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Abstract 

The role concept provides a useful tool to de­
sign and understand complex multi-agent sys­
tems, which allows agents with a similar role to 
share similar behaviors. However, existing role-
based methods use prior domain knowledge and 
predefine role structures and behaviors. In con­
trast, multi-agent reinforcement learning (MARL) 
provides flexibility and adaptability, but less ef­
ficiency in complex tasks. In this paper, we 
synergize these two paradigms and propose a 
role-oriented MARL framework (ROMA). In this 
framework, roles are emergent, and agents with 
similar roles tend to share their learning and to 
be specialized on certain sub-tasks. To this end, 
we construct a stochastic role embedding space 
by introducing two novel regularizers and con­
ditioning individual policies on roles. Experi­
ments show that our method can learn special­
ized, dynamic, and identifiable roles, which help 
our method push forward the state of the art on 
the StarCraft II micromanagement benchmark. 
Demonstrative videos are available at https: 
//sites.google.com/view/romarl/. 

1. Introduction 
Many real-world systems can be modeled as multi-agent sys­
tems (MAS), such as autonomous vehicle teams (Cao et al., 
2012), intelligent warehouse systems (Nowé et al., 2012), 
and sensor networks (Zhang & Lesser, 2011). Coopera­
tive multi-agent reinforcement learning (MARL) provides a 
promising approach to developing these systems, allowing 
agents to deal with uncertainty and adapt to the dynamics 
of an environment. In recent years, cooperative MARL has 
achieved prominent progress, and many deep methods have 
been proposed (Foerster et al., 2018; Sunehag et al., 2018; 

1IIIS, Tsinghua University, Beijing, China 2University of Mas­
sachusetts, Amherst, USA. Correspondence to: Tonghan Wang 
<tonghanwang1996@gmail.com>. 

Proceedings of the 37 th International Conference on Machine 
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au­
thor(s). 

Victor Lesser 2 Chongjie Zhang 1 

0

8

6

7

3

2

9

1
4

5

1
2

{0,3,5,7}

4
6

9
8

Figure 1. Visualization of our learned role representations at a 
timestep. The blue agent has the maximum health, while the red 
ones are dead. The corresponding policy is that agent 6 moves 
towards enemies to take on more firepower, so that more seriously 
injured agents are protected. Roles can change adaptively and will 
aggregate according to responsibilities that are compatible with 
individual characteristics, such as location, agent type, health, etc. 

Rashid et al., 2018; Son et al., 2019; Vinyals et al., 2019; 
Wang et al., 2020b; Baker et al., 2020). 

In order to achieve scalability, these deep MARL meth­
ods adopt a simple mechanism that all agents share and 
learn a decentralized value or policy network. However, 
such simple sharing is often not effective for many complex 
multi-agent tasks. For example, in Adam Smith’s Pin Fac­
tory, workers must complete up to eighteen different tasks 
to create one pin (Smith, 1937). In this case, it is a heavy 
burden for a single shared policy to represent and learn all 
required skills. On the other hand, it is also unnecessary 
for each agent to use a distinct policy network, which leads 
to high learning complexity because some agents often per­
form similar sub-tasks from time to time. The question 
is how we can give full play to agents’ specialization and 
dynamic sharing for improving learning efficiency. 

A natural concept that comes to mind is the role. A role 
is a comprehensive pattern of behavior, often specialized 
in some tasks. Agents with similar roles will show similar 
behaviors, and thus can share their experiences to improve 
performance. The role theory has been widely studied in 
economics, sociology, and organization theory. Researchers 
have also introduced the concept of role into MAS (Becht 
et al., 1999; Stone & Veloso, 1999; Depke et al., 2001; Fer­
ber et al., 2003; Odell et al., 2004; Bonjean et al., 2014; 
Lhaksmana et al., 2018). In these role-based frameworks, 
the complexity of agent design is reduced via task decom­
position by defining roles associated with responsibilities 
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made up of a set of sub-tasks, so that the policy search space 
is effectively decomposed (Zhu & Zhou, 2008). However, 
these works exploit prior domain knowledge to decompose 
tasks and predefine the responsibilities of each role, which 
prevents role-based MAS from being dynamic and adaptive 
to uncertain environments. 

