86% | 68.04% | 74.90% | 79.84% | 72.50%
— 0.96 - Lo(=2) | 0.92-L,(t=2) |rand| 200 | 768 0.36 128 | 80.74% | 78.71% | 83.49% | 76.14% | 81.08% | 79.26% | 83.95% | 77.26%
— 0.06 - Lo(=2) | 0.94-L,(t=2) |rand| 200 | 768 0.36 128 | 66.88% | 73.81% | 7921% | 72.32% | 67.46% | 74.68% | 79.56% | 73.09%
— 0.97- Ly(@=2) | 0.94-L,(t=2) |rand| 200 | 768 0.36 128 | 80.28% | 78.45% | 83.51% | 75.68% | 80.63% | 78.63% | 83.83% | 76.33%
— 0.04- Ly(=2) | 0.96-Ly(t=2) |rand| 200 | 768 0.36 128 | 63.89% | 70.80% | 76.33% | 69.55% | 64.21% | 71.49% | 77.10% | 70.38%
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— 098 L.(a=2) | 0.96-L£,(t=2) |rand| 200 | 768 | 036 | 128 ] 80.76%| 78.69%| 83.97%]| 75.63% | 81.15% | 78.89%| 84.43%| 76.18%
— L.(a=2) 0.975- L4(t=2) [rand| 200 | 768 | 036 | 128 | 79.94%| 7845%| 8334%| 7523% | 80.44%| 78.86%| 83.65%| 75.83%
— 002 L,(a=2) | 098 L£,(t=2) |rand| 200 | 768 | 036 | 128 | 56.39%| 63.06% | 69.48%| 62.85% | 56.78%| 63.90%| 69.80% | 63.82%
— 099 Lo(a=2) | 0.98-L,(t=2) |rand| 200 | 768 | 036 | 128 | 80.24%| 78.90%| 83.34%| 74.89% | 80.45% | 79.40%| 83.76%| 75.55%
— L.(a=2) 098 £,(t=2) |rand| 200 | 768 | 036 | 128 | 80.29%| 78.64%| 8346%| 75.23% | 80.77%| 78.84%| 83.96%| 75.90%
— — Lo(t=2) |rand| 200 | 768 | 036 | 128 | 20.62%| 15.96%| 24.52%| 16.13% | 20.50%| 16.14%| 24.64%]| 16.24%
— 00025 Lo(a=2) |  Lo(t=2) |rand| 200 | 768 | 036 | 128 | 36.14%| 33.19%| 46.82%| 35.22% | 36.28%| 33.76% | 47.04%| 36.05%
— 0.005 - £,(a=2) Lo(t=2) |rand| 200 | 768 | 036 | 128 | 48.38%| 49.74%| 59.67%| 49.55% | 48.69%| 50.41%| 59.81%]| 50.40%
— 00125 Lo(a=2) |  Lo(t=2) |rand| 200 | 768 | 036 | 128 | 5131%| 57.94%| 64.95%| 57.49% | 51.80%| 58.75%| 6540%]| 58.01%
— 0.025 - L,(a=1) Lo(t=2) |rand| 200 | 768 | 036 | 128 | 46.13%| 51.81%] 58.51%| 51.30% | 46.61%| 52.65%| 59.03%]| 51.99%
— 0.025 - L,(a=2) L,(t=2) |rand| 200 | 768 | 036 | 128 | 57.34%]| 62.50%| 69.09%| 61.76% | 57.89%| 63.43%| 69.58%| 62.51%
— 025 Lo(a=1) Lo(t=2) |rand| 200 | 768 | 036 | 128 | 70.80%| 75.24%]| 80.59%| 72.59% | 71.40%| 75.54%| 81.20%]| 73.36%
— 025 L,(a=2) L.(t=2) |rand| 200 | 768 | 036 | 128 | 76.14%]| 78.45%| 82.97%| 75.90% | 76.83% | 78.88% | 83.51%| 76.74%
— 0.3 La(a=2) Lo(t=2) |rand| 200 | 768 | 036 | 128 | 76.72%| 78.01%| 83.26%| 75.61% | 77.30%| 78.43%| 83.19%| 76.25%
— 04 Lo(a=2) Lo(t=2) |rand| 200 | 768 | 036 | 128 | 78.71%| 77.76%| 83.13%| 75.42% | 79.36%| 78.01%| 83.64%| 76.24%
— 0.5 La(a=2) Lo(t=2) |rand| 200 | 768 | 036 | 128 | 80.41%| 79.18%| 83.85%| 75.54% | 80.03%| 79.35%| 84.20%| 76.84%
— 0.75 - La(a=2) Lo(t=2) |rand| 200 | 768 | 036 | 128 | 80.54%| 78.84%]| 83.61%| 75.26% | 80.89%| 79.29% | 8423%| 76.28%
— L.(a=2) Lo(t=2) |rand| 200 | 768 | 036 | 128 | 80.32%| 78.90%| 83.48%| 74.97% | 80.76%| 79.23%| 83.75%| 76.15%
— 1.025 - L,(a=2) Lo(t=2) |rand| 200 | 768 | 036 | 128 | 80.37%| 78.69%| 83.48%| 75.78% | 80.74%| 79.06% | 84.00%| 76.56%
— 1.25 - L.(a=2) Lo(t=2) |rand| 200 | 768 | 036 | 128 | 80.50%| 78.41%| 83.54%| 75.89% | 80.84%| 78.65%| 83.95%| 76.56%
— 04-Lo(a=2) | 12-L,(t=2) |rand| 200 | 768 | 036 | 128 | 7537%| 73.62%| 78.88%| 71.55% | 75.18%| 73.83%| 79.15%| 72.35%
— 03 La(a=2) | 14-L,(t=2) |rand| 200 | 768 | 036 | 128 | 72.69%| 75.62%| 80.67%| 73.49% | 73.14%| 75.99% | 81.49%]| 74.20%
— 025-L.(a=2) | 15-L,(t=2) |rand| 200 | 768 | 036 | 128 | 70.61%| 73.50%| 78.53%| 71.85% | 71.03%| 74.10%| 79.13%| 72.50%
— 02 L.(a=2) | 1.6-L,(t=2) |rand| 200 | 768 | 036 | 128 | 67.35%| 70.98%| 76.84%| 69.13% | 67.69%| 71.64% | 77.40%]| 69.91%
— 0.1 L,(a=2) | 18-L,(t=2) |rand| 200 | 768 | 036 | 128 | 64.43%| 68.89%| 74.24%| 68.15% | 65.01%| 69.34%| 74.70% | 68.80%
— 0.0875 - Lo(a=2) | 1.825 £,(t=2) |rand| 200 | 768 | 036 | 128 | 6338% | 68.83%| 73.56% | 67.33% | 64.05%| 69.76% | 73.91%| 68.14%
— 0.075- L,(a=2) | 1.85-L,(t=2) |rand| 200 | 768 | 036 | 128 | 63.02%| 69.32%| 74.49%| 68.22% | 63.44%| 69.91%| 75.05%| 69.06%
