
Appendix: Upper bounds for Model-Free
Row-Sparse Principal Component Analysis

Guanyi Wang 1 Santanu Dey 1

1. Problem Setting
The row-sparse principal component analysis problem is defined as follows: Given a sample covariance matrix A ∈ Rd×d,
a sparsity parameter k (≤ d), the task is to find the top-r k-sparsity principal components V = (v1, . . . ,vr) ∈ Rd×r,

argmax
V ⊤V =Ir, 󰀂V 󰀂0≤k

Tr
󰀃
V ⊤AV

󰀄
. (SPCA)

where the row-sparsity constraint 󰀂V 󰀂0 ≤ k denotes that there are at most k non-zero rows in matrix V , i.e., the principal
components share the global support of cardinality at most k.

1.1. Notations

Let the bold upper case letters, for example, A,B be matrices, and denote its (i, j)-th component as [A]ij , [B]ij . Let
supp(A) be the support of non-zero rows of matrix A. Let the bold lower case letters, for example, a, b be vectors, and
denote its i-th component as [a]i, [b]i. Let the regular case letters, for example, I, J be the set of indices. For an integer k,
let [k] := {1, . . . , k}. Given any matrix A ∈ Rn×m and I ⊆ [n], J ⊆ [m], let [A]I,J (or AI,J in short) be the sub-matrix
of A with rows in I and columns in J . In order to simplify notation, let [A]I be the sub-matrix of A when considering
all rows in I , and let [A]j be the jth row of matrix A. Let the regular lower case letters, for example, α,β be the reals.
Let ⊕ be the sign of direct plus, i.e., given two square matrices A ∈ Rn1×n1 ,B ∈ Rn2×n2 , A ⊕ B := diag(A,B) ∈
R(n1+n2)×(n1+n2).

2. Proof of Dual (Upper) Bounds
Let F be the feasible region of SPCA as

F :=

󰀝
V ∈ Rd×r :

V ⊤V = Ir (1)
󰀂V 󰀂0 ≤ k (2)

󰀞
,

where the constraint (1) is the so-called Stiefel manifold (denoted as St(d, r)) and the constraint (2) is the row-sparsity
constraint. For the constraint (1), recall that the convex-hull of Stiefel manifold can be explicitly represented (?) as,

Conv(St(d, r)) :=
󰀝

V :

󰀕
Id −V

−V ⊤ Ir

󰀖
≽ 0d+r

󰀞
⇔ {V : Ir − V ⊤V ≽ 0r} ⇔ {V : 󰀂V 󰀂op ≤ 1}.

For the constraint (2),

Proposition 2.1. If V ∈ F , then 󰀂[V][d],i󰀂1 ≤
√
k holds for all i ∈ [r].

Proof. Since the operator norm of V is upper bounded by 1, we have that the ℓ2-norm of each column of V is at most 1.
Moreover, each column is k-sparse, then we have 󰀂[V][d],i󰀂1 ≤

√
k holds for all i ∈ [r].

*Equal contribution 1H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, USA.
Correspondence to: Guanyi Wang <gwang93@gatech.edu>, Santanu Dey <santanu.dey@isye.gatech.edu>.

Proceedings of the 37 th International Conference on Machine Learning, Online, PMLR 119, 2020. Copyright 2020 by the author(s).

row-sparse principal component analysis

The above proposition can be viewed as the ℓ1-relaxation of the sparsity constraint for each column in V . Moreover, the
row-sparsity property can be futher captured by

Proposition 2.2. If V ∈ F , then
󰁓d

j=1 󰀂[V]j,[r]󰀂2 ≤
√
rk.

Proof. For any V ∈ F , based on the row-sparsity condition 󰀂V 󰀂0 ≤ k, there are at most k non-zero values of 󰀂[V]j,[r]󰀂2
among j ∈ [d]. Since 󰀂V 󰀂op ≤ 1 with rank r, then

r ≥ 󰀂V 󰀂2F =

d󰁛

j=1

󰀂[V]j,[r]󰀂22,

which implies that
󰁓d

j=1 󰀂[V]j,[r]󰀂2 ≤
√
rk.

From Proposition 2.1 and 2.2, we obtain the following result.

Corollary 2.1. [SDP-relaxation] Let F be the feasible region of SPCA. We have conv(F) is contained in the following
convex set

C :=

󰀻
󰁁󰀿

󰁁󰀽
V :

Ir − V ⊤V ≽ 0r,󰁓d
j=1 󰀂vi󰀂1 ≤

√
k, ∀i ∈ [r]󰁓d

j=1 󰀂[V]j,[r]󰀂2 ≤
√
rk, ∀j ∈ [d]

󰀼
󰁁󰁀

󰁁󰀾
.

Since SDP-relaxations are usually difficult to solve, to be more scalable in practice, instead of using semi-definite con-
straint, we replace it with second-order cone constraints. In particular, we will replace the constraints defining the convex
hull of the Stiefel manifold by a simple second-order-cone representable relaxation to obtain the following result.

Corollary 2.2. [SOCP-relaxation] Let F be the feasible region of SPCA. We have conv(F) is contained in the following
convex set

C′ :=

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽
V :

󰀂[V][d],i󰀂22 ≤ 1, ∀i ∈ [r]
󰀂[V][d],i1 ± [V][d],i2󰀂22 ≤ 2, ∀i1 ∕= i2 ∈ [r]󰁓d

j=1 󰀂[V]j,[r]󰀂2 ≤
√
rk

󰀂[V]j,[r]󰀂2 ∈ [0, 1], ∀j ∈ [d]

󰀼
󰁁󰁁󰁀

󰁁󰁁󰀾
.