To leverage the benefits of both role-based and learn­
ing methods, in this paper, we propose a role-oriented 
multi-agent reinforcement learning framework (ROMA). 
This framework implicitly introduces the role concept into 
MARL, which serves as an intermediary to enable agents 
with similar responsibilities to share their learning. We 
achieve this by ensuring that agents with similar roles 
have both similar policies and responsibilities. To estab­
lish the connection between roles and decentralized poli­
cies, ROMA conditions agents’ policies on individual roles, 
which are stochastic latent variables determined by agents’ 
local observations. To associate roles with responsibilities, 
we introduce two regularizers to enable roles to be identifi­
able by behaviors and specialized in certain sub-tasks. We 
show how well-formed role representations can be learned 
via optimizing tractable variational estimations of the pro­
posed regularizers. In this way, our method synergizes role-
based and learning methods while avoiding their individual 
shortcomings – we provide a flexible and general-purpose 
mechanism that promotes the emergence and specialization 
of roles, which in turn provides an adaptive learning sharing 
mechanism for efficient multi-agent policy learning. 

We test our method on StarCraft II1 micromanagement en­
vironments (Vinyals et al., 2017; Samvelyan et al., 2019). 
Results show that our method significantly pushes forward 
the state of the art of MARL algorithms, by virtue of the 
adaptive policy sharing among agents with similar roles. 
Visualization of the role representations in both homoge­
neous and heterogeneous agent teams demonstrates that the 
learned roles can adapt automatically in dynamic environ­
ments, and that agents with similar responsibilities have 
similar roles. In addition, the emergence and evolution pro­
cess of roles is shown, highlighting the connection between 
role-driven sub-task specialization and improvement of team 
efficiency in our framework. These results provide a new 
perspective in understanding and promoting the emergence 
of cooperation among agents. 

2. Background 
In our work, we consider a fully cooperative multi-agent 
task that can be modelled by a Dec-POMDP (Oliehoek et al., 
2016) G=(I, S, A, P, R, Ω, O, n, γ), where A is the finite 
action set, I is the finite set of n agents, γ ∈ [0, 1) is the 
discount factor, and s ∈ S is the true state of the environ­

1StarCraft II are trademarks of Blizzard EntertainmentTM. 

ment. We consider partially observable settings and agent 
i only has access to an observation oi ∈ Ω drawn accord­
ing to the observation function O(s, i). Each agent has a 
history τi ∈ T ≡ (Ω × A)∗. At each timestep, each agent 
i selects an action ai ∈ A, forming a joint action a ∈ An , 
leading to next state s' according to the transition function 
P (s'|s, a) and a shared reward r = R(s, a) for each agent. 
The joint policy π induces a joint action-value function: u∞
Qπ [ γtrt| s0 =s, a0 =a, π].tot(s,a)=Es0:∞ ,a0:∞ t=0 

To effectively learn policies for agents, the paradigm of cen­
tralized training with decentralized execution (CTDE) (Fo­
erster et al., 2016; 2018; Wang et al., 2020a) has recently 
attracted attention from deep MARL to deal with non-
stationarity while learning decentralized policies. One of 
the promising ways to exploit the CTDE paradigm is value 
function decomposition (Sunehag et al., 2018; Rashid et al., 
2018; Son et al., 2019; Wang et al., 2020b), which learns 
a decentralized utility function for each agent and uses a 
mixing network to combine these local utilities into a global 
action value. To achieve learning scalability, existing CTDE 
methods typically learn a shared local value or policy net­
work for agents. However, this simple sharing mechanism 
is often not sufficient for learning complex tasks, where di­
verse responsibilities or skills are required to achieve goals. 
In this paper, we develop a novel role-based MARL frame­
work to address this challenge. This framework achieves 
efficient shared learning while allowing agents to learn suf­
ficiently diverse skills. 

