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Abstract

Tensor factorization is a fundamental framework
to analyze high-order interactions in data. De-
spite the success of the existing methods, the valu-
able temporal information are severely underused.
The timestamps of the interactions are either ig-
nored or discretized into crude steps. The recent
work although formulates event-tensors to keep
the timestamps in factorization and can capture
mutual excitation effects among the interaction
events, it overlooks another important type of tem-
poral influence, inhibition. In addition, it uses a
local window to exclude all the long-term depen-
dencies. To overcome these limitations, we pro-
pose a self-modulating nonparametric Bayesian
factorization model. We use the latent factors
to construct mutually-governed, general random
point processes, which can capture various short-
term/long-term, excitation/inhibition effects, so
as to encode the complex temporal dependencies
into factor representations. In addition, our model
couples with a latent Gaussian process to estimate
and fuse nonlinear yet static relationships between
the entities. For efficient inference, we derive a
fully decomposed model evidence lower bound to
dispense with the huge kernel matrix and costly
summations inside the rate and log rate functions.
We then develop an efficient stochastic optimiza-
tion algorithm. We show the advantage of our
method in four real-world applications.

1. Introduction
Interactions between multiple entities (or nodes) are com-
mon in real-world applications. For example, consumers’
activities can be viewed as interactions between customers,
service items and providers. These (high-order) interactions
are naturally represented by tensors and analyzed by tensor
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factorization, which learns a set of latent factors to represent
each participant. With the factor representations, we can dis-
cover the hidden structures within the entities, e.g., clusters
and outliers, and extract useful features to make predictions
(in downstream tasks).

While many excellent methods for tensor factorization
have been proposed (Tucker, 1966; Harshman, 1970; Chu
and Ghahramani, 2009; Kang et al., 2012; Choi and Vish-
wanathan, 2014), they mainly conduct a multilinear decom-
position, and might be inadequate to capture more complex,
nonlinear relationships. More importantly, they severely
underuse the valuable temporal information along with the
data. Most methods either drop the time stamps of the in-
teractions, summarizing the events as a count tensor (Chi
and Kolda, 2012; Hansen et al., 2015; Hu et al., 2015b),
or discretize the time stamps into crude steps (e.g., weeks
or months), ignoring the temporal dependencies within the
same step (Xiong et al., 2010; Schein et al., 2015; 2016). Re-
cently, Zhe and Du (2018) formulated event-tensors (where
the tensor entries are sequences of interaction events) to pre-
serve the accurate timestamps. They used Hawkes processes
to estimate the fine-grained, triggering effects between the
interactions. However, their approach overlooks inhibition,
another ubiquitous effect between the events, and can still
miss important temporal patterns. In addition, to compro-
mise on the computational cost, they use a small time win-
dow to restrict the range of dependent events, and cannot
capture long-term temporal influences of the interactions.

To overcome these limitations, we propose a self-
modulating nonparametric Bayesian factorization model
for event tensors, which not only can capture static, nonlin-
ear relationships of the entities, but also is flexible enough to
capture a variety of short-term and long-term, excitation and
inhibition effects among the interaction events, encoding
these complex temporal effects into the factor representa-
tions. Specifically, we use the latent factors to construct a
set of mutually-governed, general random point processes
to sample the observed interaction events. We first use a
latent Gaussian process (GP) to sample a function of the fac-
tor representations to determine the type of temporal effect
between each pair of interactions. The strength of the effect
is further modelled as a kernel (similarity) function of their
factors. In this way, both the type and strength of the effect
are absorbed into the factors, from which we can discover
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the underlying temporal structures. We then couple with
another latent GP to sample the base rate as a (nonlinear)
function of the factors, in order to estimate and fuse complex
yet static relationships between the entities. We use a scaled
softplus function to additively integrate all the positive and
negative influences from previous interactions to construct
the rate function. For efficient inference, we take advantage
of the convexity and log concavity of the rate function, and
use the sparse variational GP framework (Hensman et al.,
2013) and Jensen’s inequality to derive a fully decomposed
model evidence lower bound (ELBO). Based on the ELBO,
we develop an efficient stochastic optimization algorithm.
The complexity of our algorithm is only proportional to the
size of the mini-batches, while it captures all the long-term
dependencies among the interactions.

For evaluation, we examined our method on three real-world
datasets. Our model nearly always achieves better predictive
performance than the existing methods using Poisson pro-
cesses, time factors, and Hawkes processes to incorporate
temporal information. The training curve shows that our
inference algorithm converges reasonably fast and is quite
stable. Finally, by looking into the latent factors estimated
by our approach, we found interesting and meaningful struc-
tures both within the entities and within the events. We also
found interesting temporal influence patterns.

