
Towards Accurate Post-training Network Quantization via Bit-Split and
Stitching

Peisong Wang 1 Qiang Chen 1 Xiangyu He 1 Jian Cheng 1

Abstract
Network quantization is essential for deploying
deep models to IoT devices due to its high effi-
ciency. Most existing quantization approaches
rely on the full training datasets and the time-
consuming fine-tuning to retain accuracy. Post-
training quantization does not have these prob-
lems, however, it has mainly been shown effec-
tive for 8-bit quantization due to the simple op-
timization strategy. In this paper, we propose a
Bit-Split and Stitching framework (Bit-split) for
lower-bit post-training quantization with minimal
accuracy degradation. The proposed framework
is validated on a variety of computer vision tasks,
including image classification, object detection,
instance segmentation, with various network ar-
chitectures. Specifically, Bit-split can achieve
near-original model performance even when quan-
tizing FP32 models to INT3 without fine-tuning.

1. Introduction
Deep neural networks (DNNs) have been demonstrated to be
effective in a wide range of computer vision tasks, including
image recognition (Krizhevsky et al., 2012; Simonyan & Zis-
serman, 2014; Chatfield et al., 2014; He et al., 2016), object
detection (Girshick et al., 2014; Ren et al., 2015; Liu et al.,
2016), segmentation (Long et al., 2015; Chen et al., 2019)
and so on. At the same time, the high complexity including
the huge parameter size and computing operations as well
as the power consumption have hindered the deployment
of deep networks to real-world applications. Thus network
compression (Han et al., 2015; Wu et al., 2016; Wang &
Cheng, 2016; Romero et al., 2014) has drawn great atten-
tion of researchers. Among these compression techniques,
network quantization is widely used no matter on special

1NLPR & AIRIA, Institute of Automation, Chinese
Academy of Sciences. Correspondence to: Jian Cheng
<jcheng@nlpr.ia.ac.cn>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

hardware like TPU or general hardware like CPU and GPU.
By turning the floating-point values within the networks to
low-bit integers, the complex floating-point operations can
be replaced by more efficient integer operations.

Despite its efficiency, training low-bit neural networks is
nontrivial. In (Krishnamoorthi, 2018), the authors proposed
two basic network quantization paradigms, i.e., quantization-
aware training and post-training quantization. Most of cur-
rent quantization approaches belong to the former, where
low-bit networks are trained with quantization operations
inserted. Quantization-aware training can achieve higher
accuracy because the learned weights could be adjusted dur-
ing training to fit the quantization operations. On the other
hand, quantization-aware training has several drawbacks. It
relies on the full training data and large computing resources
like GPUs. Moreover, the tedious and time-consuming re-
training procedure has posed high requirements in domain
knowledge and experience for the users, which is hindering
the application of quantization techniques.

By contrast, post-training quantization has many desirable
properties. It does not need the training dataset, except for a
very small amount of data for calibration, thus no privacy
or data transmission problems will be caused. Moreover,
post-training quantization is network architecture free, back-
propagation free, and does not require domain knowledge or
any optimization tricks. It is for this reason that post-training
quantization is supported and preferable to accelerate the in-
ference of many libraries and devices, such as the TensorRT
(Migacz, 2017) on GPU, TF-Lite (Krishnamoorthi, 2018)
on TPU and the SNPE on Qualcomm devices.

Despite the advantages of post-training quantization, it has
the problem of significant accuracy degradation, especially
when both activations and weights are quantized into very
low-bit integers. Thus for current post-training quantization
in TensorRT and TF-Lite as well as the SNPE, only 8-bit
quantization is supported for the weights and activations.
However, for hardware accelerators, every bit saving could
result in significant resource reduction, including storage,
computing units and more importantly the energy consump-
tion (Horowitz, 2014). To this end, ZeroQ (Cai et al., 2020)
utilizes knowledge distillation and mix-precision quantiza-
tion, i.e., allowing different channels and filters to be quan-



Towards Accurate Post-training Network Quantization via Bit-Split and Stitching

tized into different bit-widths using separate quantization
scales. Besides the per-channel activation quantization and
mix-precision quantization, ACIQ (Banner et al., 2019) also
exploits run-time dynamic quantization, which means the
quantization parameters (such as the clipping value or quan-
tization scales) are determined at inference time. These tech-
niques substantially improve the quantization performance,
however, at the cost of remarkable complexity for inference
architecture design. Thus naive post-training quantization
with high accuracy still remains as an open challenge.

