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Abstract

We describe a framework for constructing non-
stationary nonseparable random fields based on
an infinite mixture of convolved stochastic pro-
cesses. When the mixing process is stationary
but the convolution function is nonstationary we
arrive at nonseparable kernels with constant non-
separability that are available in closed form.
When the mixing is nonstationary and the convolu-
tion function is stationary we arrive at nonsepara-
ble random fields that have varying nonseparabil-
ity and better preserve local structure. These fields
have natural interpretations through the spectral
representation of stochastic differential equations
(SDEs) and are demonstrated on a range of syn-
thetic benchmarks and spatio-temporal applica-
tions in geostatistics and machine learning. We
show how a single Gaussian process (GP) with
these random fields can computationally and sta-
tistically outperform both separable and existing
nonstationary nonseparable approaches such as
treed GPs and deep GP constructions.

1. Introduction
Kernel-based methods (Scholkopf & Smola, 2001) have a
long history in both machine learning and spatial statistics
(Cressie, 1990) across frequentist and Bayesian paradigms.
Standard covariance (kernel) functions, such as the Gaussian
and Matérn, are stationary (translation invariant) and sepa-
rable. Although these covariance functions admit tractable
forms they are unrealistic for modelling real world phenom-
ena that are nonstationary and exhibit strong dependencies.

In this work we focus on spatio-temporal random fields
in R3 as our motivation for proposing nonstationary non-
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separable covariance functions. However, the method-
ology is applicable to general RD input spaces. Con-
sider a spatio-temporal stochastic process Z(s, t) that has
a stationary and separable structure, where s ∈ R2 indi-
cates the spatial coordinates and t ∈ R indicates a tem-
poral dimension. Stationarity implies that the covariance
function depends only on the distance of the observations
C(s, t, s′, t′) = C(s − s′, t − t′) but not on their specific
location. Separability implies independence between in-
put dimensions, for example between space and time as
C(s, t, s′, t′) = C(s, s′)C(t, t′). A nonseparable covari-
ance function captures dependencies between the dimen-
sions; when that dependency is constant the correlation
can be expressed as C(s, t, s′, t′)/C(s, s′)C(t, t′) = ρ for
s 6= s′ and t 6= t′ and we have constant nonseparability.
Whereas when the dependency itself is changing across in-
put space, we define it as varying nonseparability. Fig. 1
illustrates these different levels of separability and stationar-
ity. To ease exposition we define the following subscripts:
ZStSp is a stationary separable process, ZStS̄p

is a stationary
nonseparable one, ZS̄tSp

is a nonstationary separable process
and ZS̄tS̄p

is nonstationary nonseparable one.

Nonstationary Separable: There is a significant body of
work in nonstationary covariance functions either through
hierarchical constructions (Paciorek & Schervish, 2004;
Remes et al., 2017; Heinonen et al., 2016), compositional
(deep) models (Damianou & Lawrence, 2013; Monterrubio-
Gómez et al., 2018), input space partitioning approaches
(Gramacy & Lee, 2008) or spectral representations (Stein,
2005; Remes et al., 2017).

As shown by Paciorek & Schervish (2004) any stationary
covariance function can be used to construct a nonstationary
one, where input dependent local-lengthscales are used to
define the correlation between two points. This has been
extended by Remes et al. (2017); Heinonen et al. (2016) by
placing GP priors on the (log) of the lengthscales. These
functions are very flexible but suffer from identifiability
issues, inefficient inference procedures, and an increased
computational burden (Paciorek & Schervish, 2006). Cortes
et al. (2009) studies the general problem of kernel learning
with a polynomial (potentially non-linear) combination of
base kernels that can handle nonstationary data when the
combination is location-dependent.
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(a) ZStSp (b) ZS̄tSp (c) ZStS̄p (d) ZS̄tS̄p (Constant) (e) ZS̄tS̄p (Varying)

Figure 1. Illustration of samples from 2D Gaussian processes with various combinations of stationarity and separability. The fields (a,
c) are stationary, (b, d, e) are nonstationary; fields (a,b) are separable and (c,d,e) are non-separable. Nonstationary fields (b,d) exhibit
varying levels of smoothness, changing from top left to bottom right. Higher levels of nonseparability express progressively more complex
dependencies between the input dimensions: from independence (a) to linear dependency structure (c,d) and varying local correlation
structure (e). In (e) the smoothness of the process is fixed and the nonstationarity arises from the varying dependency structure.