2. Background
Tensor Factorization. We denote a K-mode tensor by
Y ∈ Rd1×...×dK . The k-th mode includes dk entities or
nodes (e.g., customers). Each entry is indexed by a tuple
i = (i1, . . . , iK) and stands for the interaction of the cor-
responding K nodes. The entry value is denoted by yi.
To decompose Y , we introduce K latent factor matrices
U = {U1, . . . ,UK} to represent all the tensor nodes. Each
Uk = [uk1 ; . . . ; ukdk ]>, which is dk × rk, and each ukt are
the rk latent factors of node t in mode k. We aim to use U
to recover the observed entries in Y . A classical approach
is Tucker decomposition (Tucker, 1966), which assumes
Y = W ×1 U1 ×2 . . . ×K UK , where W ∈ Rr1×...×rK
is a parametric tenor, and ×k is the mode-k tensor matrix
product (Kolda, 2006), which resembles the ordinary matrix-
matrix product. If we set all rk = r andW to be diagonal,
Tucker decomposition becomes CANDECOMP/PARAFAC
(CP) decomposition (Harshman, 1970). While numerous
tensor factorization methods have been proposed, e.g., (Chu
and Ghahramani, 2009; Kang et al., 2012; Choi and Vish-
wanathan, 2014), most of them are inherently based on the
CP or Tucker form. However, since both forms are muti-
linear to the latent factors, they are incapable of capturing
more complicated, nonlinear relationships in data.

Factorization with Temporal Information. Real-world
tensors are often supplemented with detailed temporal infor-

mation, namely, the timestamps of the observed interactions.
To incorporate these information, traditional methods either
drop the timestamps to perform count tensor decomposi-
tion (Chi and Kolda, 2012; Hu et al., 2015b), or discretize
the timestamps into time steps, e.g., weeks or months, aug-
ment the tensor with a time mode (Xiong et al., 2010; Schein
et al., 2015; 2016), and jointly estimate the time factors.
Both approaches can be viewed as using Poisson processes
to model the interaction events, p(yi) ∝ e−λiTλyii , where yi
is the interaction count in entry i (with/without a time step),
and λi is the event rate. The factorization is performed on
{λi} or {log(λi)}, typically with Tucker/CP forms. Despite
their simplicity and convenience, these methods disregard
the rich and vital temporal dependencies between the in-
teractions, due to the independent increment assumption
in Poisson processes. To mitigate this issue, Zhe and Du
(2018) formulated event-tensor to maintain all the accurate
timestamps. In an event-tensor, each entry is an event se-
quence of a particular interaction, rather than a numerical
value. Zhe and Du (2018) modelled the observed entries as
a set of mutually excited Hawkes processes (Hawkes, 1971).
The rate of the events in each entry i is

λi(t) = λ0
i +

∑
sn∈A(t)

k(xin ,xi)h0(t− sn) (1)

where λ0
i is the background rate, A(t) is a local time win-

dow that specifies the range of dependent events happened
before t (e.g., 50 past events nearest to t), in is the entry
to which the interaction at time sn belongs, xin and xi are
the latent factors associated with entry in and i respectively,
k(·, ·) is a kernel function that measures their similarity, and
h0(·) is a base triggering kernel that measures how the trig-
gering effect decays along with time. From the rate function
(1), we can see that the model can capture the (local) excita-
tion effects of the previously happened interactions on the
current one, and the triggering strength are (partly) encoded
into the latent factors — the closer the corresponding factors
of the two entries, the stronger the strength.

3. Model
Although the model in (Zhe and Du, 2018) can capture fine-
grained, mutual triggering effects between the interactions,
it ignores another type of important and ubiquitous effect
— inhibition. For example, a customer who has recently
purchased a Surface laptop is unlikely to buy a MacBook;
people who voted for one president candidate are unlikely
to support another one in a short term. In practice, among
the interaction events can be mixed excitation and inhibition
effects, resulting in complex temporal dependencies. In
addition, the model uses a local time windowA(t) to specify
a small range of the dependent events for each interaction
(see (1)). Although this can save much computational cost
for the rate function and its logarithm in model estimation
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(especially for a large number of events), it excludes all
the long-term influences of the interaction events on each
other, and hence can miss many interesting and valuable
temporal patterns. To overcome these problems, we propose
a self-modulating nonparametric event-tensor factorization
model, presented as follows.

3.1. Notations for Event-Tensor

First, let us supplement a few notations. In the event-tensor,
for each observed entry i, we denote its event sequence by
yi = [s1

i , . . . , s
ni

i ], i.e., the time stamps when the interaction
i occurred, and ni is the number of occurrences. Note that
each entry represents a particular type of interaction. We
can merge the event sequences of all the observed entries
into a single sequence, S = [(s1, i1), . . . , (sN , iN )], where
s1 ≤ . . . ≤ sN are all the time stamps, each in indexes the
entry that event sn belongs to, i.e., the particular interaction
occurred at sn.