In this paper, we present Bit-Split and Stitching (Bit-split), a
novel post-training quantization framework that is effective
for very low-bit quantization. The motivation is to split
integers into multiple bits, then optimize each bit, and finally
stitch all bits back to integers (Fig. 1). We show that Bit-split
can achieve near-original model performance even when
quantizing FP32 models to INT3 without fine-tuning. Our
main contributions are summarized as follows:

• We introduce a novel Bit-Split and Stitching (Bit-split)
framework for post-training network quantization. Bit-
split is effective and hyper-parameter free, which can
be readily implemented and integrated into current
network quantization libraries.

• Based on the Bit-split framework, we further propose
Error Compensated Activation Quantization (ECAQ)
method, which could lower the quantization error for
activations.

• We evaluate our method on classification, object de-
tection and instance segmentation using various neural
networks, showing that Bit-split could achieve close
to full-precision accuracy even for 3-bit quantization,
setting new state-of-the-art post-training quantization
results.

2. Background and Notation
A typical convolutional neural network consists of multiple
convolutional and fully-connected layers, which can be for-
mulated as a matrix multiplication followed by a nonlinear
activation function Φ as follows:

Y = WTX

Z = Φ(Y )
(1)

Here, W represents the learnable parameters for convolu-
tional or fully-connected layers. Specifically for convolu-
tional layers, WT ∈ RN×(C·Kh·Kw), where N,C,Kh,Kw

refer to output channels, input channels, kernel height
and kernel width, respectively. X and Y stand for the
input feature maps and output feature maps, i.e., X ∈
R(C·Kh·Kw)×(Fh·Fw) and Y ∈ RN×(Fh·Fw) where Fh and
Fw are the height and width of input/output feature maps.

2.1. Network Quantization

Eq. (1) illustrates that most of the computation and storage
reside in the matrix multiplication of convolutions. The
purpose of network quantization is to map the floating-point
values of W and X into a finite set with discrete elements,
which can be encoded by low-bit numbers. Network quan-
tization has many advantages, therefore has been widely
studied, in which many design choices should be considered
from different viewpoints.

Uniform quantization vs. non-uniform quantization: In
non-uniform quantization, there are no restrictions for the
discrete values within the finite quantization set. While
in uniform quantization, the floating-point real numbers
are linearly quantized into low-bit integers, with the same
step value between two successive quantization integers.
Therefore, uniform quantization can turn the floating-point
operations into integer operations, which are more efficient
than lookup tables used in non-uniform quantization.

Per-layer quantization vs. per-channel quantization: Quan-
tization can be conducted under different granularities. In
(Krishnamoorthi, 2018), the authors propose per-layer quan-
tization and per-channel quantization. Per-layer quantiza-
tion adopts a single quantizer (a quantization set) for an
entire tensor W or X . While per-channel quantization uti-
lizes a separate quantizer for each channel (for activation
quantization) or for each kernel (for weight quantization).
However, per-channel quantization for activations could
complicate the convolution operations.

Unified quantization vs. mixed precision quantization: In
unified quantization, we usually specify the bit-width for
each layer or even for the whole network. There are many
works also explore mixed precision quantization, where
each channel or kernel can be quantized with different bit-
widths. Mixed-precision quantization can lower accuracy
loss caused by quantization, however, at the cost of more
complicated quantization process as well as more compli-
cated computing architecture at inference time.

2.2. Problems of Current Post-training Quantization

Low-bit network quantization turns the weights W as well
as activations X of convolutions in Eq. (1) into integer
numbers. The quantization operation could introduce much
noise, resulting in dramatic accuracy loss compared with the
original full-precision models. Especially for post-training
quantization where no fine-tuning is allowed, the quantiza-
tion error could not be compensated by training with respect
to the training target.

Because no fine-tuning is allowed, most post-training ap-
proaches aim at finding a better criterion to minimize the
‘distance’ between the pretrained model and the quantized
one. For example, TF-Lite utilizes the maximum and mini-



Towards Accurate Post-training Network Quantization via Bit-Split and Stitching

mum values of a pretrained model to determine the quantizer.
While TensorRT tries to minimize the the KL divergence be-
tween the quantized distribution and the original distribution
to determine the quantization parameters. These criteria are
straightforward and work well for 8-bit quantization. How-
ever, the quantization error of these simple criteria could be
catastrophic for lower-bit quantization.

