
Upper bounds for Model-Free Row-Sparse Principal Component Analysis

Guanyi Wang 1 Santanu Dey 1

Abstract
Sparse principal component analysis (PCA) is
a widely-used dimensionality reduction tool in
statistics and machine learning. Most meth-
ods mentioned in literature are either heuristics
for good primal feasible solutions under statisti-
cal assumptions or ADMM-type algorithms with
stationary/critical points convergence property
for the regularized reformulation of sparse PCA.
However, none of these methods can efficiently
verify the quality of the solutions via comparing
current objective values with their dual bounds,
especially in model-free case. We propose a new
framework that finds upper (dual) bounds for the
sparse PCA within polynomial time via solving
a convex integer program (IP). We show that,
in the worst-case, the dual bounds provided by
the convex IP is within an affine function of the
global optimal value. Moreover, in contrast to
the semi-definition relaxation, this framework is
much easier to scale for large instances. Numer-
ical results on both artificial and real cases are
reported to demonstrate the advantages of our
method.

1. Introduction
Principal component analysis (PCA) is one of the most
widely-used tool for dimensionality reduction and data vi-
sualization. Given a sample matrix X = (x1, . . . ,xM) ∈
Rd×M where each column denotes a d-dimensional zero-
mean sample, the target is to find the top-r leading eigen-
vectors V := (v1, . . . ,vr) ∈ Rd×r (principal compo-
nents),

argmax
V ⊤V =Ir

Tr
󰀃
V ⊤AV

󰀄
, (PCA)

*Equal contribution 1H. Milton Stewart School of In-
dustrial & Systems Engineering, Georgia Institute of
Technology, Atlanta, USA. Correspondence to: Guanyi
Wang <gwang93@gatech.edu>, Santanu Dey <san-
tanu.dey@isye.gatech.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

where A := 1
MXX⊤ is the sample covariance matrix,

and Ir denotes the r × r identity matrix. However, a sig-
nificant disadvantage with respect to interpretation of prin-
cipal component analysis is that the principal component
usually involves almost all components, especially in the
high-dimensional setting, e.g. clinical analysis, biological
gene analysis, computer version (???). Moreover, the prin-
cipal component analysis is known to generate large gener-
alization error, and therefore makes inaccurate prediction.

To enhance the interpretability, and reduce the generaliza-
tion error, it is natural to consider the problem of sparse
PCA via incorporating a sparsity constraint into the origi-
nal PCA problem. There are many distinct descriptions of
sparse PCA, mainly because the term “sparsity” can be de-
fined in different ways based on the context. In this paper,
we consider the row-sparse PCA problem (see for exam-
ple (?)) defined as follows: Given a sample covariance ma-
trix A ∈ Rd×d, a sparsity parameter k (≤ d), the task is to
find the top-r k-sparsity principal components V ∈ Rd×r,

argmax
V ⊤V =Ir, 󰀂V 󰀂0≤k

Tr
󰀃
V ⊤AV

󰀄
, (SPCA)

where the row-sparsity constraint 󰀂V 󰀂0 ≤ k denotes that
there are at most k non-zero rows in matrix V , i.e., the
principal components share the global support. Let F :=
{V : V ⊤V = Ir, 󰀂V 󰀂0 ≤ k} denote the feasible re-
gion of SPCA and let optF (A) denote the optimal value of
SPCA with sample covariance matrix A.

1.1. “How good are primal feasible solutions?” why
should we ask this question

Finding primal feasible solutions (with ‘relatively’ large
objective value) for sparse PCA is well-studied in the field
of statistics and optimization (see discussion of literature
review below). Given a feasible solution, finding out its
quality is a very important problem. We formalize the no-
tion of good solution.

Definition 1.1 ((1−∆)-approximation primal feasible so-
lution). Let Vpri ∈ Rd×r be a primal feasible solution of
SPCA with sample covariance matrix A and sparse pa-
rameter k. We say Vpri is a (1 − ∆)-approximation pri-
mal feasible solution if there is a ∆ ∈ (0, 1) such that
Tr(V ⊤

priAVpri) ≥ (1−∆)optF (A).

Row-sparse principal component analysis

It is clear that if one can verify that ∆ is close to 0 (without
actually knowing the global optimal solution), the objective
value corresponding to V is close to that of the global opti-
mal. Therefore it is clear that there is value if attempting to
obtaining the value of ∆ in a model-free setting. However,
usually we are working with a sample covariance matrix A
which is only an estimate of a ground truth Σ. Is it still true
that finding the value of ∆ is useful? The next proposition
(will be formally stated and proved in Appendix) shows
this to be true.
Proposition 1.1. Let samples x1, . . . ,xM be i.i.d. gen-
erated from some underlying distribution with zero-mean
and true covariance matrix Σ. Let A := 1

MXX be the
sample covariance matrix defined as before, and Vapp be a
(1 − ∆)-approximation primal feasible solution of SPCA
with respect to A. If the number of samples M is suffi-
ciently large, then:

Tr
󰀃
V ⊤

appΣVapp
󰀄
≥ (1−∆)optF (Σ)− (2−∆)r󰂃 (∗)

holds with high probability, where 󰂃 is a constant that de-
pends on the number of samples M .

