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A. Mathematical Derivation 
A.1. Identifiable Roles 

For learning identifiable roles, we propose to maximize the conditional mutual information objective between roles and 
local observation-action histories given the current observations. In Sec. 3.1 of the paper, we introduce a posterior estimator 
and derive a tractable lower bound of the mutual information term:   
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where the last inequality holds because of the non-negativity of the KL divergence. Then it follows that: 

t
i

  
i

i

i

,τt−1 

,τt−1 

,τt−1 

,t
i,o

tqξ(ρ
t
i|τ

t−1 , oi)i 
t E logt

i
t
iρ p(ρt|o )i i    ,o

tlog qξ(ρ
t
i|τ t−1 , o i)i 

tlog p(ρti|oi) =E − Eρt
i

t
i

t
i

t
iρ ,o,o

(2)   
tlog qξ(ρ

t
i|τ t−1 , o i)i 

tH(ρti|oi)=E + E t
i

t
iρ o,o     

t t p(ρti|τ t−1 , o i) log qξ(ρi
t|τ t−1 , o i)dρ

t 
i i i + Eoti

tH(ρti|oi)
i

=Eτ t−1 t
i,o

The role encoder is conditioned on the local observations, so given the observations, the distributions of roles, p(ρt), are i

independent from the local histories. Thus, we have     
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In practice, we use a replay buffer D and minimize   
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A.2. Specialized Roles 

Conditioning roles on local observations enables roles to be dynamic, and optimizing LI enables roles to be identifiable 
by agents’ long-term behaviors, but these formulations do not explicitly encourage specialized roles. To make up for this 
shortcoming, we propose a role differentiation objective in Sec. 3.2 of the paper, where a mutual information maximization 
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tobjective is involved (maximizing I(ρti; τ
t−1|oj )). Here, we derive a variational lower bound of this mutual information j 

objective to render it feasible to be optimized.   
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We clip the variances of role distributions at a small value (0.1) to ensure that the entropies of role distributions are always 
non-negative so that the last inequality holds. Then, it follows that: 
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where qξ is the trajectory encoder introduced in Sec. A.1, and the KL divergence term can be left out when deriving the 
lower bound because it is non-negative. Therefore, we have: 
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Recall that, in order to learn specialized roles, we propose to minimize:  
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where Dt = (dt ), and dt = dφ(τ 
t−1, τ t−1) is the estimated dissimilarity between trajectories of agent i and j. For the φ ij ij i j
 

t
term min{I(ρti; τ 
t−1|o ) + dφ(τ

t−1, τ t−1), U}, we have: j j i j 

tmin{I(ρti; τ t−1|oj ) + dφ(τ 
t−1, τ t−1), U}j i j  

tp(ρt, τ t−1|o ) (9)i j j
= min{Eτ t−1 ,ot ,ρt log + dφ(τ

t−1, τ t−1) , Eτ t−1 ,ot ,ρt [U ]},i jt tp(ρt|o )p(τ t−1|o )i j j j 

where τ t−1 is the joint trajectory, ot is the joint observation, and ρt = (ρt 1, ρt 2, · · · , ρt ). We denote n

tp(ρti, τ
t−1|oj )j

T1 ≡ log ,
t tp(ρt|o )p(τ t−1|o ) (10)i j j j 

tT2 ≡ log qξ(ρ
t
i|τj

t−1 , o j ). 

Because 
T2 ≥ min{T2, U}, 

(11)
U ≥ min{T2, U}, 

it follows that: 
Eτ t−1 ,ot ,ρt [T2] ≥ Eτ t−1 ,ot ,ρt [min{T2, U}] , 
Eτ t−1 ,ot ,ρt [U ] ≥ Eτ t−1 ,ot ,ρt [min{T2, U}] . 

(12) 

So that 
min{Eτ t−1 ,ot ,ρt [T1] , Eτ t−1 ,ot ,ρt [U ]}

≥ min{Eτ t−1 ,ot ,ρt [T2] , Eτ t−1 ,ot ,ρt [U ]} {Eq. 7} (13) 
≥Eτ t−1 ,ot ,ρt [min{T2, U}] {Eq. 12}, 



  
 
 
  

    
 
  

    

  
 

 
  

  

ROMA: Role-Oriented Multi-Agent Reinforcement Learning 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
T (mil)

0

25

50

75

100

Te
st

 W
in

 %

6z4b

0 1 2 3 4 5
T (mil)

0

10

20

30

40

Te
st

 W
in

 %

6s4z_vs_10b30z

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
T (mil)