3.2. Self-Modulating Nonparametric Factorization

We now consider using the latent factors U to construct a
general random point process to accommodate both the trig-
gering and inhibition effects among the interaction events.
One basic assumption in (Zhe and Du, 2018) (see (1)) is
that the closer (or more similar) the factor representations of
two interactions, the stronger their mutual excitation effects.
This is true in many applications, for example, “the event
that user A purchased commodity B may excite A’s friend C
to purchase B as well”. Obviously, the factors of A and C
are expected to be close because they are in the same com-
munity (i.e., friends) and so are the factor representations for
the interactions (A, B) and (C, B). However, in many other
cases, closer factor representations may on the contrary lead
to stronger inhibition effects. For example, the event that
user A has purchased Surface laptop B can strongly sup-
press A to buy MacBook C (aforementioned); the event that
athlete A has won the champion of Game B deprives of
the possibility that his competitor C wins B. Therefore, to
model the strength of the temporal influence of a previously
occurred interaction j on the current one i, we still use a ker-
nel function of their factor representations, k(xj,xi), where
xi = [u1

i1
; . . . ; uKiK ] and xj = [u1

j1
; . . . ; uKjK ]. However, to

detect the type of the influence, we consider learning a dis-
criminating function of the factor representations, g(xj,xi),
where g(xj,xi) > 0 indicates that j will trigger the occur-
rence of i and otherwise inhibit. To flexibly estimate g(·),
we place a Gaussian process (GP) prior (Rasmussen and
Williams, 2006) — a nonparametric function prior that ac-
commodates various complex functions. Hence, the latent
function values g for every pair of observed entries will
follow a multivariate Gaussian distribution,

p(g|U) = N
(
g|0, κg(Xg,Xg)

)
, (2)

where each row of the input matrix Xg corresponds to a
pair of entries, and are the concatenation of the associated
factors, κg(·, ·) is the covariance (kennel) function.

Now, we define a raw rate function for each entry i that
integrates both the triggering and suppressing effects from
the previous interactions,

λ̃i(t) = λ0
i

+
∑
sn<t

tanh
(
g(xin ,xi)

)
k(xin ,xi)h0(t− sn) (3)

where λ0
i is the background rate and h0(·) is a base kernel

that describes the how the strength of the influence decays
with time. In our experiments, we chose the commonly used
exponential decay kernel, h0(∆) = exp(−∆

τ ). Note that
we use tanh(·) to squeeze the values of g(·) into [−1, 1]
without changing the sign. The reason is that we use g(·) to
just determine the influence types (excitation or inhibition);
for better interpretability, we do not want to confound it
with the influence strength (which are modelled by the other
components — k(·, ·) and h0(·)).

Next, to obtain a positive rate function so as to build a valid
point process, we use a scaled soft-plus function γs(·) to
transform the raw rate λ̃i(t),

λi(t) = γs
(
λ̃i(t)

)
= s log

(
1 + exp(

λ̃i(t)

s
)
)

(4)

where s > 0. It is trivial to show that when s → ∞,
λi(t)→ max

(
λ̃i(t), 0

)
. Therefore, the scaled soft-plus can

considerably maintain the additive structure in our raw rate
definition in (3). While other transformation operators are
also possible, e.g., exp(·), we found empirically that the
scaled softplus exhibits superior and excellent performance.

Finally, to estimate the complex yet static relationships be-
tween the entities and fuse the relationships into the latent
factors, we model the background rate λ0

i in each entry i
as a nonlinear function of the associated factors, f(xi). To
this end, we place another GP prior over f(·). Then the
background rate values f for all the observed entries are
sampled from a multivariate Gaussian distribution,

p(f |U) = N
(
f |0, κf (Xf ,Xf )

)
, (5)

where each row of Xf are the concatenated factors associ-
ated with one entry, and κf (·, ·) is the covariance (or kernel)
function. Note that we do not need to constrain f(·) > 0,
because via the soft-plus transformation (4), we will always
obtain a non-negative event rate.

We place a standard Gaussian prior over all the latent factors
U . Given the observed interaction events S (from all the
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entries), the joint probability of our model is given by

p(S,g, f ,U) =
∏
k

∏
ik

N (ukik |0, I)

· N
(
g|0, κg(Xg,Xg)

)
N
(
f |0, κf (Xf ,Xf )

)
·
∏
i

exp
(
−
∫ T

0

λi(t)dt
) N∏
n=1

λin(sn), (6)

where T is the total time span across all the events. Note
that the last row is the likelihood of our mutually governed
random point processes on the observed entries (Daley and
Vere-Jones, 2007).