Remes et al. (2017) extend the spectral mixture (SM) kernel
(Wilson & Adams, 2013) to a nonstationary one but the
spectral representation is unavailable hence it is unclear how
it evolves across input space. Similar to the Paciorek &
Schervish (2004) construction, the nonstationary SM ker-
nel suffers from identifiability issues. Reece et al. (2015)
construct a piece-wise stationary function via the Markov
Region Link kernel. The final process is nonstationary while
each partition of the process follows a stationary GP. Lewis
et al. (2006) combines multiple kernels with a nonstation-
ary warping function and similarly Snoek et al. (2014) in-
troduces nonstationarity into the covariance function by
warping the input through another function. When each
dimension has its own warping function, the final process is
nonstationary but separable.

Stationary Nonseparable: There is some work on station-
ary nonseparable covariance functions. Gneiting (2002)
describes general constructions of stationary nonseparable
kernels via Bochner’s theorem and Lindgren et al. (2011)
show a clear link between the nonseparable Matérn class,
stochastic differential equations (SDEs) and Gaussian ran-
dom fields through the spectral transformation. Rodrigues &
Diggle (2010) extend the general class of convolution based
nonseparable kernels and Remes et al. (2017); Chen et al.
(2019) expand the SM kernel into nonseparable versions,
where the stochastic process is constructed using a nonsepa-
rable spatial field. The dominant approach in this class are
kernels arising from Blurring Processes (Brown et al., 2000)
and the closely related Process Convolutions (Higdon, 2002;
Fonseca & Steel, 2011a; Alvarez et al., 2012). We introduce
these in §2 and generalize to hierarchical constructions via
infinite mixtures.

Nonstationary Nonseparable: There has been little work
in directly constructing nonstationary and nonseparable
fields beyond the Matérn class (Stein, 2005). Indirect
approaches include (deep) compositions (Damianou &
Lawrence, 2013), partitioning approaches (Gramacy & Lee,

2008), or random Fourier approximations (Ton et al., 2018).

Fonseca & Steel (2011b) introduced a nonstationary non-
separable kernel through a process convolution approach
endowed with scale mixtures whose scale varies across lo-
cations. This corresponds to a constant nonseparable field,
Fig. 1, as the mixing process is constant. We will generalize
this construction to more complex mixing processes in order
to achieve varying nonseparability.

We offer a Stochastic Process Mixing (SPM) framework
that results in closed form nonstationary nonseparable co-
variance functions when the mixing process is stationary.
The SPM is based on an infinite mixture of convolved
stochastic processes and when the mixing process is non-
stationary this enables us to better capture local correlation
structure that changes across the domain. We focus on a
Bayesian non-parametric setting, typical in spatial statis-
tics, and demonstrate the capabilities of the resulting co-
variance functions within a Gaussian process (GP) frame-
work and against other GP based approaches and compo-
sitions. Code is available at https://github.com/
ohamelijnck/nsns_kernels and is implemented in
GPFlow (Matthews et al., 2017).

2. Stochastic Process Mixing (SPM)
We start by describing the general construction of nonsta-
tionary nonseparable processes based on the convolution and
mixing of base stochastic processes (Higdon, 2002; Fonseca
& Steel, 2011a). A stochastic process can be constructed as
a kernel convolution over another stochastic process. For
example, given a white noise process Φ and a valid kernel
(convolution) function K then Z(x) can be defined as

Z(x) =

∫
K(x− u)Φu du (1)

and is a stochastic process where x,u ∈ IRD and Φu ∼
N (0, I). We will refer to Φ as the latent process. The

https://github.com/ohamelijnck/nsns_kernels
https://github.com/ohamelijnck/nsns_kernels
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resulting covariance function of Z is then simply given by

C(x,x′) =

∫
K(x− u)K(x′ − u) du . (2)

Nonstationarity: It is often easier to specify the convolv-
ing kernel functions rather than the resulting covariance
function directly. When K is a stationary function and Φ
is a stationary process then the resulting Z(x) will also be
stationary. When K is nonstationary or Φ has the form of a
nonstationary stochastic process then the resulting field will
be nonstationary (Paciorek & Schervish, 2004; Fuentes &
Smith, 2001). A nonstationary process is then given by:

Z(x) =

∫
Kx(x− u)Φu(x) du (3)

where we use subscripts to denote dependence on the input
and latent variables. Note that when Φu(x) is a GP then Z
will also be a GP, due to convolution being a linear operator.
Typically the process Z will depend on some parameters
(a), either from the kernel or the latent Φu(x). Placing a
prior over these gives the marginal process:

