
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Supplementary Materials #695

A. Source Coding
Source Code: A source code C is a mapping from the range of a random variable or a set of random variables to finite
length strings of symbols from a K-ary alphabet.

Expected length of a source code denoted by L(C) is given as follows: L(C) =
∑

x∈X p(x)l(x), where l(x) is the length
of codeword c(x) for a symbol x ∈ X , and p(x) is the probability of the symbol.

Intuitively, a good code should preserve the information content of an outcome. Since information content depends on the
probability of the outcome (it is higher if probability is lower, or equivalently if the outcome is very uncertain), a good
codeword will use fewer bits to encode a certain or high probability outcome and more bits to encode a low probability
outcome. Thus, we expect that the smallest expected code length should be related to the average uncertainty of the random
variable, i.e., the entropy.

Source coding theorem states that entropy is the fundamental limit of data compression; i.e., ∀C : L(C) ≥ H(X). Instead
of encoding individual symbols, we can also encode blocks of symbols together. A length n block code encodes n length
strings of symbols together and is denoted by C (x1, . . . , xn) =: C (xn).

Proof. Consider the optimization problem:

min
l(x)

∑
x∈X

p(x)l(x) such that
∑
x∈X

2−l(x) ≤ 1

The above finds the shortest possible code length subject to satisfying the Kraft inequality. If we relax the the codelengths to
be non-integer, then we can obtain a lower bound. To do this, the Lagrangian is:

L =
∑
x∈X

p(x)l(x) + λ

(∑
x∈X

2−l(x) − 1

)

Taking derivatives with respect to l(x) and λ and setting to 0, leading to:

p(x) + ln 2λ2−l(x) = 0∑
x∈X

2−l(x) − 1 = 0

Solving this for l(x) leads to l(x) = log 1
p(x) , which can be verified by direct substitution. This proves the lower bound.

Theoretical analysis can be seen in (Shannon, 1948).

B. Maximum Data Rate
We first introduce the Nyquist ISI criterion:
Proposition 1 (Nyquist ISI criterion). If we denote the channel impulse response as h(t), then the condition for an ISI-free
response can be expressed as:

h (nTs) =

{
1; n = 0
0; n 6= 0

for all integers n, where Ts is the symbol period. The Nyquist ISI criterion says that this is equivalent to:

1

Ts

+∞∑
k=−∞

H

(
f − k

Ts

)
= 1 ∀f

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

where H(f) is the Fourier transform of h(t).

We may now state the Nyquist ISI criterion for distortionless baseband transmission in the absence of noise: The frequency
function H(f) eliminates intersymbol interference for samples taken at interval Ts provide that it satisfies Equation 1.

The simplest way of satisfing Equation 1 is to specify the frequency function H(f) to be in the form of a rectangular
function, as showing by

H(f) =

{
1

2W , −W < f <W
0, |f | >W

=
1

2W
rect

(
f

2W

)
where rect(f) stands for a rectangular function of unit amplitude and unit support centered on f = 0, and the overall system
bandwidth W is definded by

W =
1

2Ts
=
Rb

2

The special value of the bit rate Rb = 2W is called the Nyquist rate, and W is itself called the Nyquist bandwidth.

The key here is that we have restricted ourselves to binary transmission and are limited to 2W bits/s no matter how much we
increase the signal-to-noise ratio. The way to attain a higher Rb value is to replace the binary transmission system with a
multilevel system, often termed an K-ary transmission system, with K > 2. An K-ary channel can pass 2Wlog2K bits/s
with an acceptable error rate.

Thus, we conclude that the bit rate Rb ≤ Rmax = 2Wlog2K.

C. The Information Bottleneck Method
C.1. Background

The information bottleneck method provides a principled way to extract information that is present in one variable that is
relevant for predicting another variable. Consider X and Y respectively as the input source and target, and let Z be an
internal representation, i.e., a stochastic encoding, of any hidden layer of the network, defined by a parametric encoder
p(z|x;θ). The goal is to learn an encoding that is maximally informative about the target Y , which is measured by the
mutual information between Y and Z, where

I(Z, Y ;θ) =

∫
p(z, y|θ) log p(z, y|θ)

p(z|θ)p(y|θ)
dxdy (1)

Notice that taking the identity encoding always ensures a maximally informative representation if only with the above
objective, but it is not a useful representation obviously. It is evident to constrain on encoding’s complexity if we want the
best representation, i.e., Z. (Tishby and Zaslavsky, 2015) proposed the information bottleneck that expresses the trade-off
between the mutual information measures I(X,Z) and I(Z, Y). This suggests the objective:

max
θ

I(Z, Y ;θ) s.t. I(X,Z;θ) ≤ Ic (2)

where Ic is the information constraint. Equivalently, with the introduction of a Lagrange multiplier β we can maximize the
objective function:

L(θ) = I(Z, Y ;θ)− βI(X,Z;θ) (3)

where β controls the trade-off. Intuitively, the first term encourages Z to be predictive of Y ; the second term encourages Z
to “forget” X . Essentially it forces Z to act like a minimal sufficient statistic of X for predicting Y .