4. Algorithm
The estimation of our model is challenging. First, the ex-
act inference of our model is infeasible for large data be-
cause the GP likelihoods (2) and (5) require us to compute
M2 × M2 and M × M covariance (kernel) matrices re-
spectively and their inverse, where M is the number of
observed entries (i.e., distinct interactions). When M is
large, the computation is prohibitively costly. Second, the
calculation of each rate λin(sn) in the joint probability (6)
needs to go through all the previously happened interactions
{s1, . . . , sn−1} (see (3)), and therefore is expensive for a
large number of events N . Third, due to the softplus trans-
formation in (4), the integral over each rate function in (6)
does not have a closed form and is intractable to compute.

To address these challenges, we take advantage of the varia-
tional sparse GP framework (Hensman et al., 2013) and the
properties of our rate function to derive a fully decomposed
model evidence lower bound (ELBO). Based on the ELBO,
we develop a stochastic mini-batch optimization algorithm
that is efficient to both large M and N . Our algorithm is
presented as follows.

4.1. Fully Decomposed Model Evidence Lower Bound
4.1.1. REMOVING HUGE COVARIANCE MATRICES

First, we use the variational sparse GP to dispense with
huge covariance matrices. We introduce pseudo inputs
Zg = [zg1, . . . , z

g
mg

]> and Zf = [zf1 , . . . , z
f
mf

]> for the
two latent functions g(·) and f(·), respectively, where
mg � M2 and mf � M . We denote the function val-
ues at these pseudo inputs by bg = [g(zg1), . . . , g(zgmg

)]>

and bf = [f(zf1 ), . . . , f(zfmf
)], which we refer to as the

pseudo outputs. Then we can augment our model by jointly
sampling {f ,bf} and {g,bg}. Due to the GP priors of g(·)
and f(·), both {g,bg} and {f ,bf} follow a multivariate
Gaussian distribution, and the covariance (kernel) matrices
are computed on {Xf ,Zf} and {Xg,Zg}, respectively. We
can further decompose the joint prior by

p(g,bg) = p(bg)p(g|bg) (7)

where p(bg) = N
(
bg|0, κg(Zg,Zg)

)
, p(g|bg) =

N (g|mg|b,Σg|b) is a conditional Gaussian distribution,
mg|b = κg(Xg,Zg)κg(Zg,Zg)

−1bg and Σg|b =
κg(Xg,Xg)−κg(Xg,Zg)κg(Zg,Zg)

−1κg(Zg,Xg). Sim-
ilarly, we can decompose

p(f ,bf ) = p(bf )p(f |bf ) (8)

= N
(
bf |0, κf (Zf ,Zf )

)
N (f |mf |b,Σf |b)

where mf |b and Σf |b are the conditional mean and covari-
ance matrix given bf respectively, similar to mg|b and Σg|b.
The joint probability of the augmented model is then

p(S,g,bg, f ,bf ,U)

= p(bg)p(g|bg)p(bf )p(f |bf )p(U ,S|f ,g) (9)

where p(U ,S|f ,g) =
∏
k

∏
ik
N (ukik |0, I)

∏
i exp

(
−∫ T

0
λi(t)dt

)∏N
n=1 λin(sn). Note that if we marginalize

out the pseudo outputs bg and bf , we will recover the origi-
nal model (6). Based on (9), we now construct a variational
model evidence lower bound (ELBO) to avoid calculating
the full covariance matrices κg(Xg,Xg) and κf (Xf ,Xf ),
which is infeasible for large M . To do so, we introduce a
variational posterior for {g,bg, f ,bf},

q(g,bg, f ,bf ) = q(bg)p(g|bg)q(bf )p(f |bf ), (10)

where q(bg) = N (bg|µg,Sg) and q(bf ) =
N (bf |µf ,Sf ). We further parameterize Sg and Sf
by their Cholesky decompositions, Sg = LgL

>
g and

Sf = LfL
>
f , to ensure their positive definiteness. We then

derive the EBLO from

L = Eq(g,bg,f ,bf ) log
p(S,g,bg, f ,bf ,U)

q(g,bg, f ,bf )

= Eq log
p(bg)����p(g|bg)p(bf )����p(f |bf )p(U ,S|f ,g)

q(bg)����p(g|bg)q(bf )����p(f |bf )
.