— 0.0625 - Lo(a=2) | 1.875- £,(t=2) |rand| 200 | 768 | 036 | 128 | 58.73%| 64.37%| 70.93%| 63.74% | 59.23%| 65.14%| 71.54%]| 64.69%
— 0.05-Lo(a=2) | 1.9-L,(t=2) |rand| 200 | 768 | 036 | 128| 57.61%| 64.13%| 69.13%| 63.09% | 58.03%| 65.09%| 69.43%| 64.09%
— 0025 Lo(a=2) | 1.95 L,(t=2) |rand| 200 | 768 | 036 | 128 | 50.80% | 57.70%| 63.93%| 57.83% | 51.46% | 58.39%| 64.45%| 58.34%
— 0.0125 - Lo(a=2) | 1975 £,(t=2) |rand| 200 | 768 | 036 | 128 | 44.71%| 50.89%| 57.75%| 51.21% | 45.14%| 51.99%| 57.98%| 52.11%
— — 2.L£,(t=2) |rand| 200 | 768 | 036 | 128 | 21.99%| 19.46%| 28.94%| 20.10% | 21.91%| 19.75%| 29.65%]| 20.76%
— 0.1 La(a=2) 2-L,(t=2) |rand| 200 | 768 | 036 | 128 | 63.63%| 70.70%| 75.85%| 69.41% | 64.14%| 71.43%| 76.50%| 69.99%
— 02 L.(a=2) 2.L£,(t=2) |rand| 200 | 768 | 036 | 128 | 66.52%| 72.89%]| 77.66%| 70.98% | 67.16% | 73.52%| 78.19%| 71.79%
— L.(a=1) 2-L,(t=2) |rand| 200 | 768 | 036 | 128 ] 10.00%| 10.00%]| 10.00%| 10.00% | 10.00% | 10.00%| 10.00%| 10.00%
— L.(a=1) 25-L,(t=2) |rand| 200 | 768 | 036 | 128 | 10.00%| 10.00%| 10.00%| 10.00% | 10.00%]| 10.00%| 10.00%| 10.00%
— L.(a=1) 3.L,(t=2) |rand| 200 | 768 | 036 | 128 | 10.00%| 10.00%]| 10.00%| 10.00% | 10.00% | 10.00%| 10.00%| 10.00%
— L.(a=1) 4.L,(t=2) |rand| 200 | 768 | 036 | 128 | 10.00%]| 10.00%| 10.00%| 10.00% | 10.00% | 10.00%| 10.00%| 10.00%
— — 5-L,(t=2) |rand| 200 | 768 | 036 | 128 | 19.61%| 14.29%]| 21.70% | 14.97% | 19.64%| 14.19%| 21.61%]| 15.58%
— 0.05-L.(a=2) | 5-Ly(t=2) |rand| 200 | 768 | 036 | 128 | 50.49%| 55.71%| 61.45%| 55.15% | 50.91%| 56.71%| 61.58%| 56.19%
— La(a=1) 5-L,(t=2) |rand| 200 | 768 | 036 | 128 ] 10.00%| 10.00%| 10.00%| 10.01% | 10.00% | 10.00%| 10.00%| 10.00%
— 05 La(a=2) Lo(t=2) |rand| 200 | 768 | 036 |256| — — — — 82.10% | 79.45% | 84.15%| 77.10%
— 0.75 - Lo(a=2) Lo(t=2) |rand| 200 | 768 | 036 |256| — — — — 81.53% | 79.03% | 83.54%| 76.35%
— L.(a=2) Lo(t=2) |rand| 200 | 768 | 036 |256| — — — — 81.33% | 79.06% | 84.03%| 75.89%
— 0.025 - L,(a=2) Lo(t=2) |rand| 200 | 768 | 036 |s512] — — — — 75.76% | 72.75% | 78.29%| 71.04%
— 0375 Lo(a=2) Lo(t=2) |rand| 200 | 768 | 036 |s12| — — — — 82.33% | 79.18% | 8391%| 76.44%
— 0.5 La(a=2) Lo(t=2) |rand| 200 | 768 | 036 |512] — — — — 82.55% | 79.64% | 84.29%| 75.74%
— L.(a=2) Lo(t=2) |rand| 200 | 768 | 036 |s12| — — — — 82.04% | 78.79% | 83.98%| 76.50%
— 0.025 - L,(a=2) Lo(t=2) |rand| 200 | 768 | 036 |1024] — — — — 76.39% | 72.45% | 78.23%| 70.59%
— 0.05- £,(a=2) Lo(t=2) |rand| 200 | 768 | 036 |1024] — — — — 79.68% | 7543%| 80.81%| 73.45%
— 025 L,(a=2) Lo(t=2) |rand| 200 | 768 | 036 |1024] — — — — 83.03%| 79.63%| 84.15%]| 76.10%
— 025 £,(a=2) Lo(t=2) |rand| 200 | 768 | 036 |1024] — — — — 82.85% | 79.44% | 8391%| 75.35%
— 0.375 - La(a=2) Lo(t=2) |rand| 200 | 768 | 036 |1024] — — — — 82.63% | 79.33% | 83.69%| 76.09%
— 05 L.(a=2) L,(t=2) |rand| 200 | 768 | 036 |1024] — — — — 82.85% | 79.75%| 83.85%| 76.81%
— La(a=2) Lo(t=2) |rand| 200 | 768 | 036 |1024] — — — — 81.89% | 79.09% | 84.03%| 75.51%
— 025 L,(a=2) L,(t=2) |rand| 200 | 768 | 036 |1536] — — — — 82.93% | 79.55% | 84.00%| 75.81%
— 0.5 La(a=2) Lo(t=2) |rand| 200 [1024| 048 [s12] — — — — 82.20% | 79.36% | 83.69%| 75.73%
— L.(a=2) L,(t=2) |rand| 200 |1024]| o048 |s512] — — — — 81.66% | 79.03% | 83.88%| 75.49%
— 025 L,(a=2) Lo(t=2) |rand| 200 [1024| 048 [1024] — — — — 82.40% | 78.98% | 83.34%| 75.85%
— 0.375 - La(a=2) L,(t=2) |rand| 200 |1024] 048 [1024] — — — — 82.74% | 79.48% | 83.70%| 76.59%
— 0.5 La(a=2) Lo(t=2) |rand| 200 [1024| 048 [1024] — — — — 82.51% | 79.11% | 83.46%| 74.94%
L(r=0.5) — — A 12 [256] o012 128 — — — — 7931% | 7745%| 8334%| 76.60%
— Se — 05 La(a=2) — & | 12 [256] o012 |28 — — — — 64.11% | 62.45% | 77.96%| 68.56%
— 0.0005 - £,(a=2) — & | 12 [256] o012 [128] — — — — 6390% | 62.40% | 77.81%| 68.55%
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— 0.005 - £,(a=2) — & | 12 [256] o012 [128 61.53% | 61.66% | 76.83%]| 66.68%