3. Method 
In this section, we will present a novel role-oriented MARL 
framework (ROMA) that introduces the role concept into 
MARL and enables adaptive shared learning among agents. 
ROMA adopts the CTDE paradigm. As shown in Fig. 2, 
it learns local Q-value functions for agents, which are fed 
into a mixing network to compute a global TD loss for cen­
tralized training. During the execution, the mixing network 
will be removed, and each agent will act based on its lo­
cal policy derived from its value function. Agents’ value 
functions or policies are dependent on their roles, each of 
which is responsible for performing similar automatically 
identified sub-tasks. To enable efficient and effective shared 
learning among agents with similar behaviors, ROMA will 
automatically learn roles that are: 

i) Dynamic: An agent’s role can automatically adapt to the 
dynamics of the environment; 

ii) Identifiable: The role of an agent contains enough infor­
mation about its behaviors; 

iii) Specialized: Agents with similar roles are expected to 
specialize in similar sub-tasks. 



ROMA: Role-Oriented Multi-Agent Reinforcement Learning

Formally, each agent i has a local utility function (or an
individual policy), whose parameters θi are conditioned on
its role ρi. To learn roles with desired properties, we encode
roles in a stochastic embedding space, and the role of agent
i, ρi, is drawn from a multivariate Gaussian distribution
N (µρi ,σρi). To enable the dynamic property, ROMA con-
ditions an agent’s role on its local observations, and uses
a trainable neural network f to learn the parameters of the
Gaussian distribution of the role:

(µρi ,σρi) = f(oi; θρ),

ρi ∼ N (µρi ,σρi),
(1)

where θρ are parameters of f . The sampled role ρi is then
fed into a hyper-network g(ρi; θh) parameterized by θh to
generate the parameters for the individual policy, θi. We call
f the role encoder and g the role decoder. In the next two
sub-sections, we will describe two regularizers for learning
identifiable and specialized roles.

3.1. Identifiable Roles

Introducing latent role embedding and conditioning indi-
vidual policies on this embedding does not automatically
generate roles with desired properties. Intuitively, condi-
tioning roles on local observations enables roles to be re-
sponsive to the changes in the environment. This design
enables ROMA to be adaptive to dynamic environments
but may cause roles to change quickly, making learning
unstable. For addressing this problem, we expect roles to
be temporally stable. To this end, we propose to learn roles
that are identifiable by agents’ long term behaviors, which
can be achieved by maximizing I(τi; ρi|oi), the conditional
mutual information between the individual trajectory and
the role given the current observation.

However, estimating and maximizing mutual information
is often intractable. Drawing inspiration from the literature
of variational inference (Wainwright et al., 2008; Alemi
et al., 2017), we introduce a variational posterior estimator
to derive a tractable lower bound for the mutual information
objective (the proof is deferred to Appendix A.1):

I(ρti; τ
t−1
i |oti) ≥ Eρti,τt−1

i ,oti

[
log

qξ(ρ
t
i|τ

t−1
i , oti)

p(ρti|oti)

]
, (2)

where τ t−1i = (o0i , a
0
i , · · · , o

t−1
i , at−1i ), qξ is the variational

estimator parameterised with ξ. For qξ , we use a GRU (Cho
et al., 2014) to encode an agent’s history of observations
and actions, and call it the trajectory encoder. The lower
bound in Eq. 2 can be further rewritten as a loss function to
be minimized:

LI(θρ, ξ) = E(τt-1i ,oti)∼D
[
DKL[p(ρti|oti)‖qξ(ρti|τ t-1i , oti)]

]
,

(3)
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Figure 2. Schematics of our approach. The role encoder generates
a role embedding distribution, from which a role is sampled and
serves as the input to the role decoder. The role decoder generates
the parameters of the local utility network. Local utilities are fed
into a mixing network to get an estimation of the global action
value. We propose two learning objectives to learn specialized and
identifiable roles. The framework can be trained in an end-to-end
manner.

where D is a replay buffer, and DKL[·‖·] is the KL diver-
gence operator. The detailed derivation can be found in
Appendix A.1.

3.2. Specialized Roles

The formulation so far does not promote sub-task specializa-
tion, which is the critical component to share learning and
improve efficiency in multi-agent systems. Minimizing LI
enables roles to contain enough information about long-term
behaviors but does not explicitly ensure agents with similar
behaviors to have similar role embeddings.