2.1. Proof of Theorem 1

Let optF , optC , optC
′

be the optimal values of the following:

optF :=max
V ∈F

Tr
󰀃
V ⊤AV

󰀄
,

optC :=max
V ∈C

Tr
󰀃
V ⊤AV

󰀄
, (Relax)

optC
′
:= max

V ∈C′
Tr

󰀃
V ⊤AV

󰀄
. (SOCP-Relax)

Our first main result is that:

Theorem 1. optF ≤ optC
′ ≤ (1 +

√
r)2optF .

Proof. Consider any V ∈ C′, sort the row of V by its ℓ2-norm in decreasing order {j1, j2, . . . , jd}, i.e.,

󰀂[V]j1,[r]󰀂2 ≥ . . . ≥ 󰀂[V]jd,[r]󰀂2.

Decompose the matrix V based on its top-k largest rows, second top-k largest rows, and so on, i.e., let m = ⌈d/k⌉,
V = V 1 + · · ·V m with

supp(V 1) = {j1, . . . , jk} =: J1, . . . , V m = {jd−(m−1)k, . . . , jd} =: Jm.

row-sparse principal component analysis

For each p = 1, . . . ,m, we have 󰀂V p/󰀂V p󰀂op󰀂0 ≤ k, 󰀂V p/󰀂V p󰀂op󰀂op = 1, thus V p/󰀂V p󰀂op ∈ conv(F). Since
Tr(V ⊤AV) is convex, then maxV ∈F Tr(V ⊤AV) = maxV ∈conv(F) Tr(V ⊤AV). To verify the approximation ratio,

V = V 1 + · · ·V m = 󰀂V 1󰀂op
V 1

󰀂V 1󰀂op
+ · · ·+ 󰀂V m󰀂op

V m

󰀂V m󰀂op

⇔ V󰁓m
p=1 󰀂V p󰀂op

=
󰀂V 1󰀂op󰁓m
p=1 󰀂V p󰀂op

V 1

󰀂V 1󰀂op
+ · · ·+ 󰀂V m󰀂op󰁓m

p=1 󰀂V p󰀂op

V m

󰀂V m󰀂op
∈ conv(F).

Notice that

󰀂V p󰀂op ≤ max

󰀻
󰀿

󰀽1,

󰁶󰁛

j∈Jp

󰀂[V]j,[r]󰀂22

󰀼
󰁀

󰀾 ,

then based on the decomposition of ℓ2 norms of rows,

m󰁛

p=1

󰀂V p󰀂op = 󰀂V 1󰀂op +

m󰁛

p=2

󰀂V p󰀂op

≤ 1 +

m󰁛

p=2

󰁶󰀕󰁓
j∈Jp−1 󰀂[V]j,[r]󰀂2

k

󰀖2

· k

≤ 1 +
1√
k
·

m󰁛

p=2

󰁛

j∈Jp−1

󰀂[V]j,[r]󰀂2

≤ 1 +
1√
k

d󰁛

j=1

󰀂[V]j,[r]󰀂2

≤ 1 +
√
r

where the final inequality holds since the constraint
󰁓d

j=1 󰀂[V]j,[r]󰀂2 ≤
√
rk in C′. Therefore, we have

V ∈
󰀣

m󰁛

p=1

󰀂V p󰀂op

󰀤
· conv(F) ⊆ (1 +

√
r) · conv(F),

i.e., C′ ⊆ (1 +
√
r) · conv(F). Hence optF ≤ optC

′ ≤ (1 +
√
r)2optF holds.

A corollary can be derived from the Theorem 1 based on the containment C ⊆ C′ as follows:

Corollary 2.3. optF ≤ optC ≤ (1 +
√
r)2optF .

Remark: For r = 1 case, Theorem 1 and Corollary 2.3 provide constant multiplicative approximation ratios. Thus
inapproximability results from (??) implies that solving Relax or SOCP-Relax to optimality is NP-hard.

2.2. Proof of Proposition 2.3 & 2.4

To overcome the non-convex part of Relax or SOCP-Relax, the objective function of Relax or SOCP-Relax is further
relaxed via piecewise-linear functions using special-ordered sets type-2 constraints. Recall that the piecewise-linear ap-
proximation (PLA) set is defined as

PLA :=

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽
(g, ξ, η) :

gji = a⊤
j vi, (j, i) ∈ [d]× [r]

gji =
󰁓N

ℓ=−N γℓ
jiη

ℓ
ji

ξji =
󰁓N

ℓ=−N

󰀃
γℓ
ji

󰀄2
ηℓji󰀃

ηℓji
󰀄N
ℓ=−N

∈ SOS-II

󰀼
󰁁󰁁󰁁󰁀

󰁁󰁁󰁁󰀾

row-sparse principal component analysis

in which SOS-II denotes the set of special-ordered sets type-2 constraints as follows:

SOS-II :=

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

󰀃
ηℓji

󰀄N
ℓ=−N

:

󰁓N
ℓ=−N ηℓji = 1󰁓N−1
ℓ=−N yℓ = 1

ηℓji + ηℓ+1
ji ≤ yℓ ℓ = −N, . . . , N − 1

ηℓji ≥ 0 ℓ = −N, . . . , N
yℓ ∈ {0, 1} ℓ = −N, . . . , N − 1

󰀼
󰁁󰁁󰁁󰁁󰁁󰁀

󰁁󰁁󰁁󰁁󰁁󰀾

since SOS-II contains the integer variables, we name the convex relaxation of Relax or SOCP-Relax be semi-definite convex
integer program (SDCIP)

ubC := max
󰁓d

j=1 λj

󰁓r
i=1 ξji

s.t. V ∈ C
(g, ξ, η) ∈ PLA

(SDCIP)

or second-order-cone convex integer program (SOCIP)

ubC
′
:= max

󰁓d
j=1 λj

󰁓r
i=1 ξji

s.t. V ∈ C′

(g, ξ, η) ∈ PLA
(SOCIP)

Thus we have the Proposition 2.3 and Proposition 2.4,

Proposition 2.3. The optimal value ubC′
of SOCIP is an upper bound of SPCA.