Z(x) =

∫
Kx(x− u|a)Φ(x|a)pu(a) da du (4)

that is difficult to get in closed form. If the mixing process
p(a) does not depend on the latent variable u, we have:

Z(x) =

∫
Kx(x− u|a)Φ(x|a)p(a) da du

= Ep(a)[Z(x|a)]

(5)

Thus, the marginal process Z(x) can be regarded as
an infinite mixture of stochastic processes Z(x|a) with
parameters distributed a ∼ pu(a). If these Z(x|a) are
stationary and pu(a) = p(a), the resulting process is also
stationary. When the mixing distribution changes with
the latent variable u, the resulting process Z(x) will be
nonstationary, even if Z(x|a) is stationary (Fonseca, 2010).

Nonseparability: We generalise the construction of Eq. 4
to a nonseparable spatio-temporal process that is a mixture
of conditionally separable processes. We have:

ZS̄tS̄p
(x) =

∫ ∫ ∫ ∫
Ks(s− u|a)Kt(t− v|b)

Φu(s|a)Φv(t|b)pu,v(a, b) da db du dv
(6)

where we overload x to denote space-time locations {s, t}.
When p(a, b) = p(a)p(b) the resulting process Z(s, t) =
Z(s)Z(t) will be a separable process. Instead, if a and b are
dependent then the resulting process will be nonseparable
(Ma, 2003) and when p(a, b) depends on u, v the process

Z(s, t) will be nonstationary (Fuentes & Smith, 2001). The
covariance function of Eq.6 is:

C(x,x′) =

∫ ∫ ∫ ∫
Ks(s− u|a)Kt(t− v|b)

Cu(s, s′|a)Cv(t, t
′|b)Ks′(s

′ − u|a)

Kt′(t
′ − v|b)pu,v(a, b) da db du dv

(7)

where the latent covariances depend on the zero-mean
latent process: Cu(s, s′|a) = E[Φu(s|a)Φu(s′|a)] and
Cv(t, t

′|b) = E[Φv(t|b)Φv(t′|b)] . This approach incor-
porates both nonstationary convolutions and nonstationary
mixings which results in an increased number of hyper-
parameters and raises the computational complexity. Fur-
thermore, because the nonstationarity may be learnt through
both the convolution and the mixing this leads to identi-
fiability issues. Due to this we consider them separately
by constructing processes where the nonstationarity is con-
strained to either the convolution or the mixing.

3. SPMs through Nonstationary Convolution
In our first construction we limit the nonstationarity of the
constructed processes to be expressed in the convolution
function. The resulting stochastic functions have constant
nonseparability (as seen in Fig. 1 - d) and are a restricted
class of those defined in Eq. 6. The general construction of
these processes is given by:

ZS̄tS̄p
(x) = Ep(a,b)

[∫
Ks(s− u|a)Φu(s|a) du

∫
Kt(t− v|b)Φv(t|b) dv

]
= Ep(a,b)

[
ZS̄tSp

(s|a)ZS̄tSp
(t|b)

]
.

(8)

Because the mixing distribution does not depend on u, v all
of the nonstationarity is expressed in the convolution func-
tion. The convolution integral can then be computed before
the mixing marginalisation, allowing for nonstationary sep-
arable processes to be plugged in (e.g Paciorek & Schervish
(2004)) and additionally mixed thus constructing nonsta-
tionary nonseparable processes. When the covariance of
ZS̄tSp

(s|a) and ZS̄tSp
(t|b) are available in closed form, then

the covariance of the marginalized process can be calculated
using a mixture of the conditional covariances:

C(x,x′) =

∫ [∫
Ks(s− u|a)Ks′(s

′ − u|a)Cu(s, s′)du

]
[∫

Kt(t− v|b)Kt′(t
′ − v|b)Cv(t, t′)dv

]
dµ(a, b)

=

∫
CS̄t

(s, s′|a)CS̄t
(t, t′|b)dµ(a, b)

(9)
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where CS̄t
(t, t′|b) and CS̄t

(s, s′|a) are the covariances for
the nonstationary separable process with scale mixture pa-
rameters a, b. We can simplify the form of Eq. 8 by only
mixing the parameters of convolution function or the la-
tent process. In any case the resulting process will have a
nonseparable covariance function.