For learning specialized roles, we define another role-
learning regularizer. Intuitively, to encourage sub-task spe-
cialization, for any two agents, we expect that either they
have similar roles or they have quite different behaviors.
However, it is usually unclear which agents will have sim-
ilar roles during the process of role emergence, and the
similarity between behaviors is not straightforward to mea-
sure.

Since roles have enough information about the behaviors
(achieved by minimizing LI ), to encourage two agents i
and j to have similar roles, we can maximize I(ρi; τj), the
mutual information between the role of agent i and the tra-
jectory of agent j. However, we do not know which agents
will have similar roles, and directly optimizing this objec-
tive for all pairs of agents will result in all agents having
the same role, and, correspondingly, the same policy, which
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Figure 3. Dynamic role adaptation during an episode (means of the role distributions, µρi , are shown, without using any dimensionality 
reduction techniques). The role encoder learns to focus on different parts of observations according to the automatically discovered 
demands of the task. The role-induced strategy helps (a) quickly form the offensive arc when t=1; (b) protect injured agents when t=8; (c) 
protect dying agents and alternate fire when t = 19. 

will limit system performance. To settle this issue, we in­
troduce a dissimilarity model dφ : T × T → R, a trainable 
neural network taking two trajectories as input, and seek to 
maximize I(ρi; τj ) + dφ(τi, τj ) while minimizing the num­
ber of non-zero elements in the matrix Dφ = (dij ). Here, 
dij = dφ(τi, τj ) is the estimated dissimilarity between tra­
jectories of agent i and j. Such formulation makes sure that 
dissimilarity d is high only when mutual information I is 
low, so that the set of learned roles is compact but diverse, 
which help solve the given task efficiently. Formally, the 
following learning objective encourages sub-task specializa­
tion: 

minimize Dφ
t 

2,0 (4)
θρ,ξ,φ
 

t
subject to I(ρt |oj ) + dφ(τ
t−1  i; τ 

t−1 , τ t−1) > U, ∀i = j, j i j 

where U controls the compactness of the role representation. 
In practice, we separately carry out min-max normalization 
on I and d to scale their values to [0, 1] and set U to 1. 
Relaxing the matrix norm · 2,0 with the Frobenius norm, 
we can get the optimization objective for minimizing:  

tDφ
t 

F − min{I(ρti; τj
t−1|oj ) + dφ(τi

t−1, τj
t−1), U}, 

ii=j 

(5) 
However, as estimating and optimizing the mutual informa­
tion term are intractable, we use the variational posterior 
estimator introduced in Sec. 3.1 to construct an upper bound, 
serving as the second regularizer of ROMA: 

DtLD(θρ, φ, ξ) = E(τ t−1 ,ot)∼D,ρt∼p(ρt|ot) φ F (6) 

 
t− min{qξ(ρti|τ t−1 , o j ) + dφ(τ

t−1, τ t−1), U}j i j 
ii=j 

where D is the replay buffer, τ t−1 is the joint trajectory, 
ot is the joint observation, and ρt = (ρt 1, ρ2t , · · · , ρt ). An

detailed derivation can be found in Appendix A.2. 

3.3. Overall Optimization Objective 

We have introduced optimization objectives for learning 
roles to be identifiable and and specialized. Apart from 
these regularizers, all the parameters in the framework are 
updated by gradients induced by the standard TD loss of 
reinforcement learning. As shown in Fig. 2, to compute the 
global TD loss, individual utilities are fed into a mixing net­
work whose output is the estimation of global action-value 
Qtot. In this paper, our ROMA implementation uses the 
mixing network introduced by QMIX (Rashid et al., 2018) 
(see Appendix D) for its monotonic approximation, but it 
can be easily replaced by other mixing methods. The param­
eters of the mixing network are conditioned on the global 
state s and are generated by a hyper-net parameterized by 
θm. Therefore, the final learning objective of ROMA is: 

L(θ) = LTD(θ) + λI LI (θρ, ξ) + λDLD(θρ, ξ, φ), (7) 

where θ = (θρ, ξ, φ, θh, θm), λI and λD are scaling factors, 
' 'and LTD(θ) = [r+γ maxal Qtot(s , a ; θ−)-Qtot(s, a; θ)]2 

(θ− are the parameters of a periodically updated target net­
work). In our centralized training with decentralized execu­
tion framework, only the role encoder, the role decoder, and 
the individual utility networks are used when execution. 
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Figure 4. Comparison of our method against baseline algorithms. Results for more maps can be found in Appendix C.1. 