Remark: Proposition 1.1 says that to verify the quality of
a given primal feasible solution with respect to the true co-
variance matrix Σ, it is sufficient to arrive at the value of
∆ with respective to the sample covariance matrix A. Thus
is sufficient to attempt to devise methods to find ∆ in the
model-free case, i.e. given a sample covariance matrix A
and a primal solution V , find ∆ as in Definition 1.1 with
out any assumption of underlying model.

A natural idea to estimate ∆ is by comparing optF (A) with
Tr(V ⊤

appAVapp). Since we do not know the optimal solu-
tion, we do not know optF (A). Thus we have to find an
upper bound to optF (A). Note that unlike PCA, there is no
polynomial algorithm that achieves a constant multiplica-
tive approximation ratio (??) (even when r = 1). Thus an
efficient method to estimate the upper bound of SPCA is
required.

Our Contributions: We present a convex relaxation of the
feasible region F of SPCA. We use this convex relaxation
to construct a second order cone integer programming re-
laxation of SPCA that can be solved in polynomial time.
We prove the worst-case guarantees on upper bounds that
can be obtained via solving this second order cone integer
program. We propose a practical framework to solve the
second order cone integer programming in practice. We
also provide a new monotone search algorithm to find good
primal feasible solutions. Numerical results are reported
to illustrate the efficiency of our method (both in terms of
finding good solutions and proving their high quality via
dual bounds).

In rest of paper, we can use primal bound/dual bound to
denote the lower bound/upper bound.

1.2. Literature Review

Existing approaches/results of solving/approximating the
sparse PCA problem can be classified into the following
categories:

In the first category, instead of dealing with the non-convex
sparsity constraint directly, the papers (????????) incor-
porate additional regularizers to the objective function to
enhance the sparsity of the solution. Similar to LASSO for
sparse linear regression problem, these new formulations
can be optimized efficiently via alternating-minimization
type algorithms. However, the optimization problem pre-
sented in (?) is NP-hard to solve, and there is no conver-
gence guarantee for the alternating-minimization method
given in (?). The papers (?), (?), (?), (?), (?), (?) propose
their own formulations for sparse PCA problem, and show
that the alternating-minimization algorithm converges to
stationary (critical) points. However, the solutions obtained
using the above methods cannot guarantee the row-sparsity
constraint 󰀂V 󰀂0 ≤ k. Moreover, none of these methods
are able to provide worst-case guarantees.

The second category of methods work with the sparsity
constraint or its relaxation. The papers (????) directly
incorporate the sparsity constraint (for r = 1 case) and
then relax the resulting optimization problem into some
convex optimization problems via semi-definite program-
ming (SDP). However, SDPs are usually difficult to scale
to large instance in practice. To be more scalable, (??) pro-
pose frameworks to find the dual bounds of sparse PCA
problem using convex integer programming for the r = 1
case. A special case is when we have the low-rank sample
covariance matrix A. (?) proposes an exact algorithm to
find the global optimal solution of SPCA with r = 1 and
the total computation complexity of O(drank(A)+1 log d).
Later the paper (?) gives a combinatorial method for multi-
component sparse PCA problem with disjoint supports.
They show that their algorithm outputs a feasible solution
within (1 − 󰂃)-multiplicative approximation ratio in time
polynomial in data dimension d and reciprocal of 󰂃, but ex-
ponential in the rank of sample covariance matrix A and
parameter r. (?) provides a general method for solving
SPCA exactly with computational complexity polynomial
in d, but exponential in r and rank(A). The paper (?)
clearly states that the results obtained are of theoretical na-
ture for the low rank case, although these methods may not
be practically implementable.

Some specialized iterative methods have been proposed
to find a primal feasible leading sparse eigenvector in
(??????), but the solutions of these methods are obtained
from some deflation step similar to (?), thus these methods
fail to deal with the row-sparsity condition.

Under the assumption of an underlying statistical model,

Row-sparse principal component analysis

the paper (?) presents a family of estimators for SPCA with
oracle property, using semidefinite relaxation of sparse
PCA with decomposable non-convex penalty. The paper
(?) analyzes a covariance thresholding algorithm (first pro-
posed by (?)). They show that this algorithm correctly re-
covers the support with high probability for sparse param-
eter k in order

√
M with M being the number of samples.