Beside the suboptimal quantization criteria, the discrete
optimization problem is another obstacle. In network quan-
tization, the quantized parameters and activations to be opti-
mized are fixed-point integers, which are hard to solve due
to the discrete nature.

In this paper, instead of seeking an approximate criterion,
we treat the network quantization as an optimization prob-
lem. More specifically, we learn a fixed-point mapping
from input to the output for each convolution. Then for the
optimization problem, we turn the low-bit discrete optimiza-
tion into multiple bit optimization problems, which can be
solved efficiently. We will introduce our proposed method
in detail in Sec. 3.

2.3. Related Work

Network quantization has become a hot topic in deep learn-
ing community. In (Krishnamoorthi, 2018), the authors
proposed two basic network quantization paradigms, i.e.,
quantization-aware training and post-training quantization.
We will review current quantization works from these two
paradigms.

Quantization-aware Training: In quantization-aware
training, the low-bit networks are trained with the quan-
tization operations inserted. Most of current low-bit quan-
tization approaches belong to this quantization scheme.
Quantization-aware training can result in higher accuracy be-
cause the learned weights could be adjusted during training
to fit the quantization operations. Besides (Krishnamoorthi,
2018), many quantization-aware training techniques and
tricks are investigated for higher accuracy, including scaling
factor selection (Lin et al., 2016), multi-step quantization
(Zhou et al., 2017; Wang et al., 2018), stochastic quanti-
zation (Gupta et al., 2015), data representation (Miyashita
et al., 2016), multi-bit quantization (Lin et al., 2017b; Zhu
et al., 2019; Li et al., 2017; Tang et al., 2017), fixed-point
factorization (Wang & Cheng, 2017; Hu et al., 2018a), learn-
able quantization (Faraone et al., 2018; Wang et al., 2020),
etc.

Post-training Quantization: Post-training quantization
has recently drawn much attention. (Banner et al., 2019)
proposes a run-time analytical clipping approach for integer
quantization, which is further improved by per-channel bit
allocation. The authors of (Nahshan et al., 2019) study post-

training quantization from the viewpoint of loss landscape.
Mixed-precision post-training quantization is also studied
in (Cai et al., 2020). Data-free quantization for MobileNet
is studied in (Nagel et al., 2019).

In this paper, we aim at the simplest post-training quantiza-
tion scheme, i.e., we explore uniform quantization with uni-
fied bit-width for all layers. Moreover, we use per-channel
weight quantization and per-layer activation quantization,
which allows for efficient convolution implementation.

3. Method
In this section, we will introduce our proposed approach
in detail. First in Sec. 3.1, we propose a Bit-Split and
Stitching method for weight quantization, which learns the
low-bit mapping between the input and output of convolu-
tions. Then in Sec. 3.2, an efficient Error Compensated
Activation Quantization method is introduced.

3.1. Bit-Split and Stitching

In this section, we present a novel Bit-Split and Stitching
(Bit-split) method for low-bit weight quantization without
retraining. To this end, we first formulate the network quan-
tization problem as a low-bit mapping between the input and
output of convolutions. More specifically, each convolution
kernel wk maps the input X to an output feature map yk for
k = 0, · · ·N , where N represents the number of kernels for
the convolution. In the following description, we discard the
index k for simplicity. Thus for M -bit weight quantization,
our target is to learn low-bit kernel q to map the input X to
an output feature map y as follows:

minimize
α,q

‖ y − αqTX ‖2F , (2)

where q is the M -bit kernel to be learned. Note that for
each convolutional kernel q, we introduce a floating-point
scale factor α like in previous low-bit quantization methods
(Lebedev et al., 2014; Hu et al., 2018b; Cai et al., 2017).

The optimization of Eq. (2) is non-trivial due to the M -bit
constraint of q. Note that even though there are finite states
for each element of q, however, the combined solution space
is too large making exhaustive search impractical. In this
section, we propose a novel Bit-Split and Stitching (Bit-
split) method for the optimization problem of Eq. (2).