Special cases with closed forms

In this section we provide closed form examples as special
cases of Eq. 9. This first requires computing the nonstation-
ary separable covariance functions and additionally deriving
closed form expression for the mixing of these. In the fol-
lowing examples we mix the parameters of the convolution:

CS̄t
(s, s′|a) =

∫
Ks(s− u|a)Cs,s′Ks′(s

′ − u|a)du

(10)
such that any closed form nonstationary construction can be
used to generate CS̄t

(s, s′|a). For simplicity, we assume the
latent variable u depends on a scalar random variable a. We
present more complex mixing in our applications. Defining
the convolution function as:

Ks(s− u|a) = exp
(
−a(s− u)Σ(s)−1(s− u)T

)
, (11)

the latent covariance as Cu(s, s′) = σ(s)σ(s′) and letting

Qr,r′ = (r− r′)

(
Σ(r) + Σ(r′)

2

)−1

(r− r′)T (12)

where r is either s or t. Substituting into Eq. 10 recovers the
nonstationary covariance of Paciorek & Schervish (2006):

CS̄tSp
(s, s′|a) = A(s, s′) exp(−aQs,s′)

where A(s, s′) = σ(s)σ(s′) |Σ(s)|
1
4 |Σ(s′)|

1
4

|Σ(s)+Σ(s′)|
1
2

. Defining

R(s, s′|a) = exp(−aQs,s′) and R(t, t′|b) = exp(−bQt,t′)
then we can marginalise a and b:

R(s, s′, t, t′) = Ea,b[exp(−aQs,s′)) exp(−bQt,t′)]
= Ma(−Qs,s′)Mb(−Qt,t′)

(13)

where M(.) is the moment generation function (MGF). Set-
ting a and b as combinations of independent random vari-
ables : a = λ0+λ1 and b = λ0+λ2 and using the properties
of MGFs we rewrite Eq. 13 as Ma(−Qs,s′)Mb(−Qt,t′) =

Mλ0(−(Qs,s′ +Qt,t′))Mλ1
(−Qs,s′)Mλ2

(−Qt,t′).

With specific distributions on λ0, λ1, λ2, we arrive at closed
forms examples of nonstationary nonseparable functions.

Example 1: Let the i.i.d mixing variables follow
λ0 ∼ Ga(β0, 1), λ1 ∼ Ga(β1, 1), λ2 ∼ Ga(β2, 1)
then R(s, s′, t, t′) =

(1 +Qs,s′ +Qt,t′)
β0(1 +Qs,s′)

β1(1 +Qt,t′)
β2

Example 2: Let the iid mixing variables follow
λ0 ∼ IGa(β0, 1/4), λ1 ∼ IGa(β1, 1/4), λ2 ∼
IGa(β2, 1/4) then R(s, s′, t, t′) =:

R′β0
(Qs,s′ +Qt,t′)R

′
β1

(Qs,s′)R
′
β2

(Qt,t′)

R′β(Q) =
1

γ(β)2β−1

(√
2βQ

)β
Kβ(

√
2βQ)

4. SPMs through Nonstationary Mixing
In an alternative approach, we fix the convolution func-
tion and let the mixing distribution vary across input space.
Fonseca & Steel (2011a) developed the nonstationary con-
volution based on the spatial dimension: C(s, s′, t̂) =∫
K(s− u)K(s′ − u)

∫
Cu(s, s′|a)C(t̂|b) dµ(a, b) du

(14)
where t̂ = {t, t′} and C(t̂|b) is assumed to be stationary and
hence any nonstationarity across time is not modelled. We
generalise this to a fully nonstationary nonseparable kernel
by constructing an SPM as:

ZS̄tS̄p
(x) =

∫ ∫ ∫ ∫
K(s− u)K(t− v)

Φu(s|a)Φv(t|b)pu,v(a, b) da db du dv
(15)

If the mixing distribution pu,v(a, b) is nonstationary across
locations {u, v}, we cannot, in general, get a closed form
for the marginal process ZS̄tS̄p

(s, t). However, we can write
down the conditional covariances when the latent process
Φu(s|a),Φv(t|b) is separable across locations {u, v}:

C(x,x′) =

∫ ∫
K(s− u)K(s′ − u)K(t− v)K ′(t′ − v)∫ ∫
Cu(s, s′|a)Cv(t, t

′|b) dµu,v(a, b) du dv

(16)
where the mixing integral is now performed before the con-
volution. By defining the convolution function to be station-
ary and separable the above covariance function can be seen
as a special case of Eq. 7. In this construction the convo-
lution function is acting as a smoother on a nonstationary
nonseparable process and so in general it is difficult to de-
rive closed form expressions for the full covariance. But, in
some cases, it is possible to derive closed form expressions
for the latent conditional covariance:

Cu,v(s, s
′, t, t′) =Epu,v(a,b)[C(s, s′|a)C(t, t′|b)] (17)

This covariance function defines all the nonstationarity and
nonseparability of the resulting processes. Because the co-
variance depends on the convolution parameters we say that
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it defines the local nonseparable structure. Any nonsepa-
rable covariance function may be used here including the
closed-form special cases presented in §3.