This sample complexity, combining with the lower bounds
results in (??), suggest that no polynomial time algorithm
can do significantly better under their statistical assump-
tions. There are also a series of papers (?????) that provide
the minimax rate of estimation for sparse PCA. However,
all these papers require underlying statistical models, thus
do not have worst-case guarantees in the model-free case.

1.3. Organization

The rest of the paper is organized as follows: The main the-
oretical results are presented in Section 2. In Section 2.1,
we construct an SDP and SOCP representable convex re-
laxation of the feasible region. We also prove worst-case
approximation ratio guarantee when optimizing over these
convex feasible regions. In Section 2.2, we construct a
SOCPIP relaxation for SPCA based on the previous sub-
section’s results. We also provide an analysis for the worst-
case guarantees on upper bounds when optimizing over
SOCPIP. Next in sub-Section 2.3, we propose a mono-
tone increasing search algorithm which is able to find a
good primal feasible solution efficiently in practice. In sub-
Section 2.4, we propose a practical framework for model-
free SPCA to solve SOCPIP. Finally in Section 3, we com-
pare the numerical results obtained from the SOCIP-impl
framework against other methods to obtain dual bounds on
two types of instances.

1.4. Notations

Let the bold upper case letters, for example, A,B be ma-
trices, and denote its (i, j)-th component as [A]ij , [B]ij .
Let supp(A) be the support of non-zero rows of matrix A.
Let the bold lower case letters, for example, a, b be vec-
tors, and denote its i-th component as [a]i, [b]i. Let the
regular case letters, for example, I, J be the set of indices.
For an integer k, let [k] := {1, . . . , k}. Given any matrix
A ∈ Rn×m and I ⊆ [n], J ⊆ [m], let [A]I,J (or AI,J in
short) be the sub-matrix of A with rows in I and columns in
J . In order to simplify notation, let [A]I be the sub-matrix
of A when considering all rows in I , and let [A]j be the
jth row of matrix A. Let the regular lower case letters, for
example, α,β be the reals. Let ⊕ be the sign of direct plus,
i.e., A,B, A⊕B := diag(A,B).

2. Main Theoretical Results
We present our main theoretical results in this section.

2.1. Convex Relaxation for Feasible Region

Recall the feasible region of SPCA, denoted as F is:

F :=

󰀝
V ∈ Rd×r :

V ⊤V = Ir (1)
󰀂V 󰀂0 ≤ k (2)

󰀞
,

where the constraint (1) is the so-called Stiefel mani-
fold (?) denoted as St(d, r), and the constraint (2) is
the row-sparsity constraint. For the constraint (1), it
is well-known (?) that the convex hull of the Stiefel
manifold conv (St(d, r)) can be represented explicitly as
conv(St(d, r)) = {V : Ir − V ⊤V ≽ 0r} (SDP format)
or conv(St(d, r)) = {V : 󰀂V 󰀂op ≤ 1} (operator norm
format). For the constraint (2),

Proposition 2.1. If V ∈ F , then 󰀂[V][d],i󰀂1 ≤
√
k holds

for all i ∈ [r].

The above proposition can be viewed as the ℓ1-relaxation
of the sparsity constraint for each column in V . Moreover,
the row-sparsity property can be futher captured by

Proposition 2.2. If V ∈ F , then
󰁓d

j=1 󰀂[V]j,[r]󰀂2 ≤√
rk.

From Proposition 2.1 and 2.2, we obtain the following re-
sult.

Corollary 2.1. [SDP-relaxation] Let F be the feasible re-
gion of SPCA. We have conv(F) is contained in the fol-
lowing convex set

C :=

󰀻
󰁁󰀿

󰁁󰀽
V :

Ir − V ⊤V ≽ 0r,󰁓d
j=1 󰀂vi󰀂1 ≤

√
k, ∀i ∈ [r]󰁓d

j=1 󰀂[V]j,[r]󰀂2 ≤
√
rk, ∀j ∈ [d]

󰀼
󰁁󰁀

󰁁󰀾
.

Since SDP-relaxations are usually difficult to solve, to be
more scalable in practice, instead of using semi-definite
constraint, we replace it with second-order cone con-
straints. In particular, we will replace the constraints defin-
ing the convex hull of the Stiefel manifold by a simple
second-order-cone representable relaxation to obtain the
following result.