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

C.2. Why IMAC works?

We discuss why information bottleneck works in multi-agent communication.

We first introduce minimal sufficient statistics: a transformation T (X) of the data X is a minimal sufficient statistic if
T (X) ∈ argminS I(X,S(X)), where S(X) is s.t. I(θ, S(X)) = maxT ′ I (θ, T ′(X))

Information bottleneck principle generalizes the notion of minimal sufficient statistics and suggests using a summary of
the data T (X) that has least mutual information with the data X while preserving some amount of information about an
auxiliary variable Y .

According to (Shamir et al., 2010), from a learning perspective, we discuss the role of I(X;T), the compression or
minimality term in information bottleneck, as a regularizer when maximizing I(Y ;T).

Reinforcement learning learns a optimal action given a state. If we know the optimal action in advance, like imitation
learning, then we would maximize the mutual information between the state and its corresponding optimal action, which is
a straightforward application of supervised learning. Here, X represents the states, T represents the messages, Y represents
the actions. Note that without regularization, I(Y ;T) can be maximized by setting T = X . However, p(x|y) cannot be
estimated efficiently from a sample of a reasonable size; It means that more samples are needed in reinforcement learning.
In another words, methods with regularization on I(X;T), e.g., IMAC, can accelerate convergence.

D. Experimental Details and Results

Figure 1: Illustration of the experimental environments. (a) Cooperative navigation of 3 agents; (b) Cooperative navigation
of 10 agents; (c) Predator and Prey; (d) 3m in StarCraft II.

D.1. Cooperative navigation

In this environment, agents must cooperate through physical actions to reach a set of landmarks. Agents observe the relative
positions of other agents and landmarks, and are collectively rewarded based on the proximity of any agent to each landmark.
In other words, the agents have to ‘cover’ all of the landmarks. Further, the agents occupy significant physical space and are
penalized when colliding with each other. Our agents learn to infer the landmark they must cover, and move there while
avoiding other agents.

Training details We set the number of agents as 3,5,10 respectively. We use MLP with hidden layer size of 64 as basic
module as before communication model, after communication model. We use the ADAM as optimizer with learning rate of
0.01. Since the environment of cooperative navigation does not send "terminal/done" to agents, we set each episode with a
maximal steps of 25. The reward of each agent is identical, which equals to the sum of distances between agents to their
nearest landmark. It means that agents are required not only to approach its nearest landmark, but also share information
with each other for a common goal. We use the same hyper-parameter as MADDPG of openAI’s version.

Table 1 shows that MADDPG without communication tends to use high-entropy messages, while IMAC can convey
low-entropy messages. Combined with the performance in Figure 4, we can see that under limited-bandwidth constraint,
IMAC learns informative communication protocols.

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

D.2. Predator and prey

In this variant of the classic predator-prey game, some slower cooperating agents must chase some faster adversaries around
a randomly generated environment with some large landmarks impeding the way. Each time the cooperative agents collide
with some adversaries, the agents are rewarded while the adversary is penalized. Agents observe the relative positions and
velocities of the agents, and the positions of the landmarks.

Training details We set the number of predators as 4, the number of preys as 2, and the number of landmarks as 2. We use
the same architecture and hyper-parameter as configuration in cooperative navigation. We trained our agents by self-play for
100,000 episodes and then evaluate performance by cross-comparing between IMAC and the baselines. We average the
episode rewards across 1000 rounds (episodes) as scores.

sigma2 None 1 5 10
H(Mi) =

1
2 log(2πeσ

2) - 1.419 2.223 2.570
maddpg w/ com 3.480+-0.042 1.530+-0.038 3.147+-0.088 3.891+-0.059

IMAC train w/ bw=1 0.244+-0.028 - - -
IMAC train w/ bw=5 2.227+-0.002 1.383+-0.003 - -

IMAC train w/ bw=10 2.763+-0.215 1.695+-0.044 3.017+-0.026 -

Table 1: Entropy of messages in different limited bandwidths (number in cell represents
H(Mi) =

1
2 log(2πeσ

2), which is calculated based on running variance).