4. Related Works 
The emergence of role has been documented in many natural 
systems, such as bees (Jeanson et al., 2005), ants (Gordon, 
1996), and humans (Butler, 2012). In these systems, the 
role is closely related to the division of labor and is crucial 
to the improvement of labor efficiency. Many multi-agent 
systems are inspired by these natural systems. They decom­
pose the task, make agents with the same role specialize 
in certain sub-tasks, and thus reduce the design complex­
ity (Wooldridge et al., 2000; Omicini, 2000; Padgham & 
Winikoff, 2002; Pav´ omez-Sanz, 2003; Cossentinoon & G´
et al., 2005; Zhu & Zhou, 2008; Spanoudakis & Moraitis, 
2010; DeLoach & Garcia-Ojeda, 2010; Bonjean et al., 2014). 
These methodologies are designed for tasks with a clear 
structure, such as software engineering (Bresciani et al., 
2004). Therefore, they tend to use predefined roles and asso­
ciated responsibilities (Lhaksmana et al., 2018). In contrast, 
we focus on how to implicitly introduce the concept of roles 
into general multi-agent sequential decision making under 
dynamic and uncertain environments. 

Deep multi-agent reinforcement learning has witnessed vig­
orous progress in recent years. COMA (Foerster et al., 
2018), MADDPG (Lowe et al., 2017), PR2 (Wen et al., 
2019), and MAAC (Iqbal & Sha, 2019) explore multi-agent 
policy gradients. Another line of research focuses on value-
based multi-agent RL, and value-function factorization is 
the most popular method. VDN (Sunehag et al., 2018), 
QMIX (Rashid et al., 2018), and QTRAN (Son et al., 2019) 
have progressively enlarged the family of functions that can 
be represented by the mixing network. NDQ (Wang et al., 
2020b) proposes nearly decomposable value functions to 
address the miscoordination problem in learning fully de­
centralized value functions. Emergence is a topic with in­
creasing interest in deep MARL. Works on the emergence of 
communication (Foerster et al., 2016; Lazaridou et al., 2017; 
Das et al., 2017; Mordatch & Abbeel, 2018; Wang et al., 

2020b; Kang et al., 2020), the emergence of fairness (Jiang 
& Lu, 2019), and the emergence of tool usage (Baker et al., 
2020) provide a deep learning perspective in understanding 
both natural and artificial multi-agent systems. 

To learn diverse and identifiable roles, we propose to opti­
mize the mutual information between individual roles and 
trajectories. A recent work studying multi-agent exploration, 
MAVEN (Mahajan et al., 2019), uses a similar objective. 
Different from ROMA, MAVEN aims at committed explo­
ration. This difference in high-level purpose leads to many 
technical distinctions. First, MAVEN optimizes the mutual 
information between the joint trajectory and a latent vari­
able conditioned on a Gaussian or uniform random variable 
to encourage diverse joint trajectory. Second, apart from 
the mutual information objective, we propose a novel reg­
ularizer to learn specialized roles, while MAVEN adopts a 
hierarchical structure and encourages the latent variable to 
help get more environmental rewards. We empirically com­
pare ROMA with MAVEN in Sec. 5. More related works 
will be discussed in Appendix D. 

5. Experiments 
Our experiments aim to answer the following questions: 
(1) Whether the learned roles can automatically adapt in 
dynamic environments? (Sec. 5.1.) (2) Can our method pro­
mote sub-task specialization? That is, agents with similar 
responsibilities have similar role embedding representations, 
while agents with different responsibilities have role embed­
ding representations far from each other. (Sec. 5.1, 5.3.) 
(3) Can such sub-task specialization improve the perfor­
mance of multi-agent reinforcement learning algorithms? 
(Sec. 5.2.) (4) How do roles evolve during training, and how 
do they influence team performance? (Sec. 5.4.) (5) Can 
the dissimilarity model dφ learn to measure the dissimilarity 
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Figure 5. Ablation studies regarding the two role-learning losses. 
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Figure 6. Comparison of our method against ablations. 

between agents’ trajectories? (Sec. 5.4.) Videos2 of our 
experiments and the code3 are available online. 