Proof. Based on Theorem 2.3, we have the optimal value optF of SPCA

optF := max
V ⊤V =Ir,󰀂V 󰀂0≤k

Tr
󰀃
V ⊤AV

󰀄

is upper bounded by the optimal value optC
′

of Relax

optC := max
V ∈C′

Tr
󰀃
V ⊤AV

󰀄
.

To show that ubC
′

is an upper bound, it is sufficient to show that ubC
′
≥ optC

′
. Consider the auxiliary variable ξji for all

(j, i) ∈ [d] × [r] with gji = a⊤
j vi. Based on the property of SOS-II constraint, for a fixed (j, i), there are at most two

non-zero continuous variables in ηℓji, say ηℓ
∗

ji , η
ℓ∗+1
ji , such that ηℓ

∗

ji + ηℓ
∗+1

ji = 1. Combining with the constraints in set
PLA, we have

gji = γℓ∗

ji η
ℓ∗

ji + γℓ∗+1
ji ηℓ

∗+1
ji , ξji =

󰀓
γℓ∗

ji

󰀔2

ηℓ
∗

ji +
󰀓
γℓ∗+1
ji

󰀔2

ηℓ
∗+1

ji ,

and hence,

ξji − g2ji =
󰀓
γℓ∗+1
ji − γℓ∗

ji

󰀔2

ηℓ
∗

ji η
ℓ∗+1
ji ≥ 0.

That is to say, the objective function
󰁓d

j=1 λj

󰁓r
i=1 ξji in SOCIP is greater than or equal to the function

󰁓d
j=1 λj

󰁓r
i=1 g

2
ji, where

󰁓d
j=1 λj

󰁓r
i=1 g

2
ji is equivalent to the objective function Tr

󰀃
V ⊤AV

󰀄
in Relax by the defi-

nition of gji. Therefore, ubC
′
≥ optC

′
holds.

Proposition 2.4. The optimal value ubC
′

of SOCIP can be upper bounded by (1 +
√
r)2optF +

󰁓d
j=1

rλjθ
2
j

4N2 , which is an
affine function of optF .

Proof. For SOCIP, the objective function Tr
󰀃
V ⊤AV

󰀄
equals to

󰁓d
j=1 λj

󰁓r
i=1(a

⊤
j vi)

2 =
󰁓d

j=1 λj

󰁓r
i=1 g

2
ji. By

Theorem 1, we have
󰁓d

j=1 λj

󰁓r
i=1 g

2
ji ≤ 4roptF . Since gji ∈ [−θj , θj], without any prior information, we split the

row-sparse principal component analysis

interval [−θj , θj] evenly via splitting points (γℓ
ji)

N
ℓ=−N such that γℓ

ji =
ℓ
N · θj . Based on the proof of Proposition 2.1, we

have

ξji − g2ji =
󰀓
γℓ∗+1
ji − γℓ∗

ji

󰀔2

ηℓ
∗

ji η
ℓ∗+1
ji =

θ2j
N2

ηℓ
∗

ji η
ℓ∗+1
ji ≤

θ2j
4N2

.

Therefore, the objective function in SOCIP
󰁓d

j=1 λj

󰁓r
i=1 ξji ≤

󰁓d
j=1 λj

󰁓r
i=1 g

2
ji +

󰁓d
j=1

rλjθ
2
j

4N2 ≤ (1 +
√
r)2optF +

󰁓d
j=1

rλjθ
2
j

4N2 .

3. Proof of Primal (Lower) Bounds
Recall that Given a sample covariance matrix A, let A1/2 be its positive semi-definite square root such that A =
A1/2A1/2, the SPCA can be represented in the following fashion:

minV ∈Rd×r

󰀐󰀐A1/2 − V V ⊤A1/2
󰀐󰀐2
F

s.t. V ⊤V = Ir
󰀂V 󰀂0 ≤ k

(SPCA-lasso)

where 󰀂 · 󰀂F denotes the Frobenius norm. Furthermore, SPCA-lasso can be reformulated into the following two-stage
(inner & outer) optimization problem:

min
S⊆[d], |S|≤k
󰁿 󰁾󰁽 󰂀

outer optimization

min
[V]⊤S [V]S=Ir󰁿 󰁾󰁽 󰂀
inner optimization

󰀂[A1/2]S − [V]S [V]⊤S [A
1/2]S󰀂2F + 󰀂[A1/2]SC󰀂2F

Given support S, there is a closed form solution of the inner optimization by eigenvalue decomposition. Thus the main
challenging of solving SPCA-lasso is to find a support set S within

󰀃
d
k

󰀄
possible support set, which is known to be NP-hard.

The local search algorithm 1 is therefore proposed to find a relative good primal solution (via updating the support set S in
each epoch).

Algorithm 1 Local Search Method
Input: Covariance matrix A, sparsity parameter k, number of eigenvectors r, number of maximum iterations T .
Output: A feasible solution V for SPCA.

Initialize with S0 ⊆ [d] with |S0| = k.
while epoch t = 1, . . . , T do

For each j ∈ St−1, set the reduced value ∆j , set removing candidate jout := argminj∈St−1
∆j .

For each j′ ∈ SC
t−1, set the will-reduced value ∆j′ , set adding candidate jin := argminj′∈St−1

∆j′

if ∆jin > ∆jout then
Set St := St−1 − {jout}+ {jin}.
By eigenvalue decomposition, [A1/2]St [A

1/2]⊤St
= UStΛStU

⊤
St

, set [V]St = [USt][k],[r].
else

Break while loop.
end if

end while
Return V .