— 0.5 La(a=2) — & | 12 [256| o012 |28 1036% | 23.01%| 49.19%| 39.39%

— — 001-L,(t=2) | & | 12 | 256 | o012 |128 44775% | 41.79% | 55.59%| 38.59%

— 05-La(a=2) | 001-L,(t=2) | & | 12 |256 | 012 |128 10.03% | 32.81%| 57.95%| 41.53%

— — 01 L,(t=2) | & | 12 |256| o012 |128 54778% | 54.05% | 65.77%| 50.13%

— — L4(t=2) & | 12 [256| o012 |28 55.74% | 52.03%| 63.90%]| 50.59%

— 0.005 - L(a=2) L,(t=2) & | 12 [256| o012 |128 57.85%| 55.18% | 65.64%| 53.33%

— 0.05- Lo(a=2) La(t=2) & | 12 [256| o012 |28 68.46% | 66.07% | 72.88%| 64.65%

— 04 L,(a=2) L,(t=2) O | 12 [256| o012 [128 77.63% | 76.65%| 81.75%| 75.95%

— 0.5 La(a=1) La(t=2) o | 12 [256] o012 |28 70.00% | 6821% | 74.15%| 66.77%

— 0.5 La(a=2) La(t=2) O | 12 [256| o012 |128 71.73% | 76.33%| 81.61%| 76.00%

— 0.5 La(a=2) La(t=2) o | 12 [256 | o012 128 74.23% | 72.89% | 79.01%| 71.46%

— 0.625 - Lo(a=1) L.(t=2) O | 12 [256| o012 128 74.40% | 72.84%| 7929%| 71.41%

— L.(a=2) La(t=2) o | 12 [256] o012 [128 76.48% | 75.86% | 81.04%| 75.43%

— L.(a=2) La(t=2) O | 12 [256| o012 128 73.13% | 72.24%| 78.33%| 71.15%

— 1.25 - Lo(a=1) La(t=2) o | 12 [256] o012 [128 76.80% | 75.75% | 81.00%| 75.11%

— 1.25 Lo(a=1) La(t=2) O | 12 [256| o012 128 73.11% | 71.73% | 7823%| 71.79%

— 1.25 - Lo(a=1) La(t=2) o | 12 [256] o012 |28 69.10% | 6721% | 74.19%| 66.25%

— 1.875 - Lo(a=1) L4(t=2) O | 12 [256| o012 128 72.63% | 71.08% | 77.19%| 70.98%
Lo(r=0.5) — — O] 12 [78] o036 [128 75.34% | 74.00% | 81.09%| 73.23%
Lo(r=0.5) — — * | 12 [768] o036 |128 65.60% | 64.25% | 70.73%| 64.79%
0.5 Lo(r=0.5) — — * | 12 [768 ] 036 128 69.64% | 67.70% | 74.89%| 68.74%
0.25 - Lc(7=0.5) — — * | 12 [ 768 ] o036 |128 69.11% | 68.34% | 74.30%| 69.30%
0.05 L(r=0.5) — — * | 12 [768 ] o036 128 70.43% | 69.70%| 76.08%| 71.31%
0.025 - Lo(r=0.5) — — O 12 [768] o036 [128 80.27% | 78.65% | 83.93%]| 77.00%
0.025 - L(r=0.5) — — * | 12 [768 ] o036 128 70.00% | 68.74%| 76.24%| 71.86%
0.01- Lc(7=0.5) — — O 12 [768] 03 [128 80.46% | 78.88% | 83.64%| 77.38%
0.01 L(r=0.5) — — * | 12 [768 ] o036 128 68.13% | 67.38% | 75.63%| 71.28%
— 0.00025 - £,(a=2) — * | 12 [768 ] 036 128 65.94% | 64.33% | 75.14%]| 70.90%

— 0.0005 - £,(a=2) — * | 12 [768] 036 128 64.88% | 63.18% | 74.78%| 70.88%

— 0.0005 - L,(a=2) — * | 12 [768 ] 036 128 64.89% | 63.53% | 74.76%]| 70.89%

— 0.001 - £,(a=2) — * | 12 [768 ] o036 128 62.65% | 61.93% | 74.31%]| 70.36%

— 0.0025 - Lo(a=2) — * | 12 [768 ] 036 128 50.18% | 60.09% | 72.98%| 69.41%

— 0.005 - £,(a=2) — * | 12 [768] o036 128 52.18% | 55.06% | 71.40%]| 67.10%

— 0.005 - £,(a=2) — * | 12 [768 ] 036 128 52.86% | 55.95% | 71.63%]| 67.76%

— 05 La(a=2) — * | 12 [768] o036 128 10.00% | 17.42%| 36.69% | 34.94%

— — 0.0001-L,(t=2)] % | 12 | 768 | 036 | 128 60.32% | 59.49% | 70.65%| 64.70%

— — 0.0005-£,(t=2)] % | 12 | 768 | 036 |128 4434% | 4341%| 61.06%| 53.97%

— 0.0005 - Lo(a=2) |0.0005 - Ly(t=2)] % | 12 | 768 | 036 | 128 66.14% | 66.13% | 75.29%| 70.20%

— — 0.001-L,(t=2) | % | 12 | 768 | 036 | 128 41.61% | 40.73%| 56.91%| 48.24%

— 0.001- L,(a=2) | 0.001-L,(t=2) | 4 | 12 | 768 | 036 | 128 66.23% | 66.55% | 75.16%]| 70.25%

— 05 L.(a=2) |0.001-L,(t=2)| % | 12 | 768 | 036 | 128 10.00% | 17.79% | 35.06%| 34.11%

— 0.002- Lo(a=2) | 0.002- L,(t=2) | 4 | 12 | 768 | 036 | 128 66.35% | 67.07% | 74.50%]| 70.33%

— — 001-Lu(t=2) | % | 12 | 768 | 036 |128 44.64% | 41.55%| 50.75%| 42.90%

— 0.01-Lo(a=2) | 0.01-Ly(t=2) | % | 12 | 768 | 036 |128 71.54% | 70.71% | 7545%| 70.43%

— 05 L.(a=2) | 001-L,(t=2) | % | 12 | 768 | 036 | 128 10.00% | 18.05% | 32.93%| 31.53%

— 0.03-Lo(a=2) | 0.02-L,(t=2) | % | 12 | 768 | 036 |128 72.13% | 71.86% | 76.33%| 71.78%

— 0025 L.(a=2) | 0.025-L,(t=2) | % | 12 | 768 | 036 | 128 73.40% | 72.58%| 76.44%| 72.09%

— 0.0375 - La(a=2) | 0.025- L,(t=2) | % | 12 | 768 | 036 | 128 72.54% | 71.56% | 76.14%| 71.89%

— 0.05-L.(a=2) | 005-L,(t=2) | % | 12 | 768 | 036 | 128 73.94% | 72.63%| 77.05%| 72.36%

— — 01-L,(t=2) | % | 12 | 768 | 036 | 128 54.51% | 48.40% | 60.60%| 49.00%

— 01-L.(a=2) | 01-L,(t=2) | % | 12 | 768 | 036 | 128 7330% | 72.21%| 76.54%| 72.13%

— 05 La(a=2) | 01-L,(t=2) | % | 12 | 768 | 036 | 128 6745% | 67.03% | 74.04%]| 68.73%

— 025 L,(a=2) | 025-L,(t=2) | % | 12 | 768 | 036 | 128 73.09% | 71.66%| 76.80%| 71.16%

— 05 La(a=2) | 05-Ly(t=2) | * | 12 | 768 | 036 | 128 72.18% | 71.56% | 76.38%]| 70.93%

— — L,(t=2) * | 12 [ 768 ] o036 |128 39.45% | 35.56% | 47.18%| 35.60%

— 0.0005 - Lo(a=2) | Ly(t=2) * | 12 [768 ] 036 128 4358% | 38.19%| 49.38%| 38.64%

— 0.005 - £,(a=2) L,(t=2) * | 12 [ 768 ] o036 |128 50.10% | 47.36% | 56.66%| 48.73%