Bit-Split In Bit-split stage, we split the M -bit constraint
of q into (M − 1) ternary optimization problems as follows:

minimize
α,{q1,··· ,qM−1}

‖ y − α(20qT1 + · · ·+ 2M−2qTM−1)X ‖2F ,

s.t. qm ∈ {−1, 0,+1}(C·Kh·Kw) for m = 1, · · · ,M − 1
(3)

where qm denotes the m-th bit of q (from right to left), with
the M -th bit (i.e., the left most bit) stands for the sign. Note



Towards Accurate Post-training Network Quantization via Bit-Split and Stitching

+0 +1 +1

-1 -0 -1

-1 -1 -1

+1 +0 +0

𝑞"𝑞#𝑞$

+ 0 1 1

- 1 0 1

- 1 1 1

+ 1 0 0

𝑞

Bit

0 -1 1

0 1 -1

-1 -1 1

1 -1 1

𝑞"%𝑞#%𝑞$%

Bit

Split Optimization

Bit

Stitching

- 0 0 1

+ 0 0 1

- 1 0 1

+ 0 1 1

𝑞%

(a) (b) (c) (d)

Figure 1. An illustration of Bit-Split and Stitching (Bit-split) framework for 4-bit weight quantization. In the first step of bit-split stage,
each 4-bit value is split into 3 ternary values, which can be optimized separately in the second bit-optimization stage. The third stage
stitching optimized bits back into integers, taking the third value for example, 20 · 1 + 21 · (-1) + 22 · (-1) = −5 = -101b.

that all (M−1) bits share the same scale factor α. Moreover,
each bit of the M -bit integer has its own implicit base, i.e.,
the m-th bit has an implicit base of 2m−1.

The first step of Fig. 1 illustrates the bit-split operation,
which take the 4-bit quantization for example. For 4-bit
integers, there are one bit for sign and 3 bits that consist of 0
or 1. Thus, the 4-bit integer can be split into 3 ternary values
(i.e., -1, 0 and 1, which takes the sign into consideration),
which can be optimized separately. We will show how to
optimize these split bits in the following Bit-Optimization
section.

Bit-Optimization There are M elements that should be
optimized in Eq. (3), i.e., the scale factor α and M − 1
bits qm for m = 1, · · · ,M − 1. We utilize an iterative
optimization procedure.

The optimization of α: From Eq. (2), we can see that α is a
floating-point scalar, which can be easily solved given the
quantized value q as follows:

α =
yTXT q

qTXXT q
(4)

The optimization of qm: To solve Eq. (3) given the scale
factor α and all other M − 2 bits fixed, we can get the
following optimization problem:

minimize
qm

‖ ym − αmqTmX ‖2F ,

s.t. qm ∈ {−1, 0,+1}(C·Kh·Kw)
(5)

where ym and αm are independent of qm:
ym = y − α

∑
i 6=m

2m−1qTi X,

αm = α2m−2

(6)

By expanding Eq. (5) and denoting A = α2
mXX

T and

s = 2αmXym, we could minimize the following equation:

J(qm) = yTmym − 2αmy
T
mX

T qm + α2
mq

T
mXX

T qm

= qTmAqm + sT qm + const.
(7)

The quadratic optimization problem of Eq. (7) is hard to
solve. Here we utilize an iterative optimization procedure,
i.e., to optimize each element of qm with the rest elements
fixed. In this way, the k-th element of qm is as follows:

q(k)
m =

{
−sign(rk̄) if rk̄ > Akk

0 otherwise (8)

where rk̄ = sk + 2
∑
i 6=k

Akiq
(i)
m .

Through iterative optimization from Eq. (4) to Eq. (8), we
can get an approximate solution to Eq. (2).

Bit-Stitching Note that during bit-split stage, all bits cor-
responding to the same integer share the same sign, i.e., each
integer after bit-split consists of 0/1’s or 0/ -1’s (Fig. 1(b)).
However, after bit-optimization, this property does not hold
any longer. In other words, an integer after bit-optimization
may consist of 0/1/-1’s (Fig. 1(c)), where no unified sign bit
can be extracted.

To stitch all bits after bit-optimization back into integers, we
find that we can simply add all bits together. More specifi-
cally, given the optimized bits q

′

1, · · · , q
′

M−1, the new inte-
ger values can be obtained through the following equation:

q
′

= 20q
′

1 + · · ·+ 2M−2q
′

M−1 (9)

Note that duiring bit-stitching, each of the M − 1 bits
also has its own implicit base, i.e., the m-th bit has an
implicit base of 2m−1. Fig. 1(c) to Fig. 1(d) illustrates the
bit-stitching procedure.