Remark 3.1. Note that, for general instance (i.e., model-free case), we initialize the support set S0 by picking S0 ⊆ [d]
uniformly at random, and repeat the Algorithm 1 for serval times for best solution. But in Section 3.2, we show that under
some statistical assumptions, a specific initialization method will find the support set with respect to the optimal solution
with high probability.

3.1. Primal Method in Model-free Case

Here we arrive the following results: In model-free case,

row-sparse principal component analysis

Theorem 2. Algorithm 1 is a monotone decreasing algorithm in the objective value of SPCA.

Proof. Based on the updating rule in Algorithm 1, when ∆jin > ∆jout and set St = St−1 − {jout} + {jin}, the objective
value of SPCA-lasso satisfies

󰀐󰀐󰀐A1/2 − V V ⊤A1/2
󰀐󰀐󰀐
2

F
=

󰀐󰀐󰀐[A1/2]St−1 − [V]St−1 [V]⊤St−1
[A1/2]St−1

󰀐󰀐󰀐
2

F
+
󰀐󰀐󰀐[A1/2]SC

t−1

󰀐󰀐󰀐
2

F

>
󰀐󰀐󰀐[A1/2]St − [V]St−1 [V]⊤St−1

[A1/2]St

󰀐󰀐󰀐
2

F
+
󰀐󰀐󰀐[A1/2]SC

t

󰀐󰀐󰀐
2

F

≥
󰀐󰀐󰀐[A1/2]St − [V]St [V]⊤St

[A1/2]St

󰀐󰀐󰀐
2

F
+
󰀐󰀐󰀐[A1/2]SC

t

󰀐󰀐󰀐
2

F
.

Thus Algorithm 1 is a monotone decreasing algorithm.

Theorem 3. Algorithm 1 terminates in at most
󰀃
d
k

󰀄
epochs.

Proof. We claim that if a subset S ⊆ [d] exists in tth epoch, then such set S will not exist in future epochs. Otherwise,
suppose St1 = St2 and t1 < t2, then based on the monotonicity of Algorithm 1, we have

󰀐󰀐󰀐[A1/2]St1
− [V]St1

[V]⊤St1
[A1/2]St1

󰀐󰀐󰀐
2

F
+
󰀐󰀐󰀐[A1/2]SC

t1

󰀐󰀐󰀐
2

F

>
󰀐󰀐󰀐[A1/2]St2

− [V]St2
[V]⊤St2

[A1/2]St2

󰀐󰀐󰀐
2

F
+
󰀐󰀐󰀐[A1/2]SC

t2

󰀐󰀐󰀐
2

F

which contradicts to St1 = St2 , and the claim holds. Since there are at most
󰀃
d
k

󰀄
possible subsets, then the Algorithm 1

terminates in finite epochs.

3.2. Primal Method with Statistical Model

Although this is not the main contribution of our paper, to complete the framework, we demonstrate that the primal feasible
solution obtained from our primal heuristic ensures some statistical properties when the following assumptions hold.

Assumption 1. Assume that {xm}Mm=1 ∈ Rd is a sequence of i.i.d. random samples generated from Gaussian distribution
with zero mean and true covariance matrix Σ.

To demonstrate the main difference between usual sparse PCA and row-sparse PCA defined in SPCA, consider the fol-
lowing block spiked covariance matrix model (described in Assumption 2) and support-inconsistency condition (Assump-
tion 3).

Assumption 2. Let Θ be the collection of all true covariance matrix Σ with block diagonal structure Σ = Σ1⊕Σ2⊕0rest
such that:

• Σ1 ∈ Rk×k is a rank r∗(< k) matrix with top-r∗ largest eigen-pairs (λ1,v1), . . . , (λr∗ ,vr∗), Σ2 ∈ Rk×k is a full-
rank matrix with the next top-k largest eigen-pairs (λr∗+1,vr∗+1), . . . , (λr∗+k,vr∗+k), in which λ1 > · · · > λr∗ >
λr∗+1 > · · · > λr∗+k > 0.

• The diagonal entries of Σ satisfy maxj∈[k][Σ1]j,j < minj∈[k][Σ2]j,j , i.e., the top-k diagonal entries are all in sub-
matrix Σ2.

Let Σ be a true covariance matrix in set Θ.

Assumption 3. Assume that Σ satisfies: the sum of eigenvalues in first block Σ1 is upper bounded by
󰁓2r∗+1

j=r∗+1 λj , i.e.,

r∗󰁛

j=1

λj <

2r∗+1󰁛

j=r∗+1

λj .

Remark 3.2. Based on Assumption 2 and 3, easy to observe that:

row-sparse principal component analysis

• given k and r ≤ r∗, the global optimal solution of SPCA with truth covariance matrix Σ has support set {1, . . . , k},

• in contrast, given k and r > r∗, the global optimal solution of SPCA with truth covariance matrix Σ has support set
{k + 1, . . . , 2k}.

Thus a significant shortage of existing support recovery methods is that these methods fail to recover the optimal support
set of SPCA.

To overcome this shortage, we proposed an initialization method that recovers the optimal support set with two procedures:

• Recover the union of support sets: Based on the existing results in ??, the Covariance Thresholding algorithm
(Algorithm 1 in ?) with input sample covariance matrix A = 1

M

󰁓M
m=1 xmx⊤

m, sparse parameter 2k, thresholding
parameter τ, ρ (defined in Theorem 1, Theorem 3 of ?) is able to recover the union of support sets

S :=

r∗+k󰁞

i=1

supp(vi)

using the soft-thresholding matrix Â (mentioned in Algorithm 1 in ?) with high probability, if the following Assump-
tion 4 is satisfied.