In Eq. 15 the nonseparability of the process is obtained by
mixing the latent processes. Alternatively the convolution
kernel may be mixed:

ZS̄tS̄p
(s, t) =

∫ ∫ ∫ ∫
K(s− u|a)K(t− v|b)

Φ(s)Φ(t)pu,v(a, b) da db du dv

(18)

thus defining a nonseparable convolution: C(s, s′, t, t′) =∫ ∫
Epu,v(a,b)

[
K(s− u|a)K(t− v|b)

K(s′ − u|a)K(t′ − v|b)
]
C(s, s′)C(t, t′) du dv

(19)

that also defines local non separability because the mixing
function still depends on the convolution parameters. Both
mixing approaches in Eq. 17 and Eq. 19 handle nonstation-
arity and nonseparability through the mixing distribution.
There is no significant qualitative difference between the
two constructions but in some situations, it is easier to cal-
culate using Eq. 17 rather than Eq. 19 and vice versa.

Example 3: SPM via Nonstationary Mixing
We derive a covariance function following the non-
stationary mixing construction in Eq. 16 but we
restrict the latent covariance to be stationary. Ad-
ditionally we define the convolution function K(·)
to be a stationary Gaussian convolution. Let the
locally stationary processes follow the covariance
C ′(s, s′|a(u))C ′(t, t′|b(v)) =

exp

(
−a(u)

D∑
i=1

(si − s′i)2

`si

)
exp

(
−b(v)

(t− t′)2

`t

)
then we can construct the nonstationary mixing via
a linear function of independent variables.
Let λ0 ∼ Ga(β0, 1), λ1 ∼ Ga(β1(u), 1) and λ2 ∼
Ga(β2(v), 1), we have a(u) = λ0 + λ1 and b(v) =
λ0 +λ2, where β1(u) and β2(v) are the polynomial
functions related to the location u and v . Then:

Cu,v(x,x
′) = Ea,b(C(s, s′|a(u))C(t, t′|b(v))

= C ′β0
(Qs +Qt)C

′
β1(u)(Qs)C

′
β2(v)(Qt)

where Qs = (s−s′)2/`s and C ′β(Q) = (1+Q)−β .
We demonstrate this SPM experimentally in §6.

5. SDE informed SPMs
For most random fields the optimal form of the convolution
is generally unknown, hence practitioners typically fall back

on the Gaussian convolution. Although this provides appeal-
ing properties, unbiased estimates and closed form kernel
functions, the Gaussian kernel does not provide any addi-
tional information and simply acts as a smoother. However,
in many cases the observed process can be described as the
solution to a stochastic differential equation (SDE):

apZ
(p)(t) + ap−1Z

(p−1)(t) + ...+ a0Z(t) = φ(t) (20)

where Z(p)(t) is p-th derivative of Z(t) and φ(t) is the
forcing term that brings uncertainty into the process. In
general the forcing term can be any stochastic process but is
typically assumed to be a white noise process.

Figure 2. Illustrations of GPs modelling a solution to the 2D heat
equation. The true surface is plotted in the top left and red points
denote observation locations. Top right and bottom left are GP
predictions using a squared exponential kernel across varying sam-
ple sizes. Bottom right shows predictions from our SDE informed
SPM. Because the SPM encodes the physical behaviour of the
process it achieves superior performance in recovering the true
surface, even on a small sample size.

Instead of solving Eq. 20 directly, we can find the corre-
sponding Green’s function and rewrite the process of interest
as a convolution against this:

Z(t) =

∫
G(t− u)φu(t) du (21)

where G(t− u) is the Green’s function for the SDE in Eq.
20 (Duffy, 2015). Through this form we are injecting physi-
cal/mechanistic structure into our prior that will allow us to
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learn the process Z(·) more effectively. By viewing the so-
lutions of the SDE as arising from a convolution we can cast
it into both our nonstationary convolution and nonstationary
mixing frameworks.