Towards Accurate Post-training Network Quantization via Bit-Split and Stitching

＊
＝

＊ ＝

(a) Per-channel Quantization (b) Per-layer Quantization

× ×

(Float) (Float)

CONV CONV

MatMul MatMul

Figure 2. (a) Illustration of per-channel activation quantization. Each input channel is quantized using a separate scale factor denoted by a
specific color. (b) Illustration of transforming per-channel quantization into per-layer quantization by rescaling. The scale factor of each
input channel is moved into its corresponding 2D kernels of all filters. The bottom row shows how to conduct convolution (CONV) using
matrix multiplication (MatMul) operations. Note that at this stage, the weights are not quantized yet. Best viewed in color.

0 10 20 30 40 50 60
Output channel index for the first convolution of VGG-16-BN

0

5

10

15

R
an

ge

0 10 20 30 40 50 60
Output channel index for the second convolution of VGG-16-BN

0

5

10

15

R
an

ge

Figure 3. The ranges of activations for each channel (after ReLU)
of the first and second convolutions of VGG-16-BN. It can be seen
that the ranges for different channels differ severely.

3.2. Error Compensated Activation Quantization

Once the weights are quantized, the quantized weights stay
fixed during inference time. However, it is not the case for
activations which are dynamically produced at inference
time. Thus we could not directly optimize the quantized ac-
tivations. Therefore, we adopt Mean Squared Error (MSE)
as the criterion to minimize the ‘distance’ between the acti-
vations of pretrained model and those after quantization.

Different from previous approaches, which utilize one quan-
tizer for a whole layer for activation quantization, our pro-
posed Error Compensated Activation Quantization (ECAQ)
method could benefit from per-channel quantization, but still
has the same efficiency as per-layer quantization without any
extra computation or the need of complicated convolution.

Per-channel Activation Quantization In this section,
we first show that the activation ranges vary severely for
different channels. For demonstration, we extract the output
of the first and the second convolutional layers (after ReLU)
of VGG-16-BN model for 2400 images which are randomly
selected from the training set. We plot the range for each
channel as shown in Fig. 3.

From Fig. 3, we can see that large differences are observed
in output channel ranges for pretrained models. Due to the
large differences between channel ranges, per-layer activa-
tion quantization may suffer from large quantization error.
Thus in this paper, we explore channel-wise quantizer for
activations. Specifically, each input channel is approximated
by the quantized channel, which is scaled by a separate scale
factor as follows:

X[c, :, :] ≈ β[c] · X̂[c, :, :] (10)

Here, β can be optimized by the following formulation:

minimize
β,X̂

‖ X − β · X̂ ‖2F , (11)

Fig. 2(a) shows the per-channel quantization scheme, where
different channels with different quantization scales are de-
noted by different colors.

Per-channel quantization can significantly lower the quan-
tization error, however, at the cost of more complicated
convolution operations. We will show how to solve this
problem in the next section.



Towards Accurate Post-training Network Quantization via Bit-Split and Stitching

From Per-channel to Per-layer Quantization As shown
in the previous section, per-channel activation quantization
could complicate convolution operations. This is because
that convolutions (CONV) are implemented as matrix mul-
tiplications (MatMul), as shown in the bottom row of Fig. 2.
When each channel has a separate scale factor, the large
matrix multiplication is separated into multiple small ma-
trix multiplications, which could dramatically reduce the
computing efficiency.

In this section, we exploit the rescaling of activations and
weights to facilitate simple convolution implementation
when per-channel activation quantization is utilized. Specif-
ically, we can move the scale factor of each input channel
to its corresponding 2D kernels of all filters:

W ∗X ≈W ∗ β · X̂
= Wβ ∗ X̂,

(12)

where Wβ satisfies

Wβ [:, c, :, :] = β[c] ·W [:, c, :, :] (13)

The rescaling operation does not affect the convolution out-
put. Note that at this stage, the weights are not quantized
yet, i.e., the weights are floating-point values. After rescal-
ing, we can further quantize the weights Wβ using Bit-split
method according to Sec. 3.1 as follows:

minimize
αβ ,qβ

‖ y − αβqTβ X̂ ‖2F , (14)

where αβ and qβ represent the scale factor and quantized
filter for the rescaled weights Wβ . Fig. 2(b) illustrates the
convolution after rescaling, which can also be efficiently
implemented by matrix multiplication.