— 0.05- L,(a=2) La(t=2) * | 12 [768 ] 036 128 65.65% | 66.15% | 71.48%| 66.10%

— 0.5 La(a=2) L.(t=2) *x | 12 [ 768 ] o036 |128 7034% | 70.04% | 74.88% | 68.76%

— 0.5 La(a=2) La(t=2) * | 12 [768 ] 036 128 70.84% | 69.88% | 75.61%| 69.34%

— L.(a=2) La(t=2) *x | 12 [ 768 ] o036 |128 66.83% | 65.59% | 72.09%| 65.30%

— 15-La(a=2) | 15-L,(t=2) | % | 12 | 768 036 |[128 65.18% | 6232% | 69.77%| 62.31%

— L.(a=2) 2-L,(t=2) | % | 12 | 768 | 036 | 128 6321% | 61.86% | 68.66%| 60.80%
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> PO

— 2. Ly(a=2) 2-Ly(t=2) * 12 768 0.36 128 — — — — 61.93% | 60.78% | 68.54% | 60.18%
L(r=1) — — rand| 200 | 786 0.12 128 — — — — 70.35% | 70.11% | 80.41% | 73.15%
L(T=2) — — rand| 200 | 786 0.12 128 — — — — 64.19% | 62.38% | 78.11% | 68.77%
L(T=3) — — rand| 200 | 786 0.12 128 — — — — 55.04% | 53.94% | 74.95% | 64.04%
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Table 4: Experiment specifications for all 64 NYU-DEPTH-V2 encoders. We report the encoder representation quality
measured by mean squared error (MSE) of a CNN depth predictor trained on conv5 or conv4 activations, via both a 5-fold

cross validation of the training set and the held out validation set.

All encoders in this table use standard network initialization (denoted as “rand’). Dimensionality (abbreviated as “Dim.”)

shows the ambient dimension of the output features, i.e., they live on the unit hypersphere of one less dimension.

Losses ‘ Batch |- .. ‘ Training Set 5-Fold Validation Set
Init. | Epochs Size Initial LR | Dim. | Cross Val. MSE | MSE |

L contrastive Lalign Luniform convs | conv4 convs | conv4
— 0.5 Lo(a=2) L,(t=2) rand| 400 128 0.06 128 0.7405 0.7979 0.7378 0.7969
L(7=0.25) — — rand| 400 128 0.06 128 0.7188 0.7747 0.7259 0.7761
— 4.375 - Lo(a=2) L,(t=2) rand| 400 128 0.06 128 0.8039 0.8297 0.8032 0.8281
— 3.625 - Ly(a=1) L,(t=2) rand| 400 128 0.06 128 0.7290 0.7775 0.7303 0.7749

— La(a=2 L,(t=2) rand| 400 128 0.06 128 0.7121 0.7689 0.7191 0.7725
— 3.5 Li(a=2) L,(t=2) rand| 400 128 0.06 128 0.7270 0.7741 0.7260 0.7772
L(T=4) — — rand| 400 128 0.06 128 0.7592 0.8195 0.7598 0.8175
— Li(a=2) 0.3333 - L,(t=2) | rand| 400 128 0.06 128 0.7165 0.7697 0.7215 0.7693
— 2 Ly(a=2) L,(t=2) rand| 400 128 0.06 128 0.7300 0.7669 0.7226 0.7699
L(7=0.05) — — rand| 400 128 0.06 128 0.7170 0.7672 0.7206 0.7637
L(r=1) — — rand| 400 128 0.06 128 0.7505 0.7958 0.7560 0.7965
— 0.5 Li(a=2) 7.5 Ly(t=2) rand| 400 128 0.06 128 0.8188 0.8556 0.8302 0.8590
— 1.25- L,(a=2) 0.5 L,(t=2) rand| 400 128 0.06 128 0.7237 0.7788 0.7224 0.7806
— 4.625 - Lo(a=1) L,(t=2) rand| 400 128 0.06 128 0.8692 0.8820 0.8724 0.8840
— 3.375 - La(a=2) L,(t=2) rand| 400 128 0.06 128 0.7663 0.7935 0.7691 0.7938
— 0.75 - Lo(a=2) 0.5 L,(t=2) rand| 400 128 0.06 128 0.7008 0.7621 0.7014 0.7592
— La(a=2) 0.25- L,(t=2) |rand| 400 128 0.06 128 0.7293 0.7997 0.7313 0.8013
L(7=0.07) — — rand| 400 128 0.06 128 0.7079 0.7468 0.7105 0.7460
L(7=0.005) — — rand| 400 128 0.06 128 0.7608 0.8109 0.7633 0.8149
— 4-Lo(a=2) L,(t=2) rand| 400 128 0.06 128 0.7721 0.8195 0.7737 0.8190
— 1.5 La(a=1) L,(t=2) rand| 400 128 0.06 128 0.7231 0.7810 0.7193 0.7889
— Li(a=2) 0.5 L,(t=2) rand| 400 128 0.06 128 0.7044 0.7714 0.7047 0.7718
— 0.5 Li(a=2) 0.5 L,(t=2) rand| 400 128 0.06 128 0.7329 0.7751 0.7454 0.7786

— 2.5 Li(a=1) L,(t=2) rand| 400 128 0.06 128 0.7295 0.7747 0.7304 0.7785
— 4.125 - Lo(a=2) L,(t=2) rand| 400 128 0.06 128 0.7497 0.8129 0.7478 0.8128

— 0.125 - Lo(e=2) 2.5-L,(t=2) rand| 400 128 0.06 128 0.8109 0.8535 0.8092 0.8523
— 1.25- L,(a=2) L,(t=2) rand| 400 128 0.06 128 0.7509 0.7892 0.7324 0.7926

— 3.75 - Li(a=2) L,(t=2) rand| 400 128 0.06 128 0.7514 0.8005 0.7531 0.8003
— 2.25 - Lo(a=2) L,(t=2) rand| 400 128 0.06 128 0.7360 0.7706 0.7413 0.7747
— 4.875 - Lo(a=1) L,(t=2) rand| 400 128 0.06 128 0.8699 0.8882 0.8717 0.8918
— 3.125 - Lo(a=2) L,(t=2) rand| 400 128 0.06 128 0.7203 0.7713 0.7138 0.7682

— 1.5 La(a=2) L,(t=2) rand| 400 128 0.06 128 0.7261 0.7744 0.7259 0.7715
L(7=0.5) — — rand| 400 128 0.06 128 0.7334 0.7743 0.7293 0.7701
— Li(a=2) 0.2857 - L,(t=2) | rand| 400 128 0.06 128 0.7456 0.8070 0.7423 0.8030
— 2.5 Li(a=2) L,(t=2) rand| 400 128 0.06 128 0.7289 0.7591 0.7250 0.7597
— 0.5 Li(a=2) 3-Ly(t=2) rand| 400 128 0.06 128 0.7819 0.8352 0.7808 0.8314
— 0.5 Li(a=2) 10- L,(t=2) rand| 400 128 0.06 128 0.8422 0.8896 0.8430 0.8857
— 3-Ly(a=2) L,(t=2) rand| 400 128 0.06 128 0.7203 0.7642 0.7160 0.7643
— 3.875 - Lo(a=2) L,(t=2) rand| 400 128 0.06 128 0.7477 0.7980 0.7476 0.7960
L(r=0.4) — — rand| 400 128 0.06 128 0.7181 0.7628 0.7163 0.7651
— 0.75 - Lo(a=1) L,(t=2) rand| 400 128 0.06 128 0.7670 0.8225 0.7700 0.8224
— 1.25- L,(a=1) Ly(t=2 rand| 400 128 0.06 128 0.7311 0.7922 0.7265 0.7942
— 1.75 - Lo(a=2) 0.5 L,(t=2) rand| 400 128 0.06 128 0.7323 0.7900 0.7297 0.7884
— 4.5 Li(a=2) L,(t=2) rand| 400 128 0.06 128 0.7592 0.8350 0.7585 0.8297
— 0.5- Li(a=2) 5-L,(t=2) rand| 400 128 0.06 128 0.7909 0.8517 0.7891 0.8526
0.5 L(7=0.07) — — rand| 400 128 0.06 128 0.7068 0.7594 0.7028 0.7624
— 3.75 - La(a=1) L,(t=2) rand| 400 128 0.06 128 0.7352 0.7853 0.7294 0.7817
— 3.125 - La(a=1) L,(t=2) rand| 400 128 0.06 128 0.7152 0.7661 0.7060 0.7667
— 3.625 - Lo(a=2) L,(t=2) rand| 400 128 0.06 128 0.7420 0.7925 0.7505 0.7970
— 5. Ly(a=2) L,(t=2) rand| 400 128 0.06 128 0.8072 0.8631 0.8084 0.8617
L(T=0.1) — — rand| 400 128 0.06 128 0.7074 0.7539 0.7124 0.7491
— 1.5 La(a=2) 0.5 L,(t=2) rand| 400 128 0.06 128 0.7255 0.7793 0.7199 0.7765