Now we can see that the full conditional Gaussian distribu-
tions p(g|bg) and p(f |bf ) are both cancelled. We only need
to compute the covariance matrices for p(bg) and p(bf ),
which are mg × mg and mf × mf , respectively. Hence,
the computational cost is greatly reduced. Rearranging the
terms, we have

L = log(p(U))−KL
(
q(bg)‖p(bg)

)
−KL

(
q(bf )‖p(bf )

)
−
∑
i

Eq
[ ∫ T

0

λi(t)dt
]

+

N∑
n=1

Eq
[

log
(
λin(sn)

)]
, (11)

where p(U) =
∏
k

∏
ik
N (ukik |0, I) and KL(·‖·) is the

Kullback-Leibler divergence. To handle the intractable inte-
gral in (11), we rewrite it as an expectation,

∫ T
0
λi(t)dt =

Ep(t)[Tλi(t)] where p(t) = Uniform(0, T ). Then we can
sample t to obtain an unbiased estimate of the integral
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and conduct stochastic optimization (which we will discuss
later). The ELBO now is

L = log(p(U))−KL
(
q(bg)‖p(bg)

)
−KL

(
q(bf )‖p(bf )

)
−
∑
i

EqEp(t)[Tλi(t)] +

N∑
n=1

Eq
[

log
(
λin(sn)

)]
. (12)

4.1.2. DECOMPOSING LONG SUMMATIONS

However, the computation of each rate λi(t) and log rate
log
(
λin(sn)

)
is still quite expensive. According to (3) and

(4), they couple a summation of the temporal influences
(excitation or inhibition) from all the previously happened
events in the (scaled) softplus and log-softplus function,
and the time complexity is (on average) O(N). Since we
need to computeN log rates, the total complexity isO(N2).
Therefore, it will be very costly for large N . To address this
issue, we observe the following fact.

Lemma 4.1. The scaled soft-plus function γs(x) =
s log

(
1 + exp(x/s)

)
(s > 0) is convex and log

(
γs(x)

)
is concave.

The proof is given in the supplementary material. Based
on this property, we can use Jensen’s inequality to further
derive an ELBO that fully decomposes these expensive sum-
mations. Specifically, we first rewrite the raw rate function
(3) as

λ̃i(t) = λ0
i +

N∑
n=1

δ(sn < t)hin→i(xin ,xi, t− sn)

where δ(·) is the indicator function and hin→i(xin ,xi, t−
sn) = tanh

(
g(xin ,xi)

)
k(xin ,xi)h0(t − sn). We then

partition the observed events into mini-batches of size Q:
{B1, . . . ,BN/Q}, and rearrange the summation as λ̃i(t) =

λ0
i + Q

N

∑N/Q
k=1

N
Q

∑
n∈Bk

δ(sn < t)hin→i(xin ,xi, t−sn).

Thereby, we can view the raw rate as an expectation, λ̃i(t) =
Ep(k)[X

i
k] where p(k) = Q/N , k ∈ {1, . . . , N/Q}, and

X i
k = λ0

i +
N

Q

∑
n∈Bk

δ(sn < t)hin→i(xin ,xi, t− sn).

Since the rate λi(t) = γs
(
λ̃i(t)

)
and γs(·) is con-

vex, we can apply Jensen’s inequality to obtain λi(t) =
γs(Ep(k)[X

i
k]) ≤ Ep(k)[γs(X

i
k)] and so

−EqEp(t)[λi(t)] ≥ −EqEp(t)Ep(k)[γs(X
i
k)]. (13)

Similarly, the raw rate inside each log rate λin(sn) can also
be viewed as an expectation, λ̃i(sn) = Ep(k)[Y

n
k ], where

Y nk = λ0
in +

N

Q

∑
j∈Bk

δ(sj < sn)hij→in(xij ,xin , sn− sj).

Since log(γs(·)) is concave, we can apply Jensen’s inequal-
ity to obtain

log
(
λin(sn)

)
= log(γs(Ep(k)[Y

n
k ]))

≥ Ep(k)[log(γs(Y
n
k ))]. (14)

Finally, we substitute the lower bounds in (13) and (14) for
each expected rate and log rate in (12), respectively. We
then obtain a fully decomposed ELBO,

L+ = log(p(U))−KL
(
q(bg)‖p(bg)

)
−KL

(
q(bf )‖p(bf )

)
−
∑
i

EqEp(t)Ep(k)[Tγs(X
i
k)]

+

N∑
n=1

EqEp(k)[log(γs(Y
n
k ))]. (15)

In this way, we move out most of the summation in each
softplus and log softplus function, leaving only a very light
summation across the mini-batch, i.e., X i

k and Y nk . The
ELBO is additive on the observed entries, events and mini-
batch set (via p(k)). Thereby, we can develop a stochastic
optimization algorithm for efficient model estimation.