From Eq. (14), we can see that we are actually learning a
mapping from the per-layer quantized activations X̂ to the
target output Y by taking the activation quantization and
scale factors β into consideration. Thus we call the pro-
posed method Error Compensated Activation Quantization.
We summarize the overall optimization procedure of our
proposed approach in Algorithm 1.

4. Experiments
In this section, we evaluate the efficiency of our proposed
method. We first evaluate the Bit-Split and Stitching method
for weight quantization. Then the performance of Error
Compensated Activation Quantization is evaluated. We also
compare our method with current post-training methods.
All bit-width representations throughout this paper take the
sign bit into consideration. Codes are available on GitHub
at https://github.com/wps712/BitSplit.

Algorithm 1 Post-training quantization using Error Com-
pensated Activation Quantization and Bit-Split and Stitching
weight quantization.
Input: Pretrained model denoted by weights {W l}Ll=1, weight

bit-width Mw and activation bit-width Ma.
Output: Quantized weights {Ql}Ll=1, quantization scale {αl}Ll=1

for weights and {βl}Ll=2 for activations.
1: for l = 1; l ≤ L do
2: Sampling a mini-batch images
3: Forward propagation to get Xl and Y l

4: if l > 1 then
5: Optimize activation quantization scale βl according to

Eq. (11)
6: Move βl from activation to weights to obtain W l

β accord-
ing to Eq. (13)

7: else
8: W l

β ←W l, X̂l ← Xl

9: end if
10: Q max = 2Mw−1 − 1
11: αl ← max(W l

β)/Q max

12: Ql ← round(W l
β/α

l)

13: Calculate Ql1, · · · , QlMw−1 using Bit-Split
14: while not converge do
15: Optimize αl according to Eq. (4)
16: for m = 1;m < Mw do
17: Optimize Qlm according to Eq. (8)
18: end for
19: Calculate Ql using Bit-Stitching
20: end while
21: end for

4.1. Weight Quantization using Bit-Split and Stitching

In this section, we evaluate the post-training weights quanti-
zation using our proposed Bit-Split and Stitching method.
The top-1 and top-5 accuracy results of post-training quanti-
zation are reported using four popular convolutional models
pre-trained on the ImageNet dataset. We use the PyTorch
pretrained models for all experiments. The results are shown
in Table 1. We quantize the weights into 3∼8 bit while keep-
ing activations un-quantized. We also report the TF-Lite
results as a baseline for comparison.

From Table 1, it is clearly that the proposed Bit-Split and
Stitching method has very small accuracy degradation for
post-training weight quantization without fine-tuning. Our
method consistently outperforms TF-Lite baseline method.
The accuracy gap becomes larger as the bit-width goes down.
Using the proposed Bit-Split and Stitching method, no ob-
vious accuracy loss is observed for 4-bit quantization or
higher. We also want to highlight that for 3-bit quantization,
previous approaches like the TF-Lite fail to work, while in
our Bit-Split and Stitching method, only 0.9%∼1.7% top-5
accuracy drop is observed for various networks. To our
knowledge, this is the first work that achieves close-to-full-
precision accuracy for 3-bit weight quantization without
fine-tuning.

https://github.com/wps712/BitSplit


Towards Accurate Post-training Network Quantization via Bit-Split and Stitching

Table 1. Comparison results of top-1 and top-5 accuracy (%) for post-training weight quantization for various bit-widths. Activations
are un-quantized. For ResNet-18, the results with 8-bit per-layer activation quantization, denoted by Bit-split (A8), are also given,
demonstrating that 8-bit activation quantization has no accuracy loss compared with floating-point activations. Bold values indicate the
best results.