— 7.5 Li(a=2) L,(t=2) rand| 400 128 0.06 128 0.8160 0.8512 0.8131 0.8505

— 4.75 - Lo(a=2) L,(t=2) rand| 400 128 0.06 128 0.8102 0.8633 0.8084 0.8721
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— 0.5-Li(a=2) 2.5-Ly(t=2) rand| 400 128 0.06 128 0.7696 0.8208 0.7669 0.8141

— 2-La(a=1) L,(t=2) rand| 400 128 0.06 128 0.7209 0.7839 0.7370 0.7867
0.5-L(7=0.1) — — rand| 400 128 0.06 128 0.7062 0.7586 0.7024 0.7575
L(T=10) — — rand| 400 128 0.06 128 0.7860 0.8375 0.7850 0.8335
— 3.375 - Ly(a=1) Ly(t=2) rand| 400 128 0.06 128 0.7236 0.7703 0.7230 0.7728

— 0.25- L,(a=2) L,(t=2) rand| 400 128 0.06 128 0.7596 0.8122 0.7574 0.8107
L(1=0.3) — — rand| 400 128 0.06 128 0.7337 0.7653 0.7361 0.7640
L(T=5) — — rand| 400 128 0.06 128 0.7801 0.8278 0.7715 0.8355
— 3.25- Li(a=2) Ly(t=2) rand| 400 128 0.06 128 0.7495 0.7903 0.7503 0.7941

— 0.5 Li(a=2) 4-L,(t=2) rand| 400 128 0.06 128 0.8062 0.8597 0.8042 0.8608
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Table 5: Experiment specifications for all 45 IMAGENET-100 ResNet50 encoders trained using methods based on Momentum
Contrast (MoCo) (He et al., 2019). We report the encoder representation quality measured by accuracy of a linear classifier

on penultimate layer activations, via both a 3-fold cross validation of the training set and the held out validation set.

All encoders in this table use standard network initialization (denoted as “rand’). Dimensionality (abbreviated as “Dim.”)

shows the ambient dimension of the output features, i.e., they live on the unit hypersphere of one less dimension.

For Lniform, the “Intra-batch” column denotes whether L iform calculation includes pairwise distances within batch in

addition to distances w.r.t. to the queue (i.e., Equation (16) vs. Equation (15)).

Training Set 3-Fold

Validation Set

rover Init. | Epochs Baich Ql{eue Initial LR | Dim. Cross Val. Accuracy T Aceuracy 1
L ! Luniform Size | Sire top! top5 top! top5
contrastive Form ‘ Intra-batch op op. op 0op:
L(7=0.01) — rand| 240 128 | 16384 | 0.03 128 | 62.45% | 85.64% | 64.14% | 86.12%
L(7=0.07) — rand| 240 128 | 16384 | 0.03 128 | 71.68% | 91.00% | 72.80% | 91.64%
L(7=0.5) — rand| 240 128 | 16384 | 0.03 128 | 68.56% | 91.21% | 69.98% | 91.80%
L(r=1) — rand| 240 128 | 16384 | 0.03 128 | 62.19% | 87.73% | 64.06% | 88.32%
L(T=2) — rand| 240 128 | 16384 | 0.03 128 | 53.62% | 83.03% | 55.46% | 84.18%
L (T=5) — — rand| 240 128 | 16384 | 0.03 128 | 37.52% | 68.93% | 39.00% | 70.86%
— 2 Lo(a=2) — rand| 240 128 | 16384 | 0.03 128 1.03% 5.12% 1.22% 5.42%
— Ly(a=2) 0.125 - L,(t=8) v rand| 240 128 | 16384 | 0.03 128 | 65.89% | 88.28% | 67.42% | 88.96%
— La(a=2) 0.15- L,(t=7) v rand| 240 128 | 16384 | 0.03 128 | 67.51% | 88.95% | 68.90% | 89.68%
— Ly(a=2) 0.17 - L, (t=6) v rand| 240 128 | 16384 | 0.03 128 | 67.90% | 89.83% | 69.18% | 90.76%
— La(a=2) 0.2+ L,(t=5) v rand| 240 128 | 16384 | 0.03 128 | 69.27% | 90.08% | 70.46% | 90.86%
— 1.8 Li(a=2) 0.2-L,(t=2) v rand| 240 128 | 16384 | 0.03 128 1.00% 4.94% 1.00% 5.00%
— La(a=2) 0.25- L,(t=4) v rand| 240 128 | 16384 | 0.03 128 | 69.77% | 90.57% | 70.70% | 91.14%
— La(a=2) 0.33- L,(t=3) v rand| 240 128 | 16384 | 0.03 128 | 70.67% | 91.14% | 71.86% | 91.58%
— 1.6 - La(a=2) 0.4-L,(t=2) v rand| 240 128 | 16384 | 0.03 128 | 67.34% | 90.27% | 69.16% | 91.00%
— La(a=2) Ly(t=2) X rand| 240 128 | 16384 | 0.03 128 | 7091% | 91.38% | 72.34% | 91.86%
— Li(a=2) 0.5 L,(t=2) v rand| 240 128 | 16384 | 0.03 128 | 71.03% | 91.61% | 71.90% | 92.06%
— 14 Ly(a=2) 0.6-L,(t=2) v rand| 240 128 | 16384 | 0.03 128 | 71.11% | 91.69% | 72.06% | 92.28%
— 1.2 Lo(a=2) 0.8 L,(t=2) v rand| 240 128 | 16384 | 0.03 128 | 71.76% | 91.51% | 72.78% | 91.90%
— (a=2) L,(t=2) v rand| 240 128 | 16384 | 0.03 128 | 70.23% | 91.01% | 71.40% | 91.36%
— =2) W(t=1) v rand| 240 128 | 16384 | 0.03 128 | 68.07% | 90.66% | 69.54% | 91.14%
— =2) W(t=2) X rand| 240 128 | 16384 | 0.03 128 | 69.59% | 90.67% | 70.64% | 91.28%
— =2) W(t=2) v rand| 240 128 | 16384 | 0.03 128 | 70.45% | 91.25% | 71.48% | 91.72%
— =2) W(t=2) v rand| 240 128 16384 | 0.03 128 | 72.39% | 91.71% | 73.80% | 92.22%
— =2) W(t=2) X rand| 240 128 | 16384 | 0.03 128 | 72.19% | 92.35% | 73.30% | 92.74%
— =2) W(t=2) X rand| 240 128 |32768 | 0.03 128 | 72.41% | 92.08% | 73.54% | 92.74%
— =2) W(t=2) v rand| 240 128 | 16384 | 0.03 128 | 72.69% | 92.21% | 73.74% | 92.80%
— =2) W(t=2) v rand| 240 128 |32768 | 0.03 128 | 72.65% | 92.09% | 73.68% | 92.46%
— =2) W(t=2) X rand| 240 128 | 16384 | 0.03 128 | 71.77% | 91.99% | 73.00% | 92.14%
— =2) W(t=2) v rand| 240 128 | 16384 | 0.03 128 | 7231% | 91.99% | 73.50% | 92.38%
— 2(a=2) W(t=2) v rand| 240 128 | 16384 | 0.03 128 | 72.03% | 92.09% | 73.48% | 92.56%
— 2(a=2) W(t=3) v rand| 240 128 | 16384 | 0.03 128 | 73.49% | 92.24% | 74.60% | 92.74%
— 2(a=2) W(t=4) v rand| 240 128 | 16384 | 0.03 128 | 7293% | 92.03% | 74.30% | 92.54%
— 2(a=2) u(t=5) v rand| 240 128 | 16384 | 0.03 128 | 71.96% | 91.67% | 73.04% | 92.28%
— 2(a=2) 4(t=6) v rand| 240 128 | 16384 | 0.03 128 | 70.49% | 90.63% | 72.02% | 91.24%
— =2) W(t=T7) v rand| 240 128 | 16384 | 0.03 128 | 70.66% | 90.83% | 72.32% | 91.86%
— =2) W(t=8) v rand| 240 128 | 16384 | 0.03 128 | 69.47% | 90.33% | 70.86% | 91.26%
— =2) 1.2 L,(t=2) v rand| 240 128 | 16384 | 0.03 128 | 70.45% | 90.72% | 71.22% | 91.06%
— a=2) 14-L,(t=2) v rand| 240 128 | 16384 | 0.03 128 | 69.03% | 90.53% | 70.44% | 90.92%
— 2(a=2) 1.6 - L,(t=2) v rand| 240 128 | 16384 | 0.03 128 | 67.04% | 89.24% | 68.32% | 89.76%
— 2(a=2) 1.8 L,(t=2) v rand| 240 128 | 16384 | 0.03 128 | 66.71% | 88.93% | 68.10% | 89.48%
— 2 L,(t=2) v rand| 240 128 | 16384 | 0.03 128 2.43% 9.97% 2.92% 10.56%
— La(a=2) L,(t=2) v rand| 240 128 | 16384 | 0.03 128 | 58.43% | 84.67% | 60.36% | 85.02%
— 2(a=2) L,(t=2) X rand| 240 128 | 32768 | 0.03 128 | 69.68% | 91.13% | 70.80% | 91.80%
— 2(a=2) L,(t=2) v rand| 240 128 | 16384 | 0.03 128 | 69.62% | 90.77% | 70.92% | 91.42%
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Table 6: Experiment specifications for all 108 BOOKCORPUS recurrent encoders trained using methods based on Quick-
Thought Vectors (Logeswaran & Lee, 2018). We report the encoder representation quality measured by accuracy of logistic
classifiers on encoder outputs for the Movie Review Sentence Polarity (MR) and Customer Product Sentiment (CR) binary
classification tasks, via both a 5-fold cross validation of the training set (of the downstream task) and the held out validation
set (of the downstream task).