Corollary 2.2. [SOCP-relaxation] Let F be the feasible
region of SPCA. We have conv(F) is contained in the fol-
lowing convex set

C′ :=

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽
V :

󰀂[V][d],i󰀂22 ≤ 1, ∀i ∈ [r]
󰀂[V][d],i1 ± [V][d],i2󰀂22 ≤ 2, ∀i1 ∕= i2 ∈ [r]󰁓d

j=1 󰀂[V]j,[r]󰀂2 ≤
√
rk

󰀂[V]j,[r]󰀂2 ∈ [0, 1], ∀j ∈ [d]

󰀼
󰁁󰁁󰁀

󰁁󰁁󰀾
.

Let optF , optC , optC
′

be the optimal values of the follow-

Row-sparse principal component analysis

ing:

optF :=max
V ∈F

Tr
󰀃
V ⊤AV

󰀄
,

optC :=max
V ∈C

Tr
󰀃
V ⊤AV

󰀄
, (Relax)

optC
′
:= max

V ∈C′
Tr

󰀃
V ⊤AV

󰀄
. (SOCP-Relax)

Our first main result is that:

Theorem 1. optF ≤ optC
′ ≤ (1 +

√
r)2optF .

Corollary 2.3. optF ≤ optC ≤ (1 +
√
r)2optF .

Remark: For r = 1 case, Theorem 1 and Corollary 2.3
provide constant multiplicative approximation ratios. Thus
inapproximability results from (??) implies that solving Re-
lax or SOCP-Relax to optimality is NP-hard.

2.2. Upper (Dual) Bounds for SPCA

The challenge of solving SOCP-Relax is that the objective
function is non-convex. Moreover, as the previous remark
suggests, solving SOCP-Relax is NP-hard. Therefore we
construct a further relaxation for SOCP-Relax. Since the
only non-convex part is its objective function, i.e., maxi-
mizing a convex quadratic function, we proceed as follows:

Let A =
󰁓d

j=1 λjaja
⊤
j be the eigenvalue decomposition

of sample covariance matrix A with λ1 ≥ · · · ≥ λd ≥ 0.
The objective function then can be represented as a sum-
mation Tr

󰀃
V ⊤AV

󰀄
=

󰁓d
j=1 λj

󰁓r
i=1(a

⊤
j vi)

2 where vi

denotes the ith column of V such that V = (v1, . . . ,vr).
Set auxiliary variables gji = a⊤

j vi for (j, i) ∈ [r]×[d]. Let
aj ∈ Rd satisfy |[aj]j1 | ≥ . . . ≥ |[aj]jk | ≥ . . . ≥ |[aj]jd |,
and let θj =

󰁴
[aj]2j1 + · · ·+ [aj]2jk be the square root of

sum of top-k largest absolute entries. Since vi is supposed
to be k-sparse, it is easy to observe that gji is within the
interval [−θj , θj].

Piecewise Linear Approximation: To relax the non-
convex part, we can upper approximate each quadratic term
g2ji by a piecewise linear function based on a new auxiliary
variable ξji via special ordered sets type 2 (SOS-II, see Ap-
pendix for details) constraints (PLA) as follows,

PLA :=

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽
(g, ξ, η) :

gji = a⊤
j vi, (j, i) ∈ [d]× [r]

gji =
󰁓N

ℓ=−N γℓ
jiη

ℓ
ji

ξji =
󰁓N

ℓ=−N

󰀃
γℓ
ji

󰀄2
ηℓji󰀃

ηℓji
󰀄N
ℓ=−N

∈ SOS-II

󰀼
󰁁󰁁󰁁󰁀

󰁁󰁁󰁁󰀾

where for each (j, i) ∈ [d] × [r],
󰀃
ηℓji

󰀄N
ℓ=−N

is the corre-
sponding set of SOS-II integer variables (see Appendix),
and

󰀃
γℓ
ji

󰀄N
ℓ=−N

is the corresponding set of splitting points

that satisfy:

γ−N
ji󰁿󰁾󰁽󰂀

=−θj

≤ · · · ≤ γ0
ji󰁿󰁾󰁽󰂀

=0

≤ · · · · ≤ γN
ji󰁿󰁾󰁽󰂀

=θj

which split the region [−θj , θj] into 2N intervals. See Fig-
ure 1 for an example. Thus the objective function can be

Figure 1. The quadratic term g2ji is upper approximated by ξji via
SOS-II constraints for all (j, i) ∈ [d]× [r].

upper bounded by
󰁓d

j=1 λj

󰁓r
i=1 ξji, and we can transfer

this non-convex optimization problem into the following
second order cone convex integer program,

ubC′
:= max

󰁓d
j=1 λj

󰁓r
i=1 ξji

s.t. V ∈ C′, (g, ξ, η) ∈ PLA
(SOCIP)

where C′ is defined in Section 2.1 as a convex set such
that Conv(F) ⊆ C′, and PLA is the set of constraints for
piecewise-linear upper approximation. We say this is a con-
vex integer program since SOS-II constraints contain inte-
ger variables (ηℓij). Therefore we arrive at the following
results:
Proposition 2.3. The optimal value ubC′

of SOCIP is an
upper bound of SPCA.

