Supplementary Materials #695
A. Source Coding

Source Code: A source code C' is a mapping from the range of a random variable or a set of random variables to finite
length strings of symbols from a K -ary alphabet.

Expected length of a source code denoted by L(C) is given as follows: L(C) = >, p(x)l(z), where [(z) is the length
of codeword ¢(z) for a symbol € X', and p(x) is the probability of the symbol.

Intuitively, a good code should preserve the information content of an outcome. Since information content depends on the
probability of the outcome (it is higher if probability is lower, or equivalently if the outcome is very uncertain), a good
codeword will use fewer bits to encode a certain or high probability outcome and more bits to encode a low probability
outcome. Thus, we expect that the smallest expected code length should be related to the average uncertainty of the random
variable, i.e., the entropy.

Source coding theorem states that entropy is the fundamental limit of data compression; i.e., VC : L(C) > H(X). Instead
of encoding individual symbols, we can also encode blocks of symbols together. A length n block code encodes n length
strings of symbols together and is denoted by C (21, ...,z,) =: C (™).

Proof. Consider the optimization problem:
min p(x)l(x) such that Z 27l <1
=) zeX TEX

The above finds the shortest possible code length subject to satisfying the Kraft inequality. If we relax the the codelengths to
be non-integer, then we can obtain a lower bound. To do this, the Lagrangian is:

L= Z p(x)l(x) + A <Z 9~ H=) _ 1)

TEX zeEX

Taking derivatives with respect to I(z) and A and setting to 0, leading to:

p(x) +In22271®) =0

}:yﬂ@—1:0

reX

Solving this for [(x) leads to [(x) = log ﬁ , which can be verified by direct substitution. This proves the lower bound. [

Theoretical analysis can be seen in (Shannon, 1948).

B. Maximum Data Rate

We first introduce the Nyquist ISI criterion:

Proposition 1 (Nyquist ISI criterion). If we denote the channel impulse response as h(t), then the condition for an ISI-free
response can be expressed as:

1; n=0
hmn):{0~n¢o

for all integers n, where T is the symbol period. The Nyquist ISI criterion says that this is equivalent to:

1 ¥ k
n o u(rog)=r v

where H(f) is the Fourier transform of h(t).

We may now state the Nyquist ISI criterion for distortionless baseband transmission in the absence of noise: The frequency
function H (f) eliminates intersymbol interference for samples taken at interval T provide that it satisfies Equation 1.

The simplest way of satisfing Equation 1 is to specify the frequency function H(f) to be in the form of a rectangular
function, as showing by

H(f) =

where rect(f) stands for a rectangular function of unit amplitude and unit support centered on f = 0, and the overall system
bandwidth W is definded by

1 Ry

W:2TS: 2

The special value of the bit rate R, = 2W is called the Nyquist rate, and W is itself called the Nyquist bandwidth.

The key here is that we have restricted ourselves to binary transmission and are limited to 2W bits/s no matter how much we
increase the signal-to-noise ratio. The way to attain a higher R}, value is to replace the binary transmission system with a
multilevel system, often termed an K-ary transmission system, with K > 2. An K-ary channel can pass 2Wlogs K bits/s
with an acceptable error rate.

Thus, we conclude that the bit rate Ry < R4 = 2Wloga K.

C. The Information Bottleneck Method
C.1. Background

The information bottleneck method provides a principled way to extract information that is present in one variable that is
relevant for predicting another variable. Consider X and Y respectively as the input source and target, and let Z be an
internal representation, i.e., a stochastic encoding, of any hidden layer of the network, defined by a parametric encoder
p(z|x; @). The goal is to learn an encoding that is maximally informative about the target Y, which is measured by the
mutual information between Y and Z, where

I(Z,Y;B)=/p(z,y|0)10gpp(z’y|0) dzdy (1)

(210)p(y|6)

Notice that taking the identity encoding always ensures a maximally informative representation if only with the above
objective, but it is not a useful representation obviously. It is evident to constrain on encoding’s complexity if we want the
best representation, i.e., Z. (Tishby and Zaslavsky, 2015) proposed the information bottleneck that expresses the trade-off
between the mutual information measures I(X, Z) and I(Z,Y"). This suggests the objective:

max 1(Z,Y;0) st I(X,Z;0) <I.)

where I, is the information constraint. Equivalently, with the introduction of a Lagrange multiplier 5 we can maximize the
objective function:

L(6) =1(2,Y;0) - BI(X, Z; 0) 3)

where (3 controls the trade-off. Intuitively, the first term encourages Z to be predictive of Y ; the second term encourages 2
to “forget” X. Essentially it forces Z to act like a minimal sufficient statistic of X for predicting Y.