All encoders in this table use standard network initialization (denoted as “rand”). Dimensionality (abbreviated as “Dim.”)
shows the ambient dimension of the output features, i.e., features from [2-normalized encoders live on the unit hypersphere
of one less dimension. Regardless of whether the encoder is [2-normalized (indicated in “Normalization” column), the
features are always normalized before being used for downstream tasks, following Logeswaran & Lee (2018).

The only unnormalized encoder is obtained using the unmodified Quick-Thought Vectors algorithm. 6 configurations that
suffer from training instability (i.e., NaN occurring) are also reported.

Losses o ) Batch| . ' Training Set 5-Fold Validation Set
Normalization | Init. | Epochs Size Initial LR | Dim. | Cross Val. Accuracy 1 Accuracy T

ACcontrastive ‘ £a|ign ‘ 'Cuniform MR CR MR ‘ CR
L(T=1) — — X rand 1 400 0.0005 | 1200| 76.33% 81.90% 77.23% | 83.07%
L(7=0.005) — — v rand 1 400 0.0005 |1200| 74.97% 82.94% 76.85% | 82.54%
L(7=0.01) — — v rand 1 400 0.0005 |1200| 75.02% 82.20% 75.54% | 82.28%
L(7=0.05) — — v rand 1 400 0.0005 |1200| 75.48% 83.64 % 77.69% | 83.86%
L(1=0.075) — — v rand 1 400 0.0005 | 1200| 76.37% 83.32% 77.51% | 82.28%
L(7=0.1) — — v rand 1 400 0.0005 |1200| 75.82% 81.90% 74.79% | 83.86%
L(7=0.2) — — v rand 1 400 0.0005 |1200| 74.33% 81.08% 75.63% | 80.16%
L(7=0.25) — — v rand 1 400 0.0005 |1200| 72.33% 79.49% 71.51% | 78.84%
L(1=0.3) — — 4 rand 1 400 0.0005 |1200| 72.85% 78.54% 73.57% | 79.10%
L(T=0.4) — — v rand 1 400 0.0005 |1200| 69.72% 77.28% 67.85% | 77.51%
L(1=0.5) — — v rand 1 400 0.0005 |1200| 68.97% 76.27% 68.98% | 74.07%
L(7=0.6) — — v rand 1 400 0.0005 |1200| 68.61% 75.48% 68.88% | 73.81%
L(T=0.7) — — v rand 1 400 0.0005 |1200| 67.89% 74.01% 67.76% | 76.46%
L(7=0.8) — — v rand 1 400 0.0005 |1200| 67.02% T4.77% 66.07% | 74.34%
L(7=0.9) — — v rand 1 400 0.0005 |1200| 66.78% 74.01% 65.32% | 72.75%
L(r=1) — — v rand 1 400 0.0005 |1200| 66.67% T4.12% 65.79% | 74.34%
L(T=1.5) — — v rand 1 400 0.0005 |1200| 63.92% 70.47% 65.42% | 75.93%
L(T7=2) — — v rand 1 400 0.0005 |1200| 63.97% 72.06% 62.79% | 71.69%
L(T=5) — — v rand 1 400 0.0005 |1200| 62.21% 69.50% 62.98% | 73.54%
L(7=0.075) La(a=2) — v rand 1 400 0.0005 |1200| 69.16% 73.39% 68.13% | 72.75%
L(r=1) Li(a=2) — v rand 1 400 0.0005 |1200| 49.68% 63.81% 49.77% | 63.49%
L(7=0.075) 0.9 Li(a=2) 0.1-L,(t=2) v rand 1 400 0.0005 |1200| 71.26% 77.90% 71.42% | 76.72%
L(t=1) 0.9 Li(a=2) 0.1-L,(t=2) v rand 1 400 0.0005 |1200| 51.26% 63.78% 52.01% | 63.49%
L(7=0.075) 0.8 Li(a=2) 0.2 L,(t=2) v rand 1 400 0.0005 |1200| 76.25% 83.05% 76.48% | 83.33%
L(t=1) 0.8 Li(a=2) 0.2- L,(t=2) v rand 1 400 0.0005 |1200| 71.33% 79.31% 70.48% | 78.31%
Lo(r=0.075) | 0.7 L.(a=2) 0.3-Lo(t=2) v rand| 1 | 400 | 0.0005 |1200] 75.67% | 81.20% | 74.60% | 81.48%
L(r=1) 0.7 Lo(a=2) 0.3-L,(t=2) v rand 1 400 0.0005 |1200| 71.59% 78.72% 73.66% | 78.84%
Lo(r=0.075) | 0.6-La.(a=2) 04-Lo(t=2) v rand| 1 | 400 | 0.0005 |1200] 75.06% | 82.23% | 7441% | 81.48%
L(t=1) 0.6 Li(a=2) 0.4-L,(t=2) v rand 1 400 0.0005 |1200| 70.53% 78.43% 68.88% | 75.93%
Lo(r=0.075) | 0.5 La(a=2) 0.5 La(t=2) v rand| 1 | 400 | 0.0005 |1200| 7445% | 81.61% | 74.51% | 84.66%
L(t=1) 0.5 Li(a=2) 0.5-L,(t=2) v rand 1 400 0.0005 |1200| 66.06% 72.97% 63.64% | 73.02%
Lo(r=0.075) | 04 L.(a=2) 0.6-La(t=2) v rand| 1 | 400 | 0.0005 |1200] 73.23% | 80.61% | 74.32% | 82.54%
L(t=1) 0.4-Li(a=2) 0.6-L,(t=2) v rand 1 400 0.0005 |1200| 57.75% 67.55% 57.92% | 69.84%
Lo(r=0.075) | 0.3 La(a=2) 0.7 La(t=2) v rand| 1 | 400 | 0.0005 |1200] 72.99% | 79.46% | 74.88% | 77.25%