Nonstationary SDEs We can simply create a nonstationary
process by mixing the SDE solutions with a nonstationary
distribution. Following §4 we have:

Z(t) =

∫
Z(t|b)dµ(b)

=

∫ ∫
G(t− u|b)φu(t|b) dµ(b) du,

(22)

where µ(b) is the probability measure for random variable b.
In Eq.22 we do not directly express Z(t) as a convolution of
a Green’s function, because in general it is hard to find the
corresponding SDE. Instead we find the SDE for the condi-
tional Z(t|b) where b is a mixing variable that varies across
input space. When the input space is multi-dimensional, the
correlation of the mixing variables captures the dependency
between the input dimensions.

Let the separable process Z(s, t|a, b) = Zs(s|a)Zt(t|b) be
written as the solution to the following SDE:

∑
i

ai
∂iZs(s|a)

∂si
+ a0Zs(s|a) = φ(s|a),

∑
j

bj
∂jZt(t|b)

∂tj
+ b0Zt(t|b) = φ(t|b).

(23)

then as we have seen in our nonstationary mixing framework
(§4) we can induce correlation between the input dimensions
by mixing a and b. Let a = {a0, ...aI},b = {b0, ...bJ}
(where I, J are the order of SDEs for Zs, Zt respectively)
be random variables from the joint distribution p(a, b) that
mix the above SDE solutions. As in §4 we can induce a
nonstationary nonseparable process, even when the latent
SDEs are stationary, i.e. ZS̄tS̄p

(x)

=

∫ ∫
Epu,v(a,b)

[
G(τs)G

′(τt)Φ(s|a)Φ(t|b)
]
dudv

=

∫ ∫
G(τs)G

′(τt)Epu,v(a,b)[Φ(s|a)Φ(t|b)]dudv

where τs = s− u, τt = t− v. We can also handle a nonsta-
tionary mixture using a nonstationary Green’s function; the
process will then be constructed as ZS̄tS̄p

(s, t)

=

∫ ∫
Epu,v

[
G(τs|a)G′(τt|b)Φ(s)Φ(t)pu,v(a, b)

]
dudv

=

∫ ∫
Epu,v(a,b)

[
Gτs|a)G′(τt|b)

]
Φ(s)Φ(t)dudv

Example 4: Spatio-temporal Heat Equation
The spatio-temporal heat equation:

df(x)

dt
−D ·

[
d2f(x)

ds2
1

+
d2f(x)

ds2
2

]
= φ(x)

is an SDE that defines the dispersion of heat through
an object (Duffy, 2015). The stochastic factor
φ(x) of the system is related to the input space
x = {s1, s2, t} and the fundamental solution is:

G(x) =
1

(4πDt)
exp

(
−s

2
1 + s2

2

4Dt

)
.

When the stochastic factor depends on the input
location then the covariance function of f(x) is
given by:

C(x,x′) =

∫ ∫
G(τs1 , τs2 , τt)G(τs′1τs′2 , τt′)

Cus1
,us2

,v(x,x
′)dus2dus1dv

where τs1 = s1 − us1 , τs2 = s2 − us2 , τt = t −
v. We will instantiate this in §6.2 as a benchmark
problem. For computational simplicity, we consider
that the stochastic factor is only nonseparable in the
spatial dimension. The latent covariance is then:
Cus1

,us2
,v(x,x

′) = Cus1
,us2

(s, s′)Cv(t, t
′) where

the spatial covariance is given by Example. 1 and
the temporal covariance is an squared exponential
kernel (SQE).
Although the latent covariance is separable across
space-time the covariance of the resulting pro-
cess we be fully nonseparable. This is because
G(τs1 , τs2 , τt) is informed by a corresponding SDE
that is itself nonseparable across space-time.

6. Experiments
To demonstrate our SPMs we apply them on two synthetic
datasets, on the well-studied Irish wind dataset and on
the challenging setting of forecasting NO2 across Lon-
don. We compare against nonstationary separable ker-
nels (Paciorek & Schervish, 2004) denoted as GP (S̄tSp),
and stationary nonseparable kernels (Fonseca & Steel,
2011a) denoted as GP (StS̄p), Treed GPs (Gramacy &
Lee, 2008) and a two-layer Deep Gaussian process (DGP)
(Damianou & Lawrence, 2013) with the doubly stochas-
tic framework (Salimbeni & Deisenroth, 2017). We
denote SPM:nonstationary convolutions (SPM:NC) as
GP (S̄tS̄p):NC and SPM:nonstationary mixings (SPM:NM)
as GP (S̄tS̄p):NM. A summary of results is provided in Ta-
ble. 1.
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Figure 3. Predictive mean surfaces from GPs with different kernel functions for two time points of the spatio-temporal heat equation. The
training data is a solution to the spatio-temporal heat equation and is only generated from t = 0 to t = 0.1. At t = 0 all the covariance
functions capture the structure of the data because observations are available. At t = 0.25, only the nonstationary mixing with the SDE
convolution (GP (S̄tS̄p):SDE) maintains this structure, because the kernel is informed via the SDE, whereas all other models start to
return to the mean. Note that the nonstationary convolution (GP (S̄tS̄p):NC) still captures some of the structure through the hierarchical
nonstationary nonseparable structure and therefore has second-best performance.