Assumption 4. Let v1, . . . ,vd be the set of eigenvectors of Σ corresponding to eigenvalues λ1, . . . ,λd respectively
as we defined in Assumption 2. Let S1, . . . , Sd be the set of supports of v1, . . . ,vd. There exists constants c1, c2 > 0
such that the following holds. The non-zero components satisfy |[vj]i| ≥ c1/

√
k for all i ∈ Sj and j = 1, . . . , r∗+k.

Furthermore, for any j, j′, |[vj]i/[vj′]i| ≤ c2 for all i ∈ Sj ∩ Sj′ . Here we assume that c2 ≥ 1.

In the block spiked covariance matrix assumption, the union of support sets is the set with respect to the blocks
Σ1,Σ2.

• Search for optimal support for SPCA: In the second procedure, we search for the global optimal support set of
SPCA problem based the structure of blocked spiked covariance matrix.

Here is the pseudocode of Initialization method 2.

Algorithm 2 Initialization - Statistical Model
Input: Sample covariance matrix A, sparsity parameter k, number of eigenvectors r.
Output: An initial support set S0.

Do Covariance Thresholding Algorithm with input (A, 2k, τ, ρ) described in ?, let S be the union of support sets, and
Â be the soft-thresholding matrix of A.
Set Ā = [Â]S,S . Without loss of generality, let {k+1, . . . , 2k} be the set of indices corresponding to the top-k diagonal
entries in Ā, and let {1, . . . , k} be the rest.
Return support set S0 = {1, . . . , k} if r ≤ r∗, and S0 = {k + 1, . . . , 2k} if r > r∗.

Notice that Assumptions 1, 2, 3, 4 can hold simultaneously, one possible example is the artificial instance mentioned in
Section 3 of the main content.

Let β := minq ∕=q′{λ1 − λ2,λ2 − λ3, . . . ,λr∗+k−1 − λr∗+k,λr∗+k} be the minimum eigenvalue gap.

Theorem 4. Assume the assumptions 1, 2, 3, 4 hold, and further we have M ≥ C2

󰂃2 (2k)
2 max{β, 1} log d

(2k)2 ,M >

(2k)2, d
e > (2k)2 for C a constant. If

max
j∈[k]

[Σ1]j,j + 󰂃 < min
j∈[k]

[Σ2]j,j

then the solution V ∈ Rd×r obtained from Algorithm 1 satisfies

Tr(V ⊤ΣV) ≥ max
V ∈F

Tr(V ⊤ΣV)− 2r󰂃

with high probability 1− o(1).

row-sparse principal component analysis

Proof. We show this in the following steps:

Estimating the sample covariance matrix A: Recall the Theorem 1 and Covariance Thresholding Algorithm in ?, there
exists a constant C > 0 such that: for any 󰂃 > 0, when the number of samples M ≥ C2

󰂃2 (2k)
2 max{β, 1} log d

(2k)2 ,

the soft-thresholding matrix Â (mentioned in Covariance Thresholding Algorithm) satisfies 󰀂Â − Σ󰀂op ≤ 󰂃 with
probability 1 − o(1). This implies that for any diagonal entries Âjj with j = 1, . . . , d, we have |Âjj − Σ̂jj | < 󰂃
holds with probability 1− o(1).

Recovering the union of supports: Since the Assumptions 1, 2, 3, 4 hold, and the sample size M satisfies the conditions
given in 4, Theorem 3 in (?) guarantees that: there exists a constant C0 = C0(c1, c2,λ1,β) such that if M ≥
C0(2k)

2(k + r∗) log d
(2k)2 , then the covariance thresholding algorithm recovers the union of supports

󰁖r∗+k
j=1 Sj with

probability 1− o(1).

Recovering the exact support of SPCA: Note that the set S obtained from the Covariance Thresholding Algorithm only
recovers the union of supports

󰁖r∗+k
j=1 Sj with high probability. Condition on S is successfully recovered, suppose

maxj∈[k][Σ1]j,j + 2󰂃 < minj∈[k][Σ2]j,j , we have the block indexed by the top-k diagonal entries corresponding to
the block Σ2 since |Âjj − Σ̂jj | < 󰂃 holds with probability 1 − o(1). Hence the initialization method 2 recover the
true support by S0.

Quality of primal feasible solution: Let V be the primal solution obtained from Algorithm 1. Let AS0,S0 =
US0ΛS0U

⊤
S0

∈ Rk×k be the eigenvalue decomposition of AS0,S0 with diagonal entries in ΛS0 sorted in decreas-
ing order. We have the solution obtained by Algorithm 1 satisfies:

Tr
󰀃
V ⊤ΣV

󰀄
≥ Tr

󰀃
V ⊤AV

󰀄
−
󰀏󰀏Tr

󰀃
V ⊤(Σ−A)V

󰀄󰀏󰀏

≥ Tr
󰀃
V ⊤AV

󰀄
− r󰂃 by 󰀂Â−Σ󰀂op ≤ 󰂃

≥ Tr
󰀓
[US0

]⊤[k],[r]AS0,S0
[US0

][k],[r]

󰀔
− r󰂃 by monotone local search 1 with initial [US0

][k],[r]

=

r󰁛

i=1

λi(AS0,S0
)− r󰂃 let λi(AS0,S0

) be i-th largest eigenvalue

≥
r󰁛

i=1

λi(ΣS0,S0
)− 2r󰂃 by 󰀂Â−Σ󰀂op ≤ 󰂃

=max
V ∈F

Tr
󰀃
V ⊤ΣV

󰀄
− 2r󰂃

with probability 1− o(1).