4.2. Stochastic Optimization

We now maximize the ELBO L+ in (15) to estimate the vari-
ational posterior q, the latent factors U and the other param-
eters. This ELBO is not analytical because the expectation
terms are for the softplus or log softplus functions and do not
have closed forms. Hence, we resort to stochastic optimiza-
tion. In order to develop an efficient algorithm, we further
partition all the observed entries (i.e., distinct interactions)
into mini-batches of size C: {C1, . . . , CM/C}, and all the
observed events into mini-batches of D: {D1, . . . ,DN/D}.
Note that we can also reuse the previous partition of the
events, {B1, . . . ,BN/Q}. Next, we rearrange

L+ = log(p(U))−KL
(
q(bg)‖p(bg)

)
−KL

(
q(bf )‖p(bf )

)
−
∑
j

C

M

∑
i∈Cj

M

C
EqEp(t)Ep(k)[Tγs(X

i
k)]

+
∑
l

D

N

∑
n∈Dl

N

D
EqEp(k)[log(γs(Y

n
k ))]. (16)

Then we can view the ELBO as an expectation of a stochas-
tic ELBO,

L+ = Ep(k),p(j),p(l)[L̃+
k,j,l] (17)
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where p(k) = Q
N , k ∈ {1, . . . , NQ }, p(j) = C

M , j ∈
{1, . . . , MC }, p(l) = D

N , l ∈ {1, . . . , ND }, and

L̃+
k,j,l = log(p(U))−KL

(
q(bg)‖p(bg)

)
−KL

(
q(bf )‖p(bf )

)
−
∑
i∈Cj

M

C
EqEp(t)[Tγs(X i

k)] +
∑
n∈Dl

N

D
Eq[log(γs(Y

n
k ))].

Now with (17), we can develop an efficient stochastic op-
timization algorithm. Each time, we first draw a mini-
batch Bk, Cj and Dl from p(k), p(j) and p(l) respectively,
and then seek to compute ∇L̃+

k,j,l as an unbiased esti-
mate of ∇L+. However, the expectation term in L̃+

k,j,l

is still intractable. To address this issue, we use the
reparameterization trick (Kingma and Welling, 2013) to
generate a parameterized sample for bf and each back-
ground rate λ0

i = f(xi) in X i
k and Y nk . Since q(bf ) is

Gaussian and p(f(xi)|bf ) is conditional Gaussian, it is
straightforward to obtain the sample b̃f = µf + Lfη and
λ̃0
i = µ0

i + σ0
i ε, where η ∼ N (0, I), ε ∼ N (0, 1), µ0

i =

κf (xi,Zf )κf (Zf ,Zf )−1b̃f and (σ0
i )2 = κf (xi,xi) −

κf (xi,Zf )κf (Zf ,Zf )−1κf (Zf ,xi). Similarly, we can
generate parameterized samples for bg and each g(xin ,xi)
in X i

k and Y nk . We then generate a sample for t from p(t).
Now, we substitute all the parameterized samples for the
corresponding random variables in X i

k and Y nk , and obtain
an unbiased stochastic estimate of L̃+

k,j,l. We then compute
its gradient to obtain the an unbiased estimate of ∇L̃+

k,j,l,
which in turn is an unbiased estimate of ∇L+. We now can
apply any stochastic optimization algorithm to maximize
L+ with the stochastic gradient. Note that the computa-
tion of the stochastic gradient is only inside the sampled
mini-batches. Therefore, the cost is greatly reduced.

4.3. Algorithm Complexity
The time complexity of our inference is O

(
Q(C +D)m3

g +

(C + D)m3
f

)
where Q, C and D are the mini-batch sizes

of the three partitions. Therefore, the computational cost is
proportional to the mini-batch sizes, rather than determined
by the total number of entries M and events N . The space
complexity isO(m2

g +m2
f +
∑K
k=1 dkrk), which is to store

the prior and posterior matrices for the pseudo outputs bg
and bf and the latent factors U .

5. Related Work
Classical tensor factorization methods include CP (Harsh-
man, 1970) and Tucker (Tucker, 1966) decompositions,
which are multilinear. Many other approaches have been
proposed based on them (Shashua and Hazan, 2005; Chu
and Ghahramani, 2009; Sutskever et al., 2009; Acar et al.,
2011; Hoff, 2011; Kang et al., 2012; Yang and Dunson,
2013; Rai et al., 2014; Choi and Vishwanathan, 2014; Hu
et al., 2015a; Rai et al., 2015), to name a few. Recently,
several Bayesian nonparametric factorization models (Xu

et al., 2012; Zhe et al., 2015; 2016b;a) were proposed to esti-
mate the nonlinear relationships in data. To handle temporal
information, current methods either factorize the counts in-
stead (Chi and Kolda, 2012; Hansen et al., 2015; Hu et al.,
2015b), or discretize the time stamps into crude steps and
then factorize the counts in each step (Xiong et al., 2010;
Schein et al., 2015; 2016; 2019). Despite their success, these
methods ignore the rich temporal dependencies between the
interactions and may miss important temporal patterns. Re-
cently, Zhe and Du (2018) used the Hawkes processes to
capture fine-grained triggering effects among the interac-
tions. The method outperforms the previous approaches in
terms of prediction, and discovers interesting clusters with
temporal meanings. However, this method ignores another
important temporal effect, inhibition, hence can still fail to
capture complex, mixed temporal dependency patterns. In
addition, the method sets a local time window to enable
efficient computation, but meanwhile misses the valuable,
long-range influences of the events on each other. To over-
come these problems, we use latent factors to construct more
flexible random point processes to detect and disentangle a
variety of mixed excitation and inhibition effects, encoding
them into the latent factors. In addition, we develop an
efficient inference algorithm that is able to capture all kinds
of short-term and long-term dependencies.