Figure 4. Illustration of GP correlations across multiple input lo-
cations. Top left is the true surface. The red ellipses denote the
0.1 correlation contour line for the corresponding centre point (red
dot). We train a GP using observations below the white dashed
line and predict on the region above ([0.4, 1.0]). The SQE kernel
(top right) is unable the capture the changing correlation structure
and therefore learns a small length-scale and hence is unable to
predict well in the testing region. Whereas both the SPM kernels
capture the information between the input dimensions, allowing
them to better predict. From the contour lines we see that the
SQE kernel has a constant shape, the SPM:NC can only model a
global dependency (all ellipses in the same direction) whereas the
SPM:NM has varying correlation structure.

.

6.1. Nonseparable compound function

In our first toy example we are interested in recovering the
following nonstationary nonseparable surface:

f(s, t) = sin
(
3 · (s2

1 + s1 · (2− s2)2 + t)
)

+ 2

y(s, t) = f(g(s), t) + ε
(24)

where s1, s2 are the first and second input dimensions of s
respectively, g(s) = Σ

1
2 s is the input warping function that

provides additional nonseperability, Σ =

[
1 0.3

0.3 1

]
and

ε ∼ N (0, 0.1).

To measure the amount of nonseparability we calculate the
empirical nonseparability index ratio (0.58)(De Iaco & Posa,
2013) and run the augmented Dickey–Fuller test (-2.27) for
stationarity (Lobato & Velasco, 2007), which indicates that
the dataset is both nonstationary and nonseparable.

We generate 7 data sets with increasing sample sizes us-
ing 10, 20, 30, 50, 100, 200 and 500 randomly selected
observations. We expect our proposed constructions to have
pronounced improvements when the sample size is small
relative to the complexity of the field. For each dataset we
repeat the comparison 3 times using a different random seed.
We use single GPs for all covariance functions and to make
comparisons with the DGP fair we optimize all models w.r.t
to their variational lower bounds and use as many inducing
points as input observations. We found that the single GP
models were easy to fit and robust to initialization whereas
the DGP has a tendency to explain the observations as noise;
this required us to first hold the noise variance constant and
release it half way through optimisation.
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Figure 5. We plot the predictive mean of GP models with multiple covariance functions estimating NO2 across London for two time slices.
Due to the complex urban environment, e.g road layout, the covariance of NO2 varies across input locations. Due to this we see that the
separable kernels over smooth, whereas both SPM convolutions (GP (S̄tS̄p):NC and GP (S̄tS̄p):NM) recover more structure. Treed GP
results in Appendix

We plot the results of this experiment in Fig. 6. As expected
with only 10 observations we find that all models achieve
a high MSE but as the number of observations increase we
find that the nonseparable kernels converge to the lowest
MSE the quickest. Across all number of observations the
SPM kernels achieves the lowest MSEs because they are
able to learn the correlations between inputs.

6.2. Spatio-temporal Heat equation

We are now interested in recovering a specific solution to
the spatio-temporal heat equation:

f(s, t) = 0.1 · [50− (x) · sin(π · (x)/3)] · exp(−5t)

y(s, t) = f(g(s), t) + ε
(25)

where x = s2
1 + s2

2, ε ∼ N (0, 0.1) and g(s) = Σ
1
2 s. We

generate a 20 × 20 × 5 uniform grid between [−5,−5, 0]
and [5, 5, 0.3] for input s1, s2, t. We take the first two time
slices as our training set and then predict on the remaining
three. For all models we follow the same training regime as
described in Sec. 6.1. The results are shown in Fig. 3 and
Table 1. In the first time step all models are able to fit to
the data well but in the final slice all models apart from our
SDE kernel have quickly returned to the prior mean (note
that DGP returns to the mean of the data). By encoding the
SDE into our prior and mixing over the parameters of the
convolution we are able to accurately forecast .