C.2. Why IMAC works?
We discuss why information bottleneck works in multi-agent communication.

We first introduce minimal sufficient statistics: a transformation 7'(X) of the data X is a minimal sufficient statistic if
T(X) € argming I(X, S(X)), where S(X) iss.t. (0, 5(X)) = maxy I (0,T'(X))

Information bottleneck principle generalizes the notion of minimal sufficient statistics and suggests using a summary of
the data T'(X) that has least mutual information with the data X while preserving some amount of information about an
auxiliary variable Y.

According to (Shamir et al., 2010), from a learning perspective, we discuss the role of I(X;T), the compression or
minimality term in information bottleneck, as a regularizer when maximizing I(Y; T).

Reinforcement learning learns a optimal action given a state. If we know the optimal action in advance, like imitation
learning, then we would maximize the mutual information between the state and its corresponding optimal action, which is
a straightforward application of supervised learning. Here, X represents the states, 7" represents the messages, Y represents
the actions. Note that without regularization, I(Y’; T') can be maximized by setting T = X. However, p(z|y) cannot be
estimated efficiently from a sample of a reasonable size; It means that more samples are needed in reinforcement learning.
In another words, methods with regularization on I(X;T'), e.g., IMAC, can accelerate convergence.

D. Experimental Details and Results

Figure 1: Illustration of the experimental environments. (a) Cooperative navigation of 3 agents; (b) Cooperative navigation
of 10 agents; (c) Predator and Prey; (d) 3m in StarCraft II.

D.1. Cooperative navigation

In this environment, agents must cooperate through physical actions to reach a set of landmarks. Agents observe the relative
positions of other agents and landmarks, and are collectively rewarded based on the proximity of any agent to each landmark.
In other words, the agents have to ‘cover’ all of the landmarks. Further, the agents occupy significant physical space and are
penalized when colliding with each other. Our agents learn to infer the landmark they must cover, and move there while
avoiding other agents.

Training details We set the number of agents as 3,5,10 respectively. We use MLP with hidden layer size of 64 as basic
module as before communication model, after communication model. We use the ADAM as optimizer with learning rate of
0.01. Since the environment of cooperative navigation does not send "terminal/done" to agents, we set each episode with a
maximal steps of 25. The reward of each agent is identical, which equals to the sum of distances between agents to their
nearest landmark. It means that agents are required not only to approach its nearest landmark, but also share information
with each other for a common goal. We use the same hyper-parameter as MADDPG of openATI’s version.

Table 1 shows that MADDPG without communication tends to use high-entropy messages, while IMAC can convey
low-entropy messages. Combined with the performance in Figure 4, we can see that under limited-bandwidth constraint,
IMAC learns informative communication protocols.

D.2. Predator and prey

In this variant of the classic predator-prey game, some slower cooperating agents must chase some faster adversaries around
a randomly generated environment with some large landmarks impeding the way. Each time the cooperative agents collide
with some adversaries, the agents are rewarded while the adversary is penalized. Agents observe the relative positions and
velocities of the agents, and the positions of the landmarks.

Training details We set the number of predators as 4, the number of preys as 2, and the number of landmarks as 2. We use
the same architecture and hyper-parameter as configuration in cooperative navigation. We trained our agents by self-play for
100,000 episodes and then evaluate performance by cross-comparing between IMAC and the baselines. We average the
episode rewards across 1000 rounds (episodes) as scores.

sigma’? None 1 5 10
H(M;) = %log(27re(72) - 1.419 2.223 2.570
maddpg w/ com 3.480+-0.042 | 1.530+-0.038 | 3.147+-0.088 | 3.891+-0.059

IMAC train w/ bw=1 0.244+-0.028 - - -
IMAC train w/ bw=5 2.227+-0.002 | 1.383+-0.003 - -
IMAC train w/ bw=10 | 2.763+-0.215 | 1.695+-0.044 | 3.017+-0.026 -

Table 1: Entropy of messages in different limited bandwidths (number in cell represents
H(M;) = 5 log(2mec?), which is calculated based on running variance).