Baselines We compare our methods with various baselines 
shown in Table 1. In particular, we carry out the following 
ablation studies: (i) We separately omit each (or both) of 
the two role-learning objectives (LI and LD) while leaving 
the other parts of ROMA unchanged. These three abla­
tions are designed to highlight the contribution of each of 
the proposed regularizers. (ii) QMIX-NPS. The same as 
QMIX (Rashid et al., 2018), but agents do not share param­
eters. Our method achieves adaptive learning sharing, and 
comparison against QMIX (parameters are shared among 
agents) and QMIX-NPS tests whether this flexibility can 
improve learning efficiency. (iii) QMIX-LAR, QMIX with 
a similar number of parameters with our framework, which 
can test whether the superiority of our method comes from 
the increase in the number of parameters. 

We carry out a grid search over the loss coefficients λI and 
λD, and fix them at 10−4 and 10−2, respectively, across all 
the experiments. The dimensionality of latent role space is 
set to 3, so we did not use any dimensionality reduction tech­
niques when visualizing the role embedding representations. 
Other hyperparameters are also fixed in our experiments, 
which are listed in Appendix B.1. For ROMA, We use 
elementary network structures (fully-connected networks 
or GRU) for the role encoder, role decoder, and trajectory 
encoder. The details of the architecture of our method and 
baselines can be found in Appendix B. 

2https://sites.google.com/view/romarl/ 
3https://github.com/TonghanWang/ROMA 

Table 1. Baseline algorithms. 

Alg. Description 

Related 
Works 

IQL 
COMA 
QMIX 
QTRAN 
MAVEN 

Independent Q-learning 
Foerster et al. (2018) 
Rashid et al. (2018) 
Son et al. (2019) 
Mahajan et al. (2019) 

Abla­
tions 

LT D 

LT D + LI 

LT D + LD 

QMIX-NPS 

QMIX-LAR 

ROMA without LI and LD 

ROMA without LD 

ROMA without LI 

QMIX without parameter 
sharing among agents 
QMIX with similar number 
of parameters with ROMA 

5.1. Dynamic Roles 

Answering the first and second questions, we show snap­
shots in an episode played by ROMA agents on the StarCraft 
II micromanagement benchmark (SMAC) map 10m vs 11m, 
where 10 Marines face 11 enemy Marines. As shown in 
Fig. 3 (the role representations at t=27 are presented in 
Fig. 1), although observations contain much information, 
such as positions, health points, shield points, states of ally 
and enemy units, etc., the role encoder learns to focus on dif­
ferent parts of the observations according to the dynamically 
changed situations. At the beginning (t=1), agents need to 
form a concave arc to maximize the number of agents whose 
shoot range covers the front line of enemies. ROMA learns 
to allocate roles according to agents’ relative positions so 
that agents can quickly form the offensive formation using 

https://sites.google.com/view/romarl/
https://github.com/TonghanWang/ROMA
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Figure 7. Learned roles for 6s4z vs 10b30z, 27m vs 30m, and 6z4b (means of the role distributions, µρi , are shown, without using any 
dimensionality reduction techniques), and the related, automatically discovered responsibilities. 

specialized policies. In the middle of the battle, one impor­
tant tactic is to protect the injured ranged units. Our method 
learns this maneuver and roles cluster according to the re­
maining health points (t=8, 19, 27). Healthiest agents have 
role representations far from those of other agents. Such 
representations result in differentiated strategies: healthi­
est agents move forward to take on more firepower while 
other agents move backward, firing from a distance. In the 
meantime, some roles also cluster according to positions 
(agents 3 and 8 when t=19). The corresponding behaviors 
are agents with different roles fire alternatively to share the 
firepower. We can also observe that the role representations 
of dead agents aggregate together, representing a special 
group with an increasing number of agents during the battle. 