0

25

50

75

100

Te
st

 W
in

 %

2s3z
MAVEN QMIX COMA IQL QTRAN ROMA (Ours)

Figure 1. Additional results on the SMAC benchmark. 

which means that Eq. 8 satisfies: 
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We minimize this upper bound to optimize Eq. 8. In practice, we use a replay buffer, and minimize: 
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where D is the replay buffer, τ t−1 is the joint trajectory, ot is the joint observation, and ρt = (ρt 1, ρt 2, · · · , ρt ).n

B. Architecture, Hyperparameters, and Infrastructure 
B.1. ROMA 

In this paper, we base our algorithm on QMIX (Rashid et al., 2018), whose framework is shown in Fig. 5 and described in 
Appendix D. In ROMA, each agent has a neural network to approximate its local utility. The local utility network consists of 
three layers, a fully-connected layer, followed by a 64 bit GRU, and followed by another fully-connected layer that outputs 
an estimated value for each action. The local utilities are fed into a mixing network estimating the global action value. The 
mixing network has a 32-dimensional hidden layer with ReLU activation. Parameters of the mixing network are generated 
by a hyper-net conditioning on the global state. This hyper-net has a fully-connected hidden layer of 32 dimensions. These 
settings are the same as QMIX. 

We use very simple network structures for the components related to role embedding learning, i.e., the role encoder, the role 
decoder, and the trajectory encoder. The multi-variate Gaussian distributions from which the individual roles are drawn 
have their means and variances generated by the role encoder, which is a fully-connected network with a 12-dimensional 
hidden layer with ReLU activation. The parameters in the second fully-connected layers of the local utility approximators 
are generated by the role decoder whose inputs are the individual roles, which are 3-dimensional in all experiments. The 
role decoder is also a fully-connected network with a 12-dimensional hidden layer and ReLU activation. For the trajectory 
encoder, we again use a fully-connected network with a 12-dimensional hidden layer and ReLU activation. The inputs of the 
trajectory encoder are the hidden states of the GRUs in the local utility functions after the last time step. 

For all experiments, we set λI = 10−4 , λD = 10−2, and the discount factor γ = 0.99. The optimization is conducted using 
RMSprop with a learning rate of 5 × 10−4 , α of 0.99, and with no momentum or weight decay. For exploration, we use 
E-greedy with E annealed linearly from 1.0 to 0.05 over 50k time steps and kept constant for the rest of the training. We 
run 8 parallel environments to collect samples. Batches of 32 episodes are sampled from the replay buffer, and the whole 
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(a) Strategy: sacrificing Zealots 9 and 7 to (b) Strategy: forming an offensive concave (c) Strategy: green Zerglings hide away and 
minimize Banelings’ splash damage. arc quickly Banelings kill most enemies by explosion. 

Figure 2. (Reproduced from Fig. 6 in the paper, for quick reference.) Learned roles for 6s4z vs 10b30z, 27m vs 30m, and 6z4b (means 
of the role distributions, µρi , are shown, without using any dimensionality reduction techniques), and the related, automatically discovered 
responsibilities. 

framework is trained end-to-end on fully unrolled episodes. All experiments on StarCraft II use the default reward and 
observation settings of the SMAC benchmark. 

Experiments are carried out on NVIDIA GTX 2080 Ti GPU. 

B.2. Baselines and Ablations 

We compare ROMA with various baselines and ablations, which are listed in Table. 1 of the paper. For COMA (Foerster 
et al., 2018), QMIX (Rashid et al., 2018), and MAVEN (Mahajan et al., 2019), we use the codes provided by the authors 
where the hyper-parameters have been fin-tuned on the SMAC benchmark. QMIX-NPS uses the identical architecture as 
QMIX, and the only difference lies in that QMIX-NPS does not share parameters among agents. Compared to QMIX, for 
the local utility function of agents, QMIX-LAR adds two more fully-connected layers of 80 and 25 dimensions after the 
GRU layer so that it approximately has the same number of parameters as ROMA. 

C. Additional Experimental Results 
We benchmark our method on the StarCraft II unit micromanagement tasks. To test the scalability of the proposed approach, 
we introduce three maps. The 6z4b map features symmetry teams consisting of 4 Banelings and 6 Zerglings. In the 
map of 6s4z vs 10b30z, 6 Stalkers and 4 Zealots learn to defeat 10 Banelings and 30 Zerglings. And 10z5b vs 2z3s 
characterizes asymmetry teams consisting of 10 Zerglings & 5 Banelings and 2 Zealots & 3 Stalkers, respectively. 