Hawkes process (HP) is a popular class of random point
processes to study mutual excitations within various events.
Many models use HPs to discover temporal relationships,
e.g., (Blundell et al., 2012; Tan et al., 2016; Linderman and
Adams, 2014; Du et al., 2015; He et al., 2015; Wang et al.,
2017). Several pieces of work were also proposed to im-
prove the learning of HPs, such as nonparametric triggering
kernel estimation (Zhou et al., 2013), Granger causality (Xu
et al., 2016), short doubly-censored event sequences (Xu
et al., 2017) and online estimation (Yang et al., 2017). Re-
cently, Mei and Eisner (2017) proposed neural Hawkes pro-
cesses, which uses a continuous LSTM to model complex
temporal dependencies among the events (e.g., triggering,
suppression and their nonlinear interactions). They also
tested the usage of softplus function to integrate different
temporal effects. Distinct from their work, our method (1)
uses the latent factors (rather than free parameters) to con-
struct the point process to encode the temporal effects into
the factor representations, and (2) investigates the properties
of the rate function to fulfill efficient inference, especially
for large numbers of events and event types.

6. Experiment
6.1. Predictive Performance
Datasets. We first examined the predictive performance
on the following three real-world datasets. (1) Taobao
(https://tianchi.aliyun.com/dataset/
dataDetail?dataId=53), the online shopping
behaviours between 07/01/2015 and 11/30/2015 in the

https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
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Figure 1. Test log-likelihood (LL) on real-world datasets. HP-Local-{50, 100, 150} means running HP-Local with window size 50, 100
and 150. CPT-PTF-{5,10,20} are CPT-PTF with 5, 10 and 20 time steps.

largest retail platforms of China. We extracted a five-
mode tensor (user, seller, item, category, action), of size
980 × 274 × 631 × 58 × 2, including 16, 609 entries and
69, 833 events. Note that the action can be either ”buy“
or ”click“. (2) UFO (https://www.kaggle.com/
NUFORC/ufo-sightings/data), the UFO sighting
reports in 20th century. The dataset is about a two-mode
event-tensor (UFO shape, city), of size 28 × 13, 713,
including 45, 045 observed entries and 70, 418 sighting
events. (3) Crash (https://www.kaggle.com/
usdot/nhtsa-traffic-fatalities), the report
of fatal traffic crashes in US 2015. We extracted a
four-mode tensor (state, county, city, landuse-type), of size
51× 288× 2, 098× 5. Each entry consists of a sequence
of crash events. There are 8, 691 entries and 32, 052 events
in total. Note that while the modes are conceptually nested,
the data are well organized as an event-tensor.

Competing Methods. We compared with the following
popular and/or state-of-the-art tensor factorization methods
incorporating temporal information. (1) CP-PTF, the homo-
geneous Poisson process (PP) tensor factorization, which
uses CP to factorize the event rate of each entry in the log
domain (to ensure positiveness). (2) CPT-PTF, similar to
(Schein et al., 2015), which discretizes the timestamps into
steps and adds a time mode. Time factors are introduced and
jointly estimated with the other factors in the CP framework
over the log event rates. We assigned a condition Gaussian
prior (Xiong et al., 2010) to model the dynamics of the time
factors. (3) GP-PTF, which uses GPs to estimate the log
rate of each entry as a nonlinear function of the associated
latent factors. This is the same as our approach in modeling
the base rate. (4) CP-NPTF, non-homogeneous Poisson pro-
cess tensor factorization where the event rate is modelled
as λi(t) = t · exp

(
CP(i)

)
. Here CP(i) is CP factorization

of entry i. (5) GP-NPTF, identical to CP-NPTF except we
replace CP with GP in the rate modeling. (6) HP-Local (Zhe
and Du, 2018), Hawkes process event-tensor decomposition
using a local time window to model the rate and to estimate
the local triggering effects among the neighbouring events.