These results demonstrate that our method learns dynamic 
roles and roles cluster clearly corresponding to automati­
cally detected sub-tasks, in line with implicit constraints of 
the proposed optimization objectives. 

5.2. Performance on StarCraft II 

To test whether these roles and the corresponding sub-task 
specialization can improve learning efficiency, we test our 
method on the StarCraft II micromanagement (SMAC) 
benchmark (Samvelyan et al., 2019). This benchmark 
consists of various maps which have been classified as 
easy, hard, and super hard. We compare ROMA with 
algorithms shown in Table 1 and present results for one 
easy map (2s3z), three hard maps (5m vs 6m, 8m vs 9m 
& 10m vs 11m), and two super hard maps (MMM2 & 
27m vs 30m). Although SMAC benchmark is challenging, 
it is not specially designed to test performance in tasks with 

many agents. We thus introduce three new SMAC maps to 
test the scalability of our method, which are described in 
detail in Appendix C. 

For evaluation, all experiments in this section are carried 
out with 5 different random seeds, and results are shown 
with a 95% confidence interval. Among these maps, four 
maps, MMM2, 6s4z vs 10b30z, 6z4b, and 10z5b vs 2z3s, 
feature heterogeneous agents, and the others have homo­
geneous agents. Fig. 4 shows that our method yields sub­
stantially better results than all the alternative approaches 
on both homogeneous and heterogeneous maps (additional 
plots can be found in Appendix C.1). MAVEN overcomes 
the negative effects of QMIX’s monotonicity constraint on 
exploration. However, it performs less satisfactorily than 
QMIX on most maps. We believe this is because agents start 
engaging in the battle immediately after spawning in SMAC 
maps, and exploration is not the critical factor affecting 
performance. 

Ablations We carry out ablation studies, comparing with 
the ablations shown in Table 1 and present results on 
three maps: MMM2 (heterogeneous), 10z5b vs 2s3z, and 
10m vs 11m (homogeneous) in Fig. 5 and 6. The superior­
ity of our method against LTD highlights the contribution of 
the proposed regularizers – LTD performs even worse than 
QMIX on two of the three maps. By comparing ROMA with 
LTD +LI and LTD +LD, we can conclude that the special­
ization loss LD is more important in terms of performance 
improvements. Introducing LI can make training more sta­
ble (for example, on the map 10m vs 11m), but optimizing 
LI alone can only slightly improve the performance. These 
observations support the claim that sub-task specialization 
can improve labor efficiency. 
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Figure 8. Role emergence and evolution on the map MMM2 (role representations at time step 1 are shown) during training (means of the 
role distributions, µρi , are shown, without using any dimensionality reduction techniques). The emergence and specialization of roles is 
closely connected to the improvement of team performance. Agents in MMM2 are heterogeneous, and we show role evolution process in a 
homogeneous team in Appendix C.3. 

Comparison between QMIX-NPS and QMIX demonstrates 
that parameter sharing can, as documented (Foerster et al., 
2018; Rashid et al., 2018), speed up training. As discussed 
in the introduction, both these two paradigms may not get 
the best possible performance. In contrast, our method 
provides a dynamic learning sharing mechanism – agents 
committed to a certain responsibility have similar policies. 
The comparison of the performance of ROMA, QMIX, and 
QMIX-NPS proves that such sub-task specialization can in­
deed improve team performance. What’s more, comparison 
of ROMA against QMIX-LAR proves that the superiority 
of our method does not depend on the larger number of 
parameters. 

The performance gap between ROMA and ablations is more 
significant on maps with more than ten agents. This ob­
servation supports discussions in previous sections – the 
emergence of role is more likely to improve the labor effi­
ciency in larger populations. 