Proposition 2.4. The optimal value ubC′
of SOCIP can be

upper bounded by ubC′
≤ (1 +

√
r)2optF +

󰁓d
j=1

rλjθ
2
j

4N2 ,
which is an affine function of optF .

2.3. Lower (Primal) Bounds for SPCA

In this section, we will present a new algorithm that pro-
duces good solutions for SPCA. The quality of these solu-
tions will be tested via comparison with the upper bound
obtained by solving SOCIP. Moreover, in the next section,
we show how to use the lower bound to reduce the running
time of SOCIP.

Two-stage Idea: We are motivated by similar ideas for
LASSO in sparse linear regression: Given a sample co-
variance matrix A, let A1/2 be its positive semi-definite

Row-sparse principal component analysis

square root such that A = A1/2A1/2, the SPCA can be
represented in the following fashion:

minV ∈Rd×r

󰀐󰀐A1/2 − V V ⊤A1/2
󰀐󰀐2
F

s.t. V ⊤V = Ir, 󰀂V 󰀂0 ≤ k
(SPCA-lasso)

where 󰀂·󰀂F denotes the Frobenius norm. Let S = supp(V)
be the index set of the support of non-zero rows of principal
components, and let SC = [d]\S be the complement set of
S in [d]. The SPCA-lasso can be reformulated into a two-
stage (inner & outer) optimization problem:

minS⊆[d], |S|≤k min[V]S f(S, [V]S)
s.t. [V]⊤S [V]S = Ir

with f(S, [V]S) := 󰀂[A1/2]S − [V]S [V]⊤S [A
1/2]S󰀂2F +

󰀂[A1/2]SC󰀂2F . Given support S, there is a closed form
solution of the inner optimization by eigenvalue decom-
position of [A]S,S = [A1/2]S [A

1/2]⊤S . Let [A]S,S =
USΛSU

⊤
S with eigenvalues in ΛS ordered decreasingly.

Set

[V]S = [US][k],[r] (update-V)

and note that this achieves the global minimal of the inner
optimization. Thus the main challenge of solving SPCA
(or SPCA-lasso equivalently) is to find a support S within󰀃
d
k

󰀄
possible support set.

Algorithm Intuition: The intuition to find a relatively
good primal solution is via a local search method which
guarantees to reduce the objective value of SPCA-lasso in
each epoch.

Removing Candidate: Start with a support set S0 (see Ap-
pendix for initialization). In t-th epoch, we have the sup-
port set St−1 = {j1, . . . , jk} and corresponding principal
components [V]St−1 from (t−1)-th epoch. For each index
jp ∈ St−1 with p = 1, . . . , k, let the reduced value ∆jp be

󰀂[A1/2]jp󰀂
2
2−

󰀐󰀐󰀐󰀐󰀐󰀐

󰀗
[A1/2]St−1

−[V]St−1
[V]⊤St−1

[A1/2]St−1

󰀘

p

󰀐󰀐󰀐󰀐󰀐󰀐

2

2

,

which denotes how much the jp-th row ‘reduced’. To up-
date the support set St−1, our method 1 determines the in-
dex jout := argminjp∈St−1

∆jp . We let jout to be the can-
didate index to be removed from St−1.

Entering Candidate: Similarly, for each index jq ∈ SC
t−1

with q = 1, . . . , d− k, let the will-reduced value ∆jq be

󰀂[A1/2]jq󰀂
2
2−

󰀐󰀐󰀐󰀐󰀐󰀐

󰀗
[A1/2]

S
jq
t−1

−[V]St−1
[V]⊤St−1

[A1/2]
S
jq
t−1

󰀘

q

󰀐󰀐󰀐󰀐󰀐󰀐

2

2

,

where S
jq
t−1 is defined as S

jq
t−1 := St−1 − {jout} + {jq}.

Pick jin := argmaxjq∈SC
t−1

∆jq such that the jin-th row

with the maximal reduction by entering St−1. Let jin be
the candidate of entering into St−1.