Therefore, we have the quality of primal feasible solution V is close enough to the global optimal value.

3.3. Proof of Proposition 1.1

However, the above Theorem 4 requires the Assumptions 1, 2, 3, 4. In a more general case, suppose the support set cannot
be recovered correctly. We could still verify the quality of a given primal feasible solution by solving SOCIP-impl. Here
we formally state the Proposition 1.1:

Proposition 1.1. Let samples x1, . . . ,xM be i.i.d. generated from sub-Gaussian distribution with zero-mean, and Σ as
the true underlying covariance matrix (second moment). Let A := 1

MXX⊤ be the sample covariance matrix defined
as before. Let Vapp be a (1 − ∆)-approximation primal feasible solution corresponding to A where the value of ∆ is
obtained from its upper (dual) bound via solving SOCIP-impl. If the number of samples M is sufficiently large (i.e.,

M ≥
󰁫
(C

√
d+ t)/󰂃

󰁬2
with C a constant depends on the sub-Gaussian norm of x for any t > 0), then:

Tr
󰀃
V ⊤

appΣVapp
󰀄
≥ (1−∆) · max

V ∈F
Tr

󰀃
V ⊤ΣV

󰀄
− (2−∆)r󰂃

holds with high probability, where 󰂃 > 0 is any given constant.

row-sparse principal component analysis

Proof. Note the Remark 5.40 in ? ensures that: as M ≥
󰁫
(C

√
d+ t)/󰂃

󰁬2
with C and t be constants defined as above, we

have 󰀂A − Σ󰀂op ≤ 󰂃 holds with probability at least 1 − 2 exp(−ct2) with c > 0 another constant only depends on the
sub-Gaussian norm of x.

Now we have the objective value corresponding to Vapp satisfies

Tr
󰀃
V ⊤

appΣVapp
󰀄

≥ Tr
󰀃
V ⊤

appAVapp
󰀄
− r󰂃 by 󰀂A−Σ󰀂op ≤ 󰂃 with high probability

≥ (1−∆) · max
V ∈F

Tr
󰀃
V ⊤AV

󰀄
− r󰂃 by definition of (1−∆)-approximation primal feasible

≥ (1−∆) · max
V ∈F

Tr
󰀃
V ⊤ΣV

󰀄
− (2−∆)r󰂃 by 󰀂A−Σ󰀂op ≤ 󰂃 with high probability.

Therefore, the proposition 1.1 holds with high probability.

Remark 3.3. Notice that the Proposition 1.1 does not require Assumptions 1, 2, 3, 4. In contrast, since the gap between
the primal bounds and the dual bounds of A is computed via convex integer program SOCIP-impl, the Proposition 1.1 only
request a generalized version of Assumption 1 to ensure the a “good” estimating for the true covariance Σ.

4. Polynomial Running Time
Recall that the second-order-cone C′ and revised piecewise linear upper approximation set PLA′ are defined as follows:

C′ :=

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽
V :

󰀂[V][d],i󰀂22 ≤ 1, ∀i ∈ [r]
󰀂[V][d],i1 ± [V][d],i2󰀂22 ≤ 2, ∀i1 ∕= i2 ∈ [r]󰁓d

j=1 󰀂[V]j,[r]󰀂2 ≤
√
rk

󰀂[V]j,[r]󰀂2 ∈ [0, 1], ∀j ∈ [d]

󰀼
󰁁󰁁󰁀

󰁁󰁁󰀾
.

PLA′ :=

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽
(g, ξ, η) :

gji = a⊤
j vi, (j, i) ∈ [d]× [r]

gji =
󰁓N

ℓ=−N γℓ
jiη

ℓ
ji, (j, i) ∈ J+ × [r]

ξji =
󰁓N

ℓ=−N

󰀃
γℓ
ji

󰀄2
ηℓji󰀃

ηℓji
󰀄N
ℓ=−N

∈ SOS-II

󰀼
󰁁󰁁󰁁󰁀

󰁁󰁁󰁁󰀾
.

The implemented version of second-order-cone integer program is

max
󰁓

j∈J+(λj − φ)
󰁓r

i=1 ξji − s+ rφ

s.t V ∈ C′, (g, ξ, η) ∈ PLA′ (1)󰁓
j∈J−(φ− λj)

󰁓r
i=1 g

2
ji ≤ s (2)󰁓r

i=1 g
2
ji ≤ θ2j , ∀j ∈ [d] (3)

󰁓
j∈J+(λj − φ)

󰁓r
i=1 ξji − s+ rφ ≤ [A]j1,j1 + · · ·+ [A]jk,jk +

󰁓
j∈J+

r(λj−φ)θ2
j

4N2 (4)󰁓d
j=1 λjξji ≥ v⊤

i+1Avi+1, ∀i ∈ [r − 1] (5)󰁓d
j=1[vi]j ≥ 0, ∀i ∈ [r] (6)

(SOCIP-impl)

where constraint (1) is the convex relaxation and piecewise linear approximation for SPCA combined with thresholding
technique that we discussed in Section 2.4 of main content; constraints (2), (3), (4) are the cutting planes; constraints (5),
(6) are the symmetric breaking constraints. Here are have

Theorem 5. Given the number of splitting points N , the size of large eigenvalue set |J+| and its corresponding threshold
parameter φ, then the SOCIP-impl can be solved within polynomial time.