L(t=1) 0.3- Li(a=2) 0.7- L,(t=2) v rand 1 400 0.0005 |1200| 56.96% 64.31% 55.30% | 65.34%
L(7=0.075) 0.2- Li(a=2) 0.8 L,(t=2) v rand 1 400 | 0.0005 |1200| 71.94% | 79.43% | 70.95% | 78.04%
L(r=1) 0.2 Li(a=2) 0.8-L,(t=2) v rand 1 400 0.0005 |1200| 54.90% 64.22% 55.11% | 63.76%
L(7=0.075) 0.1-Li(a=2) 0.9-L,(t=2) v rand 1 400 | 0.0005 |1200| 70.53% | 78.25% | 69.82% | 78.57%
L(t=1) 0.1- Li(a=2) 0.9-L,(t=2) v rand 1 400 0.0005 |1200| 55.56% 64.90% 53.98% | 65.08%
L (1=0.075) — L,(t=2) v rand 1 400 | 0.0005 |1200| 70.13% | 77.66% | 70.67% | 77.25%
L(t=1) — L,(t=2) v rand 1 400 0.0005 |1200| 54.76% 63.45% 53.98% | 64.81%
— Li(a=2) v rand 1 400 | 0.0005 |1200| 49.85% | 63.81% | 50.05% | 63.49%
— La(a=2) — v rand 1 400 0.0005 |1200| 50.02% 63.81% 4930% | 63.49%
— Li(a=2 — v rand 1 400 0.0005 |1200| 50.04% 63.81% 49.95% | 63.49%
— 0.9091 - L,(a=2) | 0.0909 - L,(t=2) v rand 1 400 0.0005 |1200| 49.67% 63.81% 49.86% | 63.49%
— 0.9- Li(a=2) 0.1-L,(t=2) v rand 1 400 0.0005 |1200| 49.71% 63.81% 49.77% | 63.49%
— 0.9 Li(a=2) 0.1-L,(t=5) v rand 1 400 0.0005 |1200| 73.42% 81.23% 73.76% | 80.95%
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0.9 Li(a=2) 0.1-L,(t=T) v rand 1 400 | 0.0005 |1200| 70.59% 78.57% 71.60% | 77.51%
0.8889 - L,(=2) | 0.1111 - L,(t=2) v rand 1 400 | 0.0005 |1200| 50.14% 63.81% 49.86% | 63.49%
0.875 - La(a=2) 0.125- L,(t=2) v rand 1 400 | 0.0005 |1200| 50.33% 63.98% 49.86% | 63.49%
0.875 - Lao(a=2) 0.125 - L,(t=T) v rand 1 400 | 0.0005 |1200| 64.70% 72.71% 64.10% | 71.69%
0.8571 - Lo(a=2) | 0.1429 - L,(t=2) v rand 1 400 | 0.0005 |1200| 59.80% 66.52% 59.51% | 67.72%
0.8333 - La(a=1) | 0.1667 - L,(t=2) v rand 1 400 | 0.0005 |1200| 68.42% 76.07% 68.60% | 75.13%
0.8333 - La(a=2) | 0.1667 - L,(t=2) v rand 1 400 | 0.0005 |1200| 66.69% 73.09% 67.95% | 71.69%
0.833 - La(a=2) 0.167 - L,(t=5) v rand 1 400 | 0.0005 |1200| 54.35% 64.49% 56.33% | 63.49%
0.8298 - Lo(a=1) | 0.1702- L,(t=2) v rand 1 400 | 0.0005 |1200| 67.38% 74.68% 67.29% | 73.81%
0.8298 - L,(a=2) | 0.1702 - L,(t=2) v rand 1 400 | 0.0005 |1200| 66.24% 73.33% 64.76% | 77.25%
0.8261 - Lo(a=1) | 0.1739 - L,(t=2) v rand 1 400 | 0.0005 |1200| 65.91% 75.27% 66.82% | 74.07%
0.8261 - L,(a=2) | 0.1739 - L,(t=2) v rand 1 400 | 0.0005 |1200| 67.65% 73.56% 67.95% | 72.49%
0.8222 - Lo(a=1) | 0.1778 - L,(t=2) v rand 1 400 | 0.0005 |1200| 66.73% 75.13% 67.85% | 73.54%
0.8222 - L,(a=2) | 0.1778 - L,(t=2) v rand 1 400 | 0.0005 |1200| 69.33% 73.42% 69.54% | 74.60%
0.8182- Lo(a=1) | 0.1818 - L,(t=2) v rand 1 400 | 0.0005 |1200| 66.17% 74.36% 65.70% | 74.34%
0.8182- L,(a=2) | 0.1818 - L,(t=2) v rand 1 400 | 0.0005 |1200| 69.61% 75.51% 70.10% | 75.40%
0.814 - Lo(a=1) 0.186 - L,(t=2) v rand 1 400 | 0.0005 |1200| 63.43% 72.74% 63.82% | 73.28%
0.814 - Lo(a=2) 0.186 - L,(t=2) v rand 1 400 | 0.0005 |1200| 71.32% 77.72% 70.85% | 77.25%
0.8095 - La(a=1) | 0.1905 - L,(t=2) v rand 1 400 | 0.0005 |1200| 63.47% 72.33% 63.82% | 73.28%
0.8095 - La(=2) | 0.1905 - L,(t=2) v rand 1 400 | 0.0005 |1200| 71.33% 77.19% 71.13% | 75.40%
0.8049 - Lo(a=1) | 0.1951 - Lo(t=2) v rand| 1 | 400 | 0.0005 |1200] 6L.17% | 70.79% | 61.01% | 73.54%
0.8049 - L,(a=2) | 0.1951 - L,(t=2) v rand 1 400 | 0.0005 |1200| 72.04% 77.93% 73.38% | 77.51%
0.8-Li(a=1) 0.2- L,(t=2) v rand| 1 400 | 0.0005 |[1200| 6091% | 69.41% | 59.14% | 70.37%
0.8 Li(a=2) 0.2-L,(t=2) v rand 1 400 | 0.0005 |1200| 72.60% 80.34% 73.48% | 79.89%
0.8-Li(a=2) 0.2- L,(t=5) v rand| 1 400 | 0.0005 |1200| 54.82% | 63.19% | 51.64% | 64.02%