Updating Rule: We update the support set from St−1 to
St as follows

St =

󰀝
St−1 − {jout}+ {jin} if ∆jout < ∆jin ,
St−1 if ∆jout < ∆jin ,

and update VSt by update-V. Here is the pseudocode:

Algorithm 1 Local Search Method
Input: Covariance matrix A, sparsity parameter k, number
of eigenvectors r, number of maximum iterations T .
Output: A feasible solution V for SPCA.

t
while epoch t = 1, . . . , T do

For each j ∈ St−1, set the reduced value ∆j .
Set removing candidate jout := argminj∈St−1

∆j .
For each j′ ∈ SC

t−1, set the will-reduced value ∆j′ .
Set entering candidate jin := argminj′∈St−1

∆j′

if ∆jin > ∆jout then
Set St := St−1 − {jout}+ {jin}.
By eigenvalue decomposition, [A1/2]St [A

1/2]⊤St
=

UStΛStU
⊤
St

.
Set [V]St

= [USt
][k],[r].

else
Break while loop.

end if
end while

In model-free case,

Theorem 2. Algorithm 1 is a monotone decreasing algo-
rithm in the objective value of SPCA-lasso, i.e., monotone
increasing with respect to SPCA.

Theorem 3. Algorithm 1 terminates in at most
󰀃
d
k

󰀄
epochs.

Although this is not the main contribution of our paper,
we demonstrate that when additional statistical assump-
tions/conditions (listed in Appendix) hold, Algorithm 1
combined with a specific initialization method guarantees
the following property:

Theorem 4. The primal feasible solution Valgo obtained
from Algorithm 1 satisfies Tr(V ⊤

algoΣValgo) ≥ optF (Σ) −
2r󰂃 with high probability for any 󰂃 > 0.

2.4. Reducing the Running Time of SOCIP

In practice, we want to reduce the running time of SOCIP.
Here are the techniques that we used to enhance the effi-
ciency in practice.

Threshold: The first technique is to reduce the number
of SOS-II constraints. Let φ be a threshold parameter that

Row-sparse principal component analysis

splits the eigenvalues {λj}dj=1 of sample covariance matrix
A into two parts J+ = {j : λj > φ} and J− = {j :
λj ≤ φ}. The objective function Tr

󰀃
V ⊤AV

󰀄
then can be

represented as

󰁛

j∈J+

(λj − φ)

r󰁛

i=1

g2ji +
󰁛

j∈J−

(λj − φ)

r󰁛

i=1

g2ji + rφ,

in which the first summation is convex, and the second
summation is concave. Since maximizing a concave func-
tion is eqivalent to convex optimization, we replace the sec-
ond part by a new auxiliary variable s, and only construct
a piecewise-linear upper approximation for the quadratic
terms g2ji in the first summation with j ∈ J+ as,

󰁛

j∈J+

(λj − φ)

r󰁛

i=1

g2ji − s+ rφ = Tr
󰀃
V ⊤AV

󰀄

with
󰁛

j∈J−

(φ− λj)󰁿 󰁾󰁽 󰂀
≥0

r󰁛

i=1

g2ji ≤ s (s-var)

a convex constraint. Notice that in practice, the threshold φ
should not be too large. Otherwise, let optF be the optimal
value of SPCA. If φ > optF/r, then taking V = 0d×r as
a trivial feasible solution in C provides a larger objective
function. Let V̂ = (v̂1, . . . , v̂r) be a primal feasible solu-
tion obtained from Algorithm 1. We have Tr(V̂ ⊤AV̂) be
a reasonable lower (primal) bound estimate of optF . Thus
when the threshold φ satisfies φ ≤ Tr(V̂ ⊤AV̂)/r, the
SOCIP would provide a appropriate upper (dual) bound.
Therefore, by setting the threshold parameter φ, we can re-
duce the number of SOS-II constraints from O(d × r) to
O(|J+|× r).

Cutting Planes: Similar to classical integer programming,
we can incorporate additional cutting planes to improve the
efficiency. We propose three families of cutting-planes.
First family of cutting-planes is obtained as follows: By
Bessel inequality, since 󰀂V 󰀂0 ≤ k and v1, . . . ,vr are or-
thogonal, then we obtain that:

r󰁛

i=1

g2ji =

r󰁛

i=1

(a⊤
j vi)

2 = a⊤
j V V ⊤aj ≤ θ2j . (sparse)

Second family of cutting-planes is obtained as follows:
suppose we solve SOCIP to optimality, and let V ∗ =
(v∗

1 , . . . ,v
∗
r) be its optimal solution, then for each v∗

i with
i ∈ [r], we have (v∗

i)
⊤
V V ⊤v∗

i ≤ [v∗
i]

2
j1
+ · · ·+ [v∗

i]
2
jk
.