Experimental settings. For all the competing methods that
use GPs, we applied the same sparse GP framework as in
our method for scalable inference: we set the number of
pseudo inputs to 100 and used SE-ARD kernel for which
we initialized all the parameters to 1. For a fair compari-
son, all the methods were initialized with the same set of
factors independently sampled from Uniform(0, 1). We im-
plemented our approach and HP-Local with PyTorch and
used ADAM (Kingma and Ba, 2014) for stochastic optimiza-
tion. For both methods, the mini-batch size was set to 100.
The learning rate was chosen from {5 × 10−4, 10−3, 3 ×
10−3, 5×10−3, 10−2}. We ran each method for 400 epochs,
which are sufficient for convergence. All the other meth-
ods were implemented with MATLAB. For training, we
used the first 40K, 40K, 20K events from Taobao, UFO
and Crash, respectively. The remaining 29.8K, 30.4K, 12K
events were used for test. For CPT-PTF, the number of time
steps was varied from {5, 10, 20}. For HP-Local, we varied
the window size from {50, 100, 150}. Note that the event
sequences for test are very long, through which we can
examine the performance of our method in capturing long-
range temporal effects. We varied the number of the factors
from {2, 5, 8, 10}. We calculated the test log-likelihood of
each method and report the results in Figure 1.

Results. As shown in Fig. 1a-c, our method consistently
outperforms all the competing approaches, often by a large
margin. Hence, it demonstrates the advantage of our method
in predictive performance. Note that the results of some
methods are not shown because they are much worse than
all the other methods. The full results are given in the sup-
plementary material. In general, when we increased the
window size, HP-Local obtained better or similar prediction
accuracy (e.g., Fig. 1a), showing that estimating long-range
temporal dependencies helps improve the prediction. In
most cases, the other competing methods, e.g., CP/GP-PTF,
CP/GP-NPTF, are far worse than our model and HP-Local.
Since these methods are based on homogeneous or non-
homogeneous Poisson processes and disregard the temporal
dependencies among the interaction events (except that CPT-

https://www.kaggle.com/NUFORC/ufo-sightings/data
https://www.kaggle.com/NUFORC/ufo-sightings/data
https://www.kaggle.com/usdot/nhtsa-traffic-fatalities
https://www.kaggle.com/usdot/nhtsa-traffic-fatalities
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Figure 2. Structures of the learned latent factors on Taobao (a, b), Crash (c, d), UFO (e). Colors indicate the cluster memberships.
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Figure 3. Structures of the events and their temporal influences in
Taobao. the red/black lines show the excitation/inhibition effects
within and across the clusters.

PTF learns dynamics between the time factors), their results
confirm the benefit of our model in capturing a variety of
complex temporal dependencies among the events. To ex-
amine the learning behaviour of our model, we reported the
test log-likelihood after each epoch on Crash when the fac-
tor number was set to 8. As shown in Fig. 1d, our learning
algorithm converges reasonably fast (around 100 epochs)
and then remains quite stable after the convergence.

6.2. Structure Discovery
Next, we examined if our method can discover hidden struc-
tures in the data. To this end, we set the number of latent
factors to 10 and ran our algorithm on Taobao, UFO and
Crash. Then we applied kernel PCA (Schölkopf et al., 1998)
(with RBF kernel) to project the latent factors onto the x-y
plane. We then ran k-means to find the potential clusters in
the (projected) factor representations of the entities (nodes).
We used the elbow method (Ketchen and Shook, 1996) to
select the number of clusters. As we can see from Fig. 2
a-e, these factors reflect clear grouping structures. Note that
Taobao data were anonymized so we cannot investigate the
meaning of those clusters. But they can be potentially useful
for tasks like recommendation (Tran et al., 2018) and click-

through-rate prediction (Pan et al., 2019). Then for Crash
data, we show the actual geolocations of the clustered states
in Figure 2c. We can see that states grouped together are
often neighbouring each other. The clusters can be roughly
seen as the middle (red), the south (blue) and the east/west
coast (green). This is reasonable — the states close by may
have similar patterns of the traffic crash events and their
chain effects (inhibition/excitation) due to similar driving
customs, roads layout and weather patterns.

We also looked into the triggering and inhibition effects
among the interaction evens. To this end, we represented
each online shopping event on Taobao by concatenating
the latent factors of the participants, i.e., user, seller, item,
category and action. We then used kernel PCA to project the
event representations onto the x-y plane, and ran k-means
to obtain the clusters. We then randomly sampled pairs
of events within and across the clusters, and show their
triggering/inhibition relationships with red/black colors. As
we can see from Fig. 3a and b, the factor representations of
the events present a cluster structure. Interestingly, we can
see the effects between the events within the same cluster
are uniform, either excitation or inhibition (see Fig. 3a),
and across different clusters are mixed (see Fig. 3b). This
can be reasonable in that those event clusters actually reflect
how one type of events influence on each other, which is
uniform; but between different types (clusters) of events
can be mixed effects. For example, buying an IPhone will
inhibit one to buy another cellphone (identical event type),
but may stimulate them to buy a case (another event type).

7. Conclusion
We have presented a self-modulating nonparametric event-
tensor factorization model. Our model can capture vari-
ous triggering and inhibition effects among the interaction
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events, in both short and long ranges. Our inference is ef-
ficient for large numbers of observed entries and events.
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