Supplementary Materials:
Continuously Indexed Domain Adaptation

1 Proof

Lemma 1.1 (Uniqueness of Constant Expectation). z and u are random variables. If By, p(uz) [u] is constant w.r.t
z, then By p(u)z) [U] = Eyopu)[ul, Va.
Proof. Let Ey,p(u|z)[u] = p,V z. We then have E, ) [t] = Eqrop(z) Eunpulz) (U] = Epp@pt = . O

Lemma 1.2 (Uniqueness of Constant Expectation and Variance). z and u are random variables. If By, p(y|z) [u]
and V. (u|z) [u] are constants w.r.t z., then By, () [t] = Eymp(u) 1] and Vo pujz) 1] = Vyp [u] for any z.

Proof. Let By p(ujz)[u] = pand Vo puz)[u] = o? for any z. By the previous lemma, we have Ey~p(u)[u] = p. For
the variance, we have:

Vuwp(u) [u] = EuNp(U) [(u - E[u])Q] = IEZNp(Z)Euwp(uIZ) [(u - E[u|z])2]
= o) Vurp(ulz) 1] = Banpn)0” = 0%,
concluding the proof. O
Lemma 1.3 (Optimal Discriminator for PCIDA). With E fixed, the optimal D is
;,E(z) = IEuwp(uIZ) [u]v

D;2,E(z) = VuNp(u\Z) [U]a

where z = E(x, u).
Proof. The optimal D:
Dy (x,u) = argénin E (2,u)~p(z,u) [La(D(z),u)],

where the objective function expands to

IE(z,u)fvp(z,u) [Ld((D#(z)v D2 (Z)), ’LL)]
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Taking the derivative w.r.t. D(z) and setting it to 0, we get the optimal D7, ;,(z) = E[ulz] and D}, p(z) = V[u|z],

o

completing the proof. O



Table 1: 11 domain indices in the SHHS dataset.
uy | Age

uz | Resting heart rate

uz | Gender

uyg | Physical functioning

us | Role limitation due to physical health

ug | General health

w7 | Role limitation due to emotional problems
ug | Energy/fatigue

ug | Emotional well being

u10 | Social functioning

uy1 | Pain Level

Table 2: Network structure for the encoder.
Kernel  Stride  Channel In  Channel Middle  Channel Out Type Number

13 2 1 - 64 Conv 1
9 1 64 64 64 ResBlock 1
9 2 64 64 128 ResBlock 1
9 1 128 128 128 ResBlock 1
7 1 128 128 256 ResBlock 1
9 5 256 256 256 ResBlock 1
5 1 256 256 512 ResBlock 1
5 1 512 512 512 ResBlock 1
5 1 512 384 384 ResBlock 1
9 5 384 384 384 ResBlock 1
3 1 384 384 384 ResBlock 1
5 1 384 384 384 ResBlock 1

2 Experiments

In this section we provide more details for our experiments. The code is available at https://github.com/
hehaodele/CIDA.

2.1 Experiment on the Healthcare Datasets

Dataset details. The three real-world medical datasets [7, 8, 2] with detailed information are publicly available'. They
can all be freely accessed upon request and submission of relevant IRB documents. In Fig. 1 we plot the histograms
subjects’ age in the three medical datasets. All the three datasets contains many health retaled variables of the subjects.
In Table 1, we list all the variables we considered as the domain indices.

Implementations. We use the same neural network architecture in all methods for fair comparison. Table 2 shows the
neural network architecture for the encoders taking breathing signals x as input. ‘Number’ in the tables indicates the
number of corresponding blocks stacked in the network. The predictor includes 3 fully connected layers, each with
batch normalization and ReLU. Similarly, the discriminator includes 5 fully connected layers. For the baseline models,
we explore different A4 (the hyperparameter for the discriminator term) in the range {0.2,0.5,1.0,2.0,5.0} and find
that Ay = 2.0 produce stable and the best results in the toy datasets. We follow recommendations from the original
papers for other hyperparameters. We set Ay = 2.0 for all methods including CIDA/PCIDA. We train all models using
the Adam optimizer [5] with a learning rate of 10~%. We run all experiments on a server with four NVIDIA Titan Xp
GPUs.