The third type of cutting plane is based on the property:
for any positive seim-definite matrix, the sum of its diag-
onal entries are equal to the sum of its eigenvalues. Let
[A]j1,j1 , . . . , [A]jk,jk be the largest k diagonal entries of
the sample covariance matrix A, we have

Proposition 2.5. The objective function in SOCIP is upper
bounded by

d󰁛

j=1

λj

r󰁛

i=1

ξji ≤ [A]j1,j1 + · · ·+ [A]jk,jk +

d󰁛

j=1

rλjθ
2
j

4N2

when the splitting points {γℓ
ji}Nℓ=−N in SOS-II are set to be

γℓ
ji =

ℓ
N · θj . Moreover, we have:

󰁓
j∈J+(λj − φ)

󰁓r
i=1 ξji − s+ rφ

≤ [A]j1,j1 + · · ·+ [A]jk,jk +
󰁓

j∈J+

r(λj−φ)θ2
j

4N2

(cut)

as a cutting plane for the objective function with the thresh-
old function.

Symmetry-breaking Constraints: Note that for any feasi-
ble solution V ∈ Rd×r of SPCA, permuting the columns of
V still guarantees a feasible optimal solution with same ob-
jective value. We can use this symmetric property to tighten
the feasible region and improve the efficiency. We sort the
columns of V by their corresponding k-sparse eigenvalues
in decreasing order such that v⊤

i Avi ≥ v⊤
i+1Avi+1 holds

for i = 1, . . . , r − 1. However, such constraints are still
non-convex, to transfer into convex constraints, we relax
the left-hand-side by variables ξji for i = 1, . . . , r − 1,

󰁓d
j=1 λjξji ≥ v⊤

i+1Avi+1. (sym-1)

Similarly, for any column v of a feasible solution V , note
that flipping the sign of v does not influence its feasibility
or its objective value and hence we have for i = 1, . . . , r,

󰁓d
j=1[vi]j ≥ 0, (sym-2)

to tighten the feasible region.

Implemented Version of SOCIP: Given φ a threshold pa-
rameter, and the size of |J+|, set the revised piecewise lin-
ear upper approximation (PLA’) constraints as,
󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽
(g, ξ, η) :

gji = a⊤
j vi, (j, i) ∈ [d]× [r]

gji =
󰁓N

ℓ=−N γℓ
jiη

ℓ
ji, (j, i) ∈ J+ × [r]

ξji =
󰁓N

ℓ=−N

󰀃
γℓ
ji

󰀄2
ηℓji󰀃

ηℓji
󰀄N
ℓ=−N

∈ SOS-II

󰀼
󰁁󰁁󰁁󰁀

󰁁󰁁󰁁󰀾
󰁿 󰁾󰁽 󰂀

=:PLA′

Thus the implemented version of SOCIP is

max
󰁓

j∈J+(λj − φ)
󰁓r

i=1 ξji − s+ rφ

s.t V ∈ C′, (g, ξ, η) ∈ PLA′

(s-var), (sparse), (cut), (sym-1), (sym-2)
(SOCIP-impl)

Theorem 5. Given the number of splitting point N , the
threshold parameter φ, and the size of |J+|, the SOCIP-
impl can be solved to optimality within polynomial time.

Row-sparse principal component analysis

3. Main Numerical Results
Baselines: In this section, we compare the upper
bounds obtained from SOCIP-impl against two baselines
(Baseline-1, Baseline-2) as defined below.

Baseline-1 := [A]j1,j1 + · · ·+ [A]jk,jk ,
where [A]j1,j1 ≥ [A]j2,j3 ≥ · · · [A]jd,jd

Baseline-2 := maxP Tr (AP) ,
s.t. Id ≽ P ≽ 0,

Tr(P) = r, 1⊤|P |1 ≤ rk.

Regarding Baseline-1, since the sum of
[A]j1,j1 , . . . , [A]jk,jk is equal to sum of eigenvalues
of sub-matrix indexed by {j1, . . . , jk} in A, then Baseline-
1 can be viewed as an upper bound for the optimal value of
SPCA. Moreover, Baseline-1 is tight when we have r = k.

Baseline-2 is a SDP relaxation of SPCA by lifting the vari-
ables V into its product space P = V V ⊤.

The numerical results are implemented on two types of in-
stances.

Artificial Instance: The first type of instances are gener-
ated artificially from the similar idea of spiked covariance
matrix: Let d be the size of the covariance matrix with
d ≥ 2 × k. Set k = 5 and support set S = {1, 2, 3, 4, 5}
with |S| = k. Let u1,u2 be two unit orthogonal vectors
with support on S, e.g.,

u⊤
1 =

󰀕
1√
5
,
1√
5
, . . . ,

1√
5󰁿 󰁾󰁽 󰂀

top 5 entries

󰀖
, u⊤

2 =

󰀕
1

2
,
−1

2
,
1

2
,
−1

2󰁿 󰁾󰁽 󰂀
top 4 entries

󰀖
.