D.3. Predator and prey

In this variant of the classic predator-prey game, some slower cooperating agents must chase some faster adversaries around
a randomly generated environment with some large landmarks impeding the way. Each time the cooperative agents collide
with some adversaries, the agents are rewarded while the adversary is penalized. Agents observe the relative positions and
velocities of the agents, and the positions of the landmarks.

Training details We set the number of predators as 4, the number of preys as 2, and the number of landmarks as 2. We use
the same architecture and hyper-parameter as configuration in cooperative navigation. We trained our agents by self-play for
100,000 episodes and then evaluate performance by cross-comparing between IMAC and the baselines. We average the
episode rewards across 1000 rounds (episodes) as scores.

D.4. StarCraft I1

We use the StarCraft Multi-Agent Challenge (SMAC) en-

vironment (Samvelyan et al., 2019). SMAC uses the Star- 030 IMAC, train w/ bw=L1. MAC, train /b
Craft II Learning Environment to introduce a cooperative 0251 MAE, ol vt

MARL environment, which focus solely on microman-
agement. Each unit is controlled by an independent agent
that conditions only on local observations restricted to a
limited field of view centred on that unit.

infer w/ by
om, tr

We choose two scenarios: 3m and 8m as our testbeds, Episode Reward Episode Reward
- (a) 3m (b) 3m
where a group of marines need to defeat an enemy

marines. The feature vector observed by each agent con- g gure 2: Density plot of episode reward per agent during

tains the following attributes for both allied and enemy the execution stage. (a), (b) Reward distribution of IMAC
units w1th1n. the sight a}nge: dlstanc§, relative x, rela.tlve trained with different prior distributions against MADDPG
Y health, shield, and unit type. The d1§crete set of gctlons with communication under the same bandwidth constraint in
which agents are allowed to take consists of move in four 3. -4 e respectively. “bw=4" means in the implementa-

directions, attack an enemy, SFOP .and no-op. Dead agents tion of the limited bandwidth constraint, the variance ¥ of
can only take no-op action while live agents cannot. Some Gaussian distribution is 6.

positive (negative) rewards after having enemy (allied)
units killed and/or a positive (negative) bonus for winning
(losing) the battle.

Training details We use QMIX architecture (Rashid et al., 2018) as our algorithm backbone, where a DRQN with a
recurrent layer composed of a 64-dimensional GRU and a fully-connected layer before and after. We extend QMIX with
communication module. Each agent can receive other’s messages from previous timestep. We use the RMSProp optimizer
with learning rate = 0.0005 o = 0.99, and ¢ = 0.00001. The replay buffer contains the most recent 5000 episodes.We
sample batches of 120 episodes uniformly from the replay buffer, and train on fully unrolled episodes, performing a single
gradient descent step after every episode. The target networks are updated after every 200 training episodes.

Results Figure 2 shows the density plot of episode reward per agent during the execution stage. We first respectively train
IMAC with different prior distributions z(M;) of N(0,1), N(0,5), and N(0, 10), to satisfy a limited bandwidth with the
variance of 1. In the execution stage, we constrain these algorithms into different bandwidths. As depicted in Figure 2 (a)
and (b), QMIX+IMAC with different prior distributions outperform QMIX with communication in the limited bandwidth
environment. Results here demonstrate that IMAC discards useless information without impairment on performance.

References

T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and S. Whiteson. Qmix: monotonic value function
factorisation for deep multi-agent reinforcement learning. arXiv preprint arXiv:1803.11485, 2018.

M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N. Nardelli, T. G. J. Rudner, C.-M. Hung, P. H. S. Torr, J. Foerster,
and S. Whiteson. The StarCraft Multi-Agent Challenge. CoRR, abs/1902.04043, 2019.

O. Shamir, S. Sabato, and N. Tishby. Learning and generalization with the information bottleneck. Theoretical Computer
Science, 411(29-30):2696-2711, 2010.

C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(3):379-423, 1948.

N. Tishby and N. Zaslavsky. Deep learning and the information bottleneck principle. In IEEE Information Theory Workshop
(ITW), pages 1-5, 2015.

	Source Coding
	Maximum Data Rate
	The Information Bottleneck Method
	Background
	Why IMAC works?

	Experimental Details and Results
	Cooperative navigation
	Predator and prey
	Predator and prey
	StarCraft II