0.8 Li(a=2) 0.2-L,(t=7) v rand 1 400 | 0.0005 |1200| 53.67% 63.90% 57.92% | 65.61%
0.75 - Ly(a=1) 0.25- L,(t=2) v rand| 1 400 | 0.0005 |1200| 55.29% | 63.63% | 55.11% | 70.11%
0.75 - Ly(a=2) 0.25- L,(t=2) v rand 1 400 | 0.0005 |1200| 72.60% 80.72% 71.88% | 79.63%
0.7- Li(a=1) 0.3-L,(t=2) v rand| 1 400 | 0.0005 |1200| 54.24% | 63.87% | 55.01% | 68.52%
0.7- Lo(a=2) 0.3-L,(t=2) v rand 1 400 | 0.0005 |1200| 71.80% 78.93% 73.76% | 77.78%
0.7- Li(a=2) 0.3- L,(t=5) v rand| 1 400 | 0.0005 |1200| 55.34% | 62.07% | 53.51% | 63.23%
0.7 Lo(a=2) 0.3-L,(t=7) v rand 1 400 | 0.0005 |1200| 54.22% 64.28% 55.20% | 60.85%
0.6667 - L,(=1) | 0.3333 - L,(t=2) v rand| 1 400 | 0.0005 |1200| 55.42% | 63.25% | 54.83% | 68.78%
0.6667 - La(a=2) | 0.3333- L,(t=2) v rand 1 400 | 0.0005 |1200| 68.49% 76.48% 67.20% | 74.60%
0.6-Li(a=1) 0.4-L,(t=2) v rand| 1 400 | 0.0005 |1200| 54.86% | 63.63% | 55.30% | 67.46%
0.6 Li(a=2) 0.4-L,(t=2) v rand 1 400 | 0.0005 |1200| 60.60% 69.35% 61.29% | 68.25%
0.6-L,(a=2) 0.4-L,(t=5) v rand 1 400 | 0.0005 |1200| 54.64% 63.96% 56.61% | 62.43%
0.6 Li(a=2) 0.4-L,(1t=7) v rand 1 400 | 0.0005 |1200| 55.28% 63.63% 55.20% | 63.76%
0.5- Li(a=1) 0.5-L4(t=2) v rand 1 400 | 0.0005 |1200| 53.61% 64.40% 52.86% | 66.14%
0.5 Li(a=2) 0.5-L,(t=2) v rand 1 400 | 0.0005 |1200| 55.42% 64.75% 55.76% | 66.40%
0.5- Li(a=2) 0.5- L4(t=5) v rand 1 400 | 0.0005 |1200| 55.49% 63.16% 5539% | 64.29%
0.5 Lo(a=2) 0.5-L,(t=7) v rand 1 400 | 0.0005 |1200| 56.06% 63.90% 57.73% | 64.81%
04-Li(a=1) 0.6-L,(t=2) v rand 1 400 | 0.0005 |1200| 54.27% 64.37% 54.45% | 63.49%
0.4-Li(a=2) 0.6-L,(t=2) v rand 1 400 | 0.0005 |1200| 55.22% 63.69% 57.73% | 67.72%
04-Li(a=2) 0.6 - L,(t=5) v rand 1 400 | 0.0005 |1200| 53.26% 63.57% 53.70% | 65.87%
0.4-Li(a=2) 0.6 L,(t=T) v rand 1 400 | 0.0005 |1200| 54.53% 63.66% 53.14% | 64.55%
0.3- Li(a=1) 0.7- L4(t=2) v rand 1 400 | 0.0005 |1200| 54.75% 63.43% 53.42% | 64.02%
0.3 Li(a=2) 0.7 Ly(t=2) v rand 1 400 | 0.0005 |1200| 53.64% 63.84% 54.64% | 62.70%
0.3- Li(a=2) 0.7- L4(t=5) v rand 1 400 | 0.0005 |1200| 55.13% 63.81% 55.39% | 64.81%
0.3 Li(a=2) 0.7- Ly(t=T) v rand 1 400 | 0.0005 |1200| 56.56% 63.87% 56.04% | 66.67%
0.2- Li(a=1) 0.8-L,(t=2) v rand 1 400 | 0.0005 |1200| 53.86% 64.04% 54.83% | 69.31%
0.2 Li(a=2) 0.8 L,(t=2) v rand 1 400 | 0.0005 |1200| 53.73% 65.34% 53.98% | 64.55%
0.2 Li(a=2) 0.8 L,(t=5) v rand 1 400 | 0.0005 |1200| 54.76% 64.37% 55.76% | 65.87%
0.2 Li(a=2) 0.8 L,(t=T) v rand 1 400 | 0.0005 |1200| 54.86% 63.51% 53.89% | 66.40%
0.1- Li(a=1) 0.9-L,(t=2) v rand 1 400 | 0.0005 |1200| 54.60% 65.72% 56.42% | 68.52%
0.1 Li(a=2) 0.9 L,(t=2) v rand 1 400 | 0.0005 |1200| 54.60% 64.90% 57.26% | 60.85%
0.1- Li(a=2) 0.9 L,(t=5) v rand 1 400 | 0.0005 |1200| 56.23% 63.66% 55.48% | 66.14%
0.1 Li(a=2) 0.9 L,(t=T) v rand 1 400 | 0.0005 |1200| 54.65% 65.22% 55.95% | 64.02%
— L4(t=2) v rand 1 400 | 0.0005 |1200| 55.02% 62.69% 57.36% | 67.72%
— L4(t=5) v rand 1 400 | 0.0005 |1200| 54.95% 64.04% 56.04% | 64.02%
— Ly(t=7) v rand 1 400 | 0.0005 |1200| 54.55% 63.48% 56.33% | 63.49%
La(a=1) — v rand 1 400 | 0.0005 | 1200 NaN occurred
0.9091 - L,(a=1) | 0.0909 - L,(t=2) v rand 1 400 | 0.0005 |1200 NaN occurred
0.9- Li(a=1) 0.1-L£,(t=2) v rand 1 400 | 0.0005 | 1200 NaN occurred
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— 0.8889 - Lo(a=1) | 0.1111- L, (t=2) v rand 1 400 | 0.0005 |1200 NaN occurred
— 0.875 - La(a=1) | 0.125- L,(t=2) v rand 1 400 | 0.0005 | 1200 NaN occurred
— 0.8571 - Lo(a=1) | 0.1429 - L,(t=2) v rand 1 400 | 0.0005 |1200 NaN occurred
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