C.1. Performance Comparison against Baselines 

Fig. 1 presents performance of ROMA against various baselines on three maps. Performance comparison on the other maps 
is shown in Fig. 4 of the paper. We can see that the advantage of ROMA is more significant on maps with more agents, such 
as 10z5b vs 2z3s, MMM2, 27 vs 30m, and 10m vs 11m. 

C.2. Role Embedding Representations 

Fig. 2 shows various roles learned by ROMA. Roles are closely related to the sub-tasks in the learned winning strategy. 

For the map 27m vs 30m, the winning strategy is to form an offensive concave arc before engaging in the battle. Fig. 2(b) 
illustrates the role embedding representations at the first time step when the agents are going to set up the attack formation. 
We can see the roles aggregate according to the relative positions of the agents. Such role differentiation leads to different 
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Figure 3. The process of role emergence and evolution on the map 10m vs 11m. 

moving strategies so that agents can quickly form the arc without collisions. 

Similar role-behavior relationships can be seen in all tasks. We present another example on the task of 6z4b. In the winning 
strategy learned by ROMA, Zerglings 4 & 5 and Banelings kill most of the enemies, taking advantage of the splash damage 
of the Banelings, while Zerglings 6-9 hideaway, wait until the explosion is over, and then kill the remaining enemies. 
Fig. 2(c) shows the role embedding representations before the explosion. We can see clear clusters closely corresponding to 
the automatically detected sub-tasks at this time step. 

Supported by these results, we can conclude that ROMA can automatically decompose the task and learn versatile roles, 
each of which is specialized in a certain sub-task. 

C.3. Additional Results for Role Evolution 

In Fig. 7 of the paper, we show how roles emerge and evolve on the map 
MMM2, where the involved agents are heterogeneous. In this section, we 
discuss the case of homogeneous agent teams. To this end, we visualize 
the emergence and evolution process of roles on the map 10m vs 11m, 
which features 10 ally Marines facing 11 enemy Marines. In Fig. 3, 
we show the roles at the first time step of the battle (screenshot can 
be found in Fig. 4) at four different stages during the training. At this 
moment, agents need to form an offensive concave arc quickly. We can 
see that ROMA gradually learns to allocate roles according to relative 
positions of agents. Such roles and the corresponding differentiation in 
the individual policies help agents form the offensive arc more efficiently. 
Since setting up an attack formation is critical for winning the game, a 

Figure 4. Screenshot of 10m vs 11m, t=1.connection between the specialization of the roles at the first time step 
and the improvement of the win rate can be observed. 

D. Related Works 
Multi-agent reinforcement learning holds the promise to solve many real-world problems and has been making vigorous 
progress recently. To avoid otherwise exponentially large state-action space, factorizing MDPs for multi-agent systems is 
proposed (Guestrin et al., 2002). Coordination graphs (Bargiacchi et al., 2018; Yang et al., 2018; Grover et al., 2018; Kipf 
et al., 2018) and explicit communication (Sukhbaatar et al., 2016; Hoshen, 2017; Jiang & Lu, 2018; Singh et al., 2019; 
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Figure 5. The framework of QMIX, reproduced from the original paper (Rashid et al., 2018). (a) The architecture of the mixing network 
(blue), whose weights and biases are generated by a hyper-net (red) conditioned on the global state. (b) The overall QMIX structure. (c) 
Local utility network structure. 

Das et al., 2019; Singh et al., 2019; Kim et al., 2019) are studied to model the dependence between the decision-making 
processes of agents. Training decentralized policies is faced with two challenges: the issue of non-stationarity (Tan, 1993) 
and reward assignment (Foerster et al., 2018; Nguyen et al., 2018). To resolve these problems, Sunehag et al. (2018) propose 
a value decomposition method called VDN. VDN learns a global action-value function, which is factored as the sum of each 
agent’s local Q-value. QMIX (Rashid et al., 2018) extends VDN by representing the global value function as a learnable, 
state-condition, and monotonic combination of the local Q-values. In this paper, we use the mixing network of QMIX. The 
framework of QMIX is shown in Fig. 5. 

The StarCraft II unit micromanagement task is considered as one of the most challenging cooperative multi-agent testbeds 
for its high degree of control complexity and environmental stochasticity. Usunier et al. (2017) and Peng et al. (2017) study 
this problem from a centralized perspective. In order to facilitate decentralized control, we test our method on the SMAC 
benchmark (Samvelyan et al., 2019), which is the same as in (Foerster et al., 2017; 2018; Rashid et al., 2018; Mahajan et al., 
2019). 
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