D.3. Predator and prey

In this variant of the classic predator-prey game, some slower cooperating agents must chase some faster adversaries around
a randomly generated environment with some large landmarks impeding the way. Each time the cooperative agents collide
with some adversaries, the agents are rewarded while the adversary is penalized. Agents observe the relative positions and
velocities of the agents, and the positions of the landmarks.

Training details We set the number of predators as 4, the number of preys as 2, and the number of landmarks as 2. We use
the same architecture and hyper-parameter as configuration in cooperative navigation. We trained our agents by self-play for
100,000 episodes and then evaluate performance by cross-comparing between IMAC and the baselines. We average the
episode rewards across 1000 rounds (episodes) as scores.

D.4. StarCraft II

0 5 10 15 20
Episode Reward

0.00

0.05

0.10

0.15

0.20

0.25

0.30

De
ns

ity

(a) 3m

IMAC, train w/ bw=1,
infer w/o bw
IMAC, train w/ bw=5,
infer w/ bw=1
IMAC, train w/ bw=10,
infer w/ bw=1
QMIX w/ com, train w/o bw,
infer w/ bw=1

0 5 10 15 20
Episode Reward

(b) 3m

IMAC, train w/ bw=1,
infer w/o bw
IMAC, train w/ bw=5,
infer w/ bw=1
IMAC, train w/ bw=10,
infer w/ bw=1
QMIX w/ com, train w/o bw,
infer w/ bw=1

Figure 2: Density plot of episode reward per agent during
the execution stage. (a), (b) Reward distribution of IMAC
trained with different prior distributions against MADDPG
with communication under the same bandwidth constraint in
3m and 8m respectively. “bw=δ" means in the implementa-
tion of the limited bandwidth constraint, the variance Σ of
Gaussian distribution is δ.

We use the StarCraft Multi-Agent Challenge (SMAC) en-
vironment (Samvelyan et al., 2019). SMAC uses the Star-
Craft II Learning Environment to introduce a cooperative
MARL environment, which focus solely on microman-
agement. Each unit is controlled by an independent agent
that conditions only on local observations restricted to a
limited field of view centred on that unit.

We choose two scenarios: 3m and 8m as our testbeds,
where a group of marines need to defeat an enemy
marines. The feature vector observed by each agent con-
tains the following attributes for both allied and enemy
units within the sight range: distance, relative x, relative
y, health, shield, and unit type. The discrete set of actions
which agents are allowed to take consists of move in four
directions, attack an enemy, stop and no-op. Dead agents
can only take no-op action while live agents cannot. Some
positive (negative) rewards after having enemy (allied)
units killed and/or a positive (negative) bonus for winning
(losing) the battle.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Training details We use QMIX architecture (Rashid et al., 2018) as our algorithm backbone, where a DRQN with a
recurrent layer composed of a 64-dimensional GRU and a fully-connected layer before and after. We extend QMIX with
communication module. Each agent can receive other’s messages from previous timestep. We use the RMSProp optimizer
with learning rate = 0.0005 α = 0.99, and ε = 0.00001. The replay buffer contains the most recent 5000 episodes.We
sample batches of 120 episodes uniformly from the replay buffer, and train on fully unrolled episodes, performing a single
gradient descent step after every episode. The target networks are updated after every 200 training episodes.

Results Figure 2 shows the density plot of episode reward per agent during the execution stage. We first respectively train
IMAC with different prior distributions z(Mi) of N(0, 1), N(0, 5), and N(0, 10), to satisfy a limited bandwidth with the
variance of 1. In the execution stage, we constrain these algorithms into different bandwidths. As depicted in Figure 2 (a)
and (b), QMIX+IMAC with different prior distributions outperform QMIX with communication in the limited bandwidth
environment. Results here demonstrate that IMAC discards useless information without impairment on performance.

References
T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and S. Whiteson. Qmix: monotonic value function

factorisation for deep multi-agent reinforcement learning. arXiv preprint arXiv:1803.11485, 2018.

M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N. Nardelli, T. G. J. Rudner, C.-M. Hung, P. H. S. Torr, J. Foerster,
and S. Whiteson. The StarCraft Multi-Agent Challenge. CoRR, abs/1902.04043, 2019.

O. Shamir, S. Sabato, and N. Tishby. Learning and generalization with the information bottleneck. Theoretical Computer
Science, 411(29-30):2696–2711, 2010.

C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(3):379–423, 1948.

N. Tishby and N. Zaslavsky. Deep learning and the information bottleneck principle. In IEEE Information Theory Workshop
(ITW), pages 1–5, 2015.

	Source Coding
	Maximum Data Rate
	The Information Bottleneck Method
	Background
	Why IMAC works?

	Experimental Details and Results
	Cooperative navigation
	Predator and prey
	Predator and prey
	StarCraft II