6.3. London Air Quality data

We model NO2 across London using observations from 34
sensors from the London air quality network (LAQN) that

Figure 6. We plot the MAE while varying the number of observa-
tions in the nonseparable compound function experiment. With
low number of observations the models that capture the complex
covariance structure achieve lower MAE values. With high number
of observations most models achieve similar values.

.

records data every hour. The levels of NO2 are impacted
by global factors, such as weather and external air pollu-
tion sources, as well as local factors such as industry and
traffic. Hence we expect the correlations between sensors
to be very dynamic, depending on both local and global
factors. For comparison we fit the data with a single GP
with an SQE covariance function. We use the construction
of Example. 3 to handle nonseparability. To construct the
mixture, we simplify the spatiotemporal random mixture as:
us1 = λ0 +λ1 +λ2, us2 = λ0 +λ1 +λ3 and vt = λ0 +λ4.
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Figure 7. Prediction surfaces on Irish Wind data for two time points. The SQE kernel over smooths and therefore fails to capture the
local structure. Whereas both SPM constructions are able to capture this structure. We can see that for both SPM constructions, the
reconstructed surfaces are similar and this is because the dependency structure in the dataset is close to constant. The Deep GP also
captures localized structure but achieves a predictive log likelihood of -3133.60 compared to SPM with nonstationary convolution
(GP (S̄tS̄p):NC) and SPM with nonstationary mixing (GP (S̄tS̄p):NM) that achieve -2991.63 and -2707.07 respectively. This indicates
that the DGP is slightly overfitting the data and is not capturing sufficient uncertainty.

Table 1. MSE across datasets and competing approaches

MODEL COMPOUND 3D HEAT EQ

SINGLE GP 0.415 ± 0.05 0.93
TREED GP 0.483 ± 0.04 4.34
DEEP GP 0.430 ± 0.03 2.36
SPM:NM 0.366 ± 0.04 0.14
SPM:NC 0.360 ± 0.03 0.26

MODEL LAQN IRISH WIND

SINGLE GP 51.24 ± 1.32 12.79 ±1.27
TREED GP 70.32 13.02 ±1.02
DEEP GP 50.33 ± 4.37 2.61±0.12
SPM:NM 18.31 ± 2.26 2.92 ±0.32
SPM:NC 29.80 ± 1.74 9.65±0.15

Thus, we can use the nonseparable construction in Eq. 13
and the exponential convolution kernel (Eq. 11). For the
nonstationary convolution, we assume all parameters in the
convolution are a linear function of the input space.

The results of this experiment are shown in in Fig 5. The
SQE kernel cannot learn the correlation structure between
spatio-temporal location and so it over smooths resulting
in a large noise variance. The SPM:NC kernel assumes
that the structure for the location parameters are fixed and
hence learns the same structure across time slices. How-
ever the SPM:NM kernel learns the varying nonseparability
successfully and so infers more local structure than all the
other kernels. In contrast with the treed GP, which assumes
that different partitions are independent, the SMP:NM ker-

nel is still able to learn long term correlations because the
nonstationarity smoothly changes due to the convolution.

6.4. Irish Wind

The Irish wind data consists of average daily wind speeds
across 12 different locations in Ireland and is well known
that it exhibits nonseparability. After standardizing the data,
we run a separability test (De Iaco & Posa, 2013) that results
in a score of 0.38, whilst the separability ratio over two
individual stations is also around 0.38. This implies that the
nonseperability is approximately constant across the sensors.
This is reinforced from our experiments (Fig. 7) where we
see that SPM:NM and SPM:NC perform similarly and the
learnt covariances exhibit constant nonseparability.

7. Conclusion
We have generalized process convolution kernels using
stochastic mixing to handle both nonstationarity and non-
separability in the data. We demonstrate improved estimates
and forecasts in using GPs with these SPM kernels. Because
the form of the convolution kernel is generally unknown, we
can motivate our convolution function from stochastic differ-
ential equations. Thus, any additional physical information
can be brought into the covariance function. We illustrate in
§6.2 that the SDE informed convolutions provide superior
predictions even with less observations. Finally, we show
that our SMP:NM captures local varying structure which is
crucial in real world spatio-temporal problems.
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mani, Z., and Hensman, J. GPflow: A Gaussian pro-
cess library using TensorFlow. Journal of Machine
Learning Research, 18(40):1–6, apr 2017. URL http:
//jmlr.org/papers/v18/16-537.html.
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