Proof. The only non-convex part in SOCIP-impl is the SOS-II constraints for variables η. Since the SOS-II constraints
imply that: for each (j, i) ∈ J+ × [r], at most two continuous variables of

󰀃
ηℓji

󰀄N
ℓ=−N

are non-zero, then there are 2N

possible situations for non-zero
󰀃
ηℓji

󰀄N
ℓ=−N

, and thus (2N)r|J
+| possible situations for all (j, i) ∈ J+ × [r]. Given a fixed

possible situation of SOS-II variables
󰀃
ηℓji

󰀄N
ℓ=−N

for all (j, i) ∈ J+× [r], note that the SOCIP-impl can be transferred into

row-sparse principal component analysis

a continuous convex programming (CP) which is able to optimized exactly within polynomial time T (corresponding to
the size of input CP, and the additive gap). Therefore the SOCIP-impl can be solved within polynomial time T · (2N)r|J

+|

by checking each possible situations.

Remark 4.1. Note that the Theorem 5 still holds even when the SOCIP-impl only contains constraint (1). The rest of
constraints (2)-(6) are used to improve the running time in practice. Thus people can decide which constraint from (2)-(6)
is needed when optimizing their own instances.

5. Main Numerical Results
In this section, we present the original numerical results of SOCIP-impl and Baselines on two types of instances described
in Section 3 of main content. Three methods for upper bounds are listed as follows:

Baseline-1 := [A]j1,j1 + · · ·+ [A]jk,jk , where [A]j1,j1 ≥ [A]j2,j3 ≥ · · · [A]jd,jd
Baseline-2 := maxP Tr (AP) , s.t. Id ≽ P ≽ 0, Tr(P) = r, 1⊤|P |1 ≤ rk
SOCIP-impl :=

󰁓
j∈J+(λj − φ)

󰁓r
i=1 ξji − s+ rφ s.t. constraint (1), (2), (3), (4), (5)

The lower bounds (LB) are computed by feasible solutions of SPCA which obtained from local search algorithm 1 with
randomized initialization. The column “Gap” denotes the gap between upper bounds of SOCIP-impl and lower bounds
(LB) defined as Gap := SOCIP−LB

LB . All original numerical results are reported in the following tables.

Notice that because of the limitation of hardware and software, the Baseline-2 (SDP relaxation method) is hard to scalable
since the quadratic increasing of the number of variables in the lifted space. Thus the Baseline-2 (SDP relaxation method)
only works for the case Eisen-1 and Eisen-2, and in rest of the tables we remove the column of “Baseline-2”.

Para (d, k, r) LB Baseline-1 Baseline-2 SOCIP Gap

(79, 5, 2) 15.277 16.295 20.081 16.351 7.028 %
(79, 10, 2) 19.705 21.376 21.530 21.184 7.505 %
(79, 15, 2) 20.590 24.034 22.036 21.678 5.282%
(79, 20, 2) 21.020 25.881 22.197 21.833 3.866%
(79, 25, 2) 21.274 27.279 22.203 21.981 3.321%
(79, 30, 2) 21.481 28.535 22.203 22.069 2.736%
(79, 5, 3) 16.150 16.295 21.998 16.438 1.783 %
(79, 10, 3) 20.569 21.376 23.806 21.54 4.721%
(79, 15, 3) 21.553 24.034 24.493 24.139 11.997%
(79, 20, 3) 21.683 25.881 24.725 24.599 13.447%
(79, 25, 3) 23.205 27.279 24.738 24.427 5.268%
(79, 30, 3) 23.229 28.535 24.738 24.527 5.588%

Table 1. Compare SOCIP-impl with baseline for Eisen-1

Para (d, k, r) LB Baseline-1 Baseline-2 SOCIP Gap

(118, 5, 2) 8.144 8.574 14.008 8.61 5.724%
(118, 10, 2) 13.686 15.051 22.211 15.094 10.291%
(118, 15, 2) 18.328 20.641 26.984 20.696 12.917%
(118, 20, 2) 22.155 25.845 29.322 25.473 14.975%
(118, 25, 2) 25.040 30.018 30.786 27.807 11.052%
(118, 30, 2) 27.311 33.461 31.814 29.604 8.397%
(118, 5, 3) 8.434 8.574 19.328 8.635 2.385%
(118, 10, 3) 14.457 15.051 28.708 15.148 4.777%
(118, 15, 3) 19.296 20.641 32.086 20.762 7.596%
(118, 20, 3) 23.583 25.845 34.152 25.977 10.152%
(118, 25, 3) 26.734 30.018 35.545 30.164 12.831%
(118, 30, 3) 28.741 33.461 36.495 33.409 16.242%

Table 2. Compare SOCIP-impl with baseline for Eisen-2

Para (d, k, r) LB Baseline-1 SOCIP Gap

(500, 5, 1) 1646.454 1720.878 1723.119 4.656%
(500, 10, 1) 2641.229 2970.226 2970.658 12.476%
(500, 20, 1) 4255.287 5015.718 5007.157 17.669%
(500, 40, 1) 6924.530 8280.635 8242.987 19.040%
(500, 80, 1) 10741.925 13292.953 13183.996 22.734%
(500, 120, 1) 13660.302 17349.272 17165.391 25.659%
(500, 160, 1) 15666.335 20599.533 19154.019 22.262%
(500, 5, 2) 1709.958 1720.878 1733.222 1.361%
(500, 10, 2) 2794.140 2970.226 2989.336 6.986 %
(500, 20, 2) 4510.085 5015.718 5045.065 11.862%
(500, 40, 2) 7245.277 8280.635 8326.816 14.928%
(500, 80, 2) 11226.442 13292.953 13359.151 18.997%
(500, 120, 2) 14163.219 17349.272 17429.896 23.065 %
(500, 160, 2) 16457.275 20599.533 19070.61 15.880 %