5.3. Role Embedding Representations 

To explain the superiority of ROMA, we present the learned 
role embedding representations for three maps in Fig. 7. 
Roles are representative of automatically discovered sub­
tasks in the learned winning strategy. In the map of 
6s4z vs 10b30z, ROMA learns to sacrifice Zealots 9 and 7 
to kill all the enemy Banelings. Specifically, Zealots 9 and 7 
will move to the frontier one by one to minimize the splash 
damage, while other agents will stay away and wait until 
all Banelings explode. Fig. 7(a) shows the role embedding 
representations while performing the first sub-task where 

agent 9 is sacrificed. We can see that the role of Zealot 9 is 
quite different from those of other agents. Correspondingly, 
the strategy at this time is agent 9 moving rightward while 
other agents keep still. Detailed analysis for the other two 
maps can be found in Appendix C.2. 

5.4. Emergence and Evolution of Roles 

We have shown the learned role representations and perfor­
mance of our method, but the relationship between roles 
and performance remains unclear. To make up for this 
shortcoming, we visualize the emergence and evolution of 
roles during the training process on the map MMM2 (hetero­
geneous) and 10m vs 11m (homogeneous). We discuss the 
results on MMM2 here and defer analysis of 10m vs 11m to 
Appendix C.3. 

In MMM2, 1 Medivac, 2 Marauders, and 7 Marines are faced 
with a stronger enemy team consisting of 1 Medivac, 3 
Marauders, and 8 Marines. Among the three involved unit 
types, Medivac is the most special one for that it can heal 
the injured units. In Fig. 8, we show one of the learning 
curves of ROMA (red) and the role representations at the 
first environment step at three different stages. When the 
training begins (T =0), roles are random, and the agents are 
exploring the environment to learn the basic dynamics and 
the structure of the task. By T =6M, ROMA has learned that 
the responsibilities of the Medivac are different from those 
of Marines and Marauders. The role, and correspondingly, 
the policy of the Medivac becomes quite different (Fig. 8 
middle). Such differentiation in behaviors enables agents 
to start winning the game. Gradually, ROMA learns that 
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Table 2. The mean and standard deviation of the learned dissimi­
larities dφ between agents’ trajectories on the map MMM2. 

Between different unit types 0.9556 ± 0.0009 
Between the same unit type 0.0780 ± 0.0019 

Marines and Marauders have dissimilar characteristics and 
should take different sub-tasks, indicated by the differentia­
tion of their role representations (Fig. 8 right). This further 
specialization facilitates the performance increase between 
6M and 10M. After T =10M, the responsibilities of roles 
are clear, and, as a result, the win rate gradually converges 
(Fig. 4 top left). For comparison, ROMA without LI and 
LD can not even win once on this challenging task (LTD 

in Fig. 6-left). These results demonstrate that the gradu­
ally specialized roles are indispensable in team performance 
improvement. 

Moreover, we find that the learned dissimilarity model dφ 

introduced in Sec. 3.2 provides an empirical evaluation for 
identifying new roles. We use the map MMM2 as an example, 
where, as we discussed above, the learned roles of agents 
are characterized by their unit types. After scaling to [0, 1], 
the learned dissimilarity between trajectories of agents with 
different unit types is close to 0.96, while the learned dissim­
ilarity between trajectories of agents with the same unit type 
is around 0.08. These results indicate that an appropriate 
threshold can be used to decide when an individual behavior 
(trajectory) can be assigned the terminology role. 

In summary, our experiments demonstrate that ROMA can 
learn dynamic, identifiable, versatile, and specialized roles 
that effectively decompose the task. Drawing support from 
these emergent roles, our method significantly pushes for­
ward the state of the art of multi-agent reinforcement learn­
ing algorithms. 

6. Closing Remarks 
We have introduced the concept of roles into deep multi-
agent reinforcement learning by capturing the emergent 
roles and encouraging them to specialize on a set of au­
tomatically detected sub-tasks. Such deep role-oriented 
multi-agent learning framework provides another perspec­
tive to explain and promote cooperation within agent teams, 
and implicitly draws connection to the division of labor, 
which has been practiced in many natural systems for long. 

To our best knowledge, this paper is making a first attempt 
at learning roles via deep reinforcement learning. The gar­
gantuan task of understanding the emergence of roles, the 
division of labor, and interactions between more complex 
roles in hierarchical organization still lies ahead. We believe 
that these topics are basic and indispensable in building 
effective, flexible, and general-purpose multi-agent systems 

and this paper can help tackle these challenges. 
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