Set the true covariance matrix Σ ∈ Rd×d be a block
spiked covariance matrix (define in appendix) as Σ =
Σ1 ⊕ Σ2 ⊕ Id−10 with Σ1 = 55u1u

⊤
1 + 52u2u

⊤
2 ∈

R5×5, Σ2 = 50 · I5. Generate M i.i.d. random samples
x1, . . . ,xM ∼ N(0d,Σ), and set the sample covariance
matrix A = 1

M

󰀃
x1x

⊤
1 + · · ·+ xMx⊤

M

󰀄
. Notice that:

when k = 5, for covariance matrix Σ, the optimal sup-
port set for r = 2, i.e., S = {1, 2, 3, 4, 5} is distinct from
the support set for r = 5, i.e., S = {6, 7, 8, 9, 10}.

Real Instance: The second type of instances are real in-
stances. The first two biological data sets (Eisen-1, Eisen-
2) [d ≤ 300] are collected from ?. The Colon cancer data
set [d = 500] is from ?. The Lymphoma data set [d = 500]
is from ?. The final instance two real instances is collected
from Reddit [d = 1000, 2000].

Software & Hardware: All numerical experiments are
implemented on MacBookPro13 with 2GHz Intel Core i5
CPU and 8GB 1867MHz LPDDR3 Memory. The SOCIP-
impl model was solved using Gurobi 7.0.2.

We measure the performances of SOCIP-impl and Base-
lines based on the primal-dual gap, defined as Gap :=

Figure 2. Comparison between SOCIP-impl and Baseline on arti-
ficial instance blocked spiked covariance matrix (of size d = 500)
r = 2, 3 for distinct k.

Figure 3. Comparison between SOCIP-impl and Baseline on
Eisen-1 (of size d = 79) with r = 2, 3 for distinct k.

Figure 4. Comparison between SOCIP-impl and Baseline on
Eisen-2 (of size d = 118) with r = 2, 3 for distinct k.

ub−lb
lb , where ub denotes the upper bounds (dual bound) ob-

tained from SOCIP-impl or Baselines, and lb denotes the
lower bound (primal bound) computed from a feasible so-
lution.

Recall that the Gap we obtained is an upper approximation
of ∆ mention in Proposition 1.1. All numerical results are
reported in Figure 2, 3, 4, 5, 6, 7, 8. Based on the numerical
results, we draw the following:

Methods in Artificial Instances: The artificial instances
are generated using similar ideas as spiked covariance ma-

Row-sparse principal component analysis

Figure 5. Comparison between SOCIP-impl and Baseline on
colon cancer data set (of size d = 500) with r = 1, 2 for dis-
tinct k.

Figure 6. Comparison between SOCIP-impl and Baseline on
Lymphoma data set (of size d = 500) with r = 1, 2 for distinct
sparse parameter k.

Figure 7. Comparison between SOCIP-impl and Baseline on Red-
dit data set (of size d = 1000) with r = 1, 2, 3 for distinct k.

trix. In this instance, we can observe that our SOCIP-impl
performs much better than the Baseline-1. For Baseline-
2, because the lifting step of SDP relaxation generates too
many variables, based on the limitation of hardware, this
method fails to obtain any solution or bounds.

Methods in Real Instances: For Eisen-1 & Eisen-2, the
performances of SOCIP-impl is significantly better than
Baseline-1 and Baseline-2. For colon & Lymphoma with
d = 500, Baseline-2 is out of memory; SOCIP-impl

Figure 8. Comparison between SOCIP-impl and Baseline on Red-
dit data set (of size d = 2000) with r = 1, 2 for distinct k.

and Baseline-1 perform almost similarly when k is rela-
tive small, but as k increases, the results from SOCIP-
impl become better than Baseline-1 which demonstrates
the scalable property of our method. For Reddit data with
d = 1000, 2000, similar to the colon & Lymphoma in-
stance, SOCIP-impl performs better as k increases.

4. Conclusion
In this paper, we proposed a monotonically improving
heuristic for SPCA problem. We showed that the solu-
tion produced by this algorithm are of very high quality by
comparing the objective value of the solutions generated
to upper bounds. These upper bounds where obtained us-
ing second order cone IP relaxation designed in this paper.
We also presented theoretical guarantees (affine guarantee)
on the quality of the upper bounds produced by the sec-
ond order cone IP, and its stronger version – semi-definition
convex IP. Overall, we have presented a complete solution
procedure of generating good solutions and proving quality
of these solutions for SPCA. To the best of our knowledge,
there is no comparable theoretical or computational results
for solving model-free SPCA.

Acknowledgement
We would like to thank the meta-reviewer and three anony-
mous reviewers for their constructive comments that helped
improve the presentation of this paper.