Table 3. Compare SOCIP-impl with baseline for CovColon

Para (d, k, r) LB Baseline-1 SOCIP Gap

(500, 5, 1) 4300.497 5177.405 5184.741 20.561%
(500, 10, 1) 6008.317 8901.180 8902.889 48.176%
(500, 20, 1) 9082.158 15160.617 14641.435 61.211%
(500, 40, 1) 13107.045 24293.415 19557.092 49.211 %
(500, 80, 1) 17544.277 38358.967 24458.286 39.409%
(500, 120, 1) 20797.933 48691.305 27058.292 30.101%
(500, 160, 1) 23310.903 57395.584 28527.242 22.377%
(500, 5, 2) 4990.132 5177.405 5220.062 4.608%
(500, 10, 2) 8125.266 8901.180 8951.928 10.174%
(500, 20, 2) 11868.012 15160.617 15226.865 28.302%
(500, 40, 2) 16138.886 24293.415 24378.169 51.052%
(500, 80, 2) 21396.692 38358.968 30178.957 41.045%
(500, 120, 2) 25579.788 48691.305 33116.474 29.463%
(500, 160, 2) 28950.488 57395.584 35369.37 22.172%

Table 4. Compare SOCIP-impl with baseline for Lymp

row-sparse principal component analysis

Para (d, k, r) LB Baseline-1 SOCIP Gap

(1000, 5, 1) 1665.714 3144.0 1994.758 19.754%
(1000, 10, 1) 1766.499 3936.0 2036.647 15.293%
(1000, 20, 1) 1834.473 5058.585 2061.048 12.351%
(1000, 40, 1) 1918.158 6355.687 2083.412 8.615%
(1000, 80, 1) 1993.947 7876.078 2094.868 5.061%
(1000, 5, 2) 2208.062 3144.0 2669.481 20.897%
(1000, 10, 2) 2358.341 3936.0 2842.534 20.531%
(1000, 20, 2) 2583.484 5058.585 2963.481 14.709%
(1000, 40, 2) 2762.794 6355.687 3093.255 11.961%
(1000, 80, 2) 2681.272 7876.078 3128.75 16.689%
(1000, 5, 3) 2650.855 3144.0 6745.96 154.482%
(1000, 10, 3) 2839.634 3936.0 7373.92 159.679%
(1000, 20, 3) 2996.054 5058.585 7616.909 154.231%
(1000, 40, 3) 3361.852 6355.687 7659.558 127.837%
(1000, 80, 3) 3657.417 7876.078 7362.175 101.294%

Table 5. Compare SOCIP-impl with baseline for Reddit of size 1000

Para (d, k, r) LB Baseline-1 SOCIP Gap

(1500, 5, 1) 1694.560 3327.0 2198.699 29.750%
(1500, 10, 1) 1834.871 4344.0 2333.223 27.160%
(1500, 20, 1) 1965.926 5649.585 2449.516 24.599%
(1500, 40, 1) 2317.149 7316.316 2593.001 11.905%
(1500, 80, 1) 2537.644 9129.687 2630.608 3.663%
(1500, 5, 2) 2241.333 3327.0 4679.819 108.796%
(1500, 10, 2) 2552.943 4344.0 5023.951 96.791%
(1500, 20, 2) 3073.350 5649.585 5348.092 74.015%
(1500, 40, 2) 3178.420 7316.316 5461.002 71.815%
(1500, 80, 2) 3596.531 9129.687 5912.314 64.389%
(1500, 5, 3) 2675.918 3327.0 7548.85 182.103%
(1500, 10, 3) 3025.420 4344.0 8432.259 178.714%
(1500, 20, 3) 3587.461 5649.585 9568.021 166.707%
(1500, 40, 3) 3722.302 7316.316 11705.781 214.477%
(1500, 80, 3) 4639.675 9129.687 12523.76 169.928%

Table 6. Compare SOCIP-impl with baseline for Reddit of size 1500

Para (d, k, r) LB Baseline-1 SOCIP Gap

(500, 5, 1) 55.085 252.808 56.22 2.060 %
(500, 10, 1) 56.318 360.936 56.474 0.277%
(500, 20, 1) 56.342 371.594 56.474 0.235%
(500, 40, 1) 56.370 392.540 56.474 0.184%
(500, 80, 1) 56.403 433.838 56.474 0.126%
(500, 5, 2) 107.422 252.810 109.825 2.237%
(500, 10, 2) 109.971 360.936 110.307 0.306%
(500, 20, 2) 110.001 371.594 110.308 0.279%
(500, 40, 2) 110.046 392.540 110.309 0.239%
(500, 80, 2) 110.109 433.834 113.142 2.754%

Table 7. Compare SOCIP-impl with baseline for block spiked co-
variance of size 500

Para (d, k, r) LB Baseline-1 SOCIP Gap

(2000, 5, 1) 4300.497 5177.405 5184.741 20.561%
(2000, 10, 1) 6008.317 8901.180 8902.889 48.176%
(2000, 20, 1) 9082.158 15160.617 14641.435 61.211%
(2000, 40, 1) 13107.045 24293.415 19557.092 49.211 %
(2000, 80, 1) 17544.277 38358.967 24458.286 39.409%
(2000, 120, 1) 20797.933 48691.305 27058.292 30.101%
(2000, 160, 1) 23310.903 57395.584 28527.242 22.377%
(2000, 5, 2) 4990.132 5177.405 5220.062 4.608%
(2000, 10, 2) 8125.266 8901.180 8951.928 10.174%
(2000, 20, 2) 11868.012 15160.617 15226.865 28.302%
(2000, 40, 2) 16138.886 24293.415 24378.169 51.052%
(2000, 80, 2) 21396.692 38358.968 30178.957 41.045%
(2000, 120, 2) 25579.788 48691.305 33116.474 29.463%
(2000, 160, 2) 28950.488 57395.584 35369.37 22.172%

Table 8. Compare SOCIP-impl with baseline for Reddit of size 2000