2.2 Experiment on the Rotating MNIST

Dataset details. In our Rotating MNIST, there are 60,000 images in each domain index interval spanning 45 degrees
from [0°,45°) to [315°,360°). They are generated by rotating each of the 60,000 image in the MNIST training set by a
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Figure 1: Age histograms for three medical datasets.

angle randomly sampled the corresponding domain index interval. Therefore, this dataset contains images with rotation
angles evenly spread in the range [0, 360°). We note that this is different from the Rorating MNIST dataset in [1], where
the images are Rotating by 8 fixed angles. Another difference is that in our Rotating MNIST, the amount of data in
target domains is 7 times as many as that in source domain while in [ 1], the target domain has the same amount of data
as the source domain.

Implementations. We use the same neural network architecture in all methods for fair comparison. Mainly, we use a
four-layer convolutional neural networks to encode the image and a three-layer MLP to make the prediction, while
the discriminator is a four-layer MLP. In addition, we make two augmentations to provide the model with a stronger
inductive bias. First, we add a Spacial Transfer Network (STN) [4] to the image encoder. Basically, the STN will take
the image and the domain index as input and output a set of rotation parameters which are then applied to rotate the
given image. Second, we add the dropout layers to the STN and the ConvNet backbone. As mentioned in [3], dropout
can be viewed as a way of performing Bayesian inference. Here, we use this dropout switch to make image encoder
either deterministic or probabilistic. For more details, please refer to our code.

2.3 Experiments on the Toy Datasets

Visualization of the decision boundary (approximately). Unlike shallow models such as logistic regression, plotting
deep neural networks’ exact decision boundaries is not straightforward. To generate a virtual decision boundary for
visualization, we fit an SVM with the RBF kernel by neural networks’ prediction and draw the decision boundary
of the SVM. To be fair, when fitting the SVM, we ensure that the fitting accuracy is the same for all deep learning
models. Note that since the generated boundaries are not exact, we can observe some data points on the wrong side of
the boundaries.

3 Discussion

3.1 Categorical Domains versus Continuously Indexed Domains

Continuous Indices. As mentioned in the main paper, the hypothesis of ‘continuous indices’ is that input x and labels
y are drawn from p(x, y|u) given a specific domain index u € U, and that p(x, y|u) (and p(y|x, u)) is continuous w.r.t.
u. Therefore, CIDA tries to produce correct predictions in a continuous range of target domains by effectively capturing
the underlying relation (functional) between p(y|x, «) and w.

Distance Metrics. Such a hypothesis comes with a distance metric for domain indices, which are captured by the
regression loss (e.g., euclidean distance for Lo loss) in the discriminator. This is a key difference between CIDA and
categorical domain adaptation, where any pair of domains effectively has the same distance. This is also true for
categorical domain adaptation methods such as [6]. Note that [6] uses a least-square loss as a surrogate for cross-entropy
to perform domain classification in the discriminator, therefore still treating different domains as equal. This is
substantially different from CIDA where the Lo loss and the Gaussian (or Gaussian Mixture Model) loss are use to
regress the domain indices.



3.2 Matching p(u|z) versus Matching p(z|u)

In general, matching the entire p(u|z) for any z is equivalent to matching the entire p(z|u) for any u. This is because
p(ulz) = p(u) <= p(z|u) = p(z) <= ulz. However, matching the mean and variance of p(u|z) for any z is
different from matching the mean and variance of p(z|u) for any u. Considering the dimension of z is much higher
than that of u, the former is actually stronger alignment.

To see this, consider a simplified case where z € {1,2,3,4}'% and u € {1,2,3,4}. Matching the mean and variance
of p(u|z) requires matching the mean and variance of 4'°° univariate distributions, i.e., 2 x 4!%° parameters in total.
On the other hand, Matching the mean and variance of p(z|u) only requires matching the mean and variance of 4
100-dimensional distributions, i.e., 400 parameters in total. Therefore the former implies stronger alignment.
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