Model 8-bit 7-bit 6-bit 5-bit 4-bit 3-bit
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ResNet-18
(69.76, 89.08)

TF-Lite 69.63 88.96 69.67 89.02 69.06 88.72 66.81 87.39 55.53 79.21 0.85 2.68
Bit-split 69.79 89.15 69.84 89.15 69.83 89.12 69.70 88.93 69.11 88.69 66.76 87.45

Bit-split (A8) 69.82 89.15 69.82 89.05 69.80 89.12 69.64 88.98 69.10 88.69 66.75 87.46
ResNet-50

(76.15, 92.87)
TF-Lite 76.12 92.88 76.07 92.86 75.87 92.82 75.17 92.50 70.14 89.57 4.22 11.53
Bit-split 76.20 92.97 76.16 92.91 76.17 92.90 76.05 92.82 75.58 92.57 73.64 91.61

ResNet-101
(77.47, 93.56)

TF-Lite 77.32 93.57 77.28 93.51 77.06 93.47 76.25 93.05 72.67 90.87 9.19 20.05
Bit-split 77.55 93.59 77.44 93.59 77.51 93.60 77.55 93.59 76.89 93.31 74.98 92.42

VGG-16-BN
(73.37, 91.50)

TF-Lite 73.36 91.51 73.34 91.48 73.12 91.36 72.37 90.86 66.36 87.26 1.16 4.49
Bit-split 73.43 91.61 73.37 91.52 73.22 91.53 73.37 91.50 72.97 91.35 72.11 90.77

Table 2. Comparison results of top-1 accuracy (%) for post-training
activation quantization of ResNet-18 (69.76, 89.08). Weights are
quantized to 8-bit using Bit-split. The boldfaced and underlined
values stand for the best and second best results for each setting.

Model 8-bit 7-bit 6-bit 5-bit 4-bit 3-bit
Per-layer 69.82 69.78 69.79 69.37 68.31 64.77

Per-channel 69.79 69.86 69.79 69.63 68.83 65.91
ECAQ 69.74 69.75 69.70 69.52 68.76 66.21

In Table 1, we also report the results when activations are
quantized into 8-bit for ResNet-18, denoted by Bit-split
(A8). We can see that 8-bit activation quantization has no
loss compared with floating-point activations. The differ-
ences in results (less than 0.1%) may result in randomness.

4.2. Error Compensated Activation Quantization

In this section, we evaluate the proposed Error Compen-
sated Activation Quantization (ECAQ) approach thoroughly.
ResNet-18 network is adopted for demonstration. We quan-
tize activations into 3∼8 bit and weights to 8-bit using Bit-
split. The results are shown in Table 2.

Table 2 shows that per-channel activation quantization in-
deed generally outperforms per-layer quantization under
various bit-width settings. However, as shown in Sec. 3.2,
per-channel activation quantization can complicate convolu-
tion implementation. By contrast, both the proposed ECAQ
method and direct per-layer quantization utilize a single
quantizer for a whole layer, which is efficient at inference
time. For higher bit quantization, ECAQ method achieves
similar results (less than 0.1% differences) as direct per-
layer quantization. However, for bit-width less than 5 bit, the
proposed ECAQ consistently outperforms per-layer quanti-
zation. Especially, for 4-bit and 3-bit quantization, ECAQ
outperforms direct per-layer quantization by 0.45% and
1.44%, respectively, with a single scale for a whole layer.

To further demonstrate the effectiveness of the proposed
framework thoroughly, we give the results of Error Compen-
sated Activation Quantization coupled with Bit-Split and
Stitching weight quantization for various bit-widths on dif-
ferent networks. The results are shown in Table 3. Like
previous settings, the top-1 and top-5 accuracy results for
four popular convolutional models are reported. We quan-
tize both weights and activations simultaneously into 3∼8
bit. We also use TF-Lite as a baseline for comparison.

Table 3 shows that when both activations and weights are
quantized using the same bit-width, the proposed framework
still dramatically outperforms baseline method (TF-Lite) by
large margins. For ResNet-18, ResNet-50 and VGG-16-BN,
the baseline method fails at 4-bit quantization. By contrast,
the proposed method has less than 1.3% top-5 accuracy
degradation for these three networks at 4-bit quantization
for both weights and activations. Note that even when both
weights and activations are quantized to 3-bit, only 5 points
accuracy loss is observed, which is encouraging consider-
ing the very limited representation space and no fine-tuning
is used. For the very deep ResNet-101, the baseline ap-
proach fails at 6-bit, while our approach still works at 3-bit
quantization.

In summary, the results in Table 3 show that the proposed
framework, i.e., Error Compensated Activation Quantiza-
tion coupled with Bit-Split and Stitching weight quantiza-
tion, is powerful for post-training uniform quantization. We
will compare the proposed framework with previous works
thoroughly in the following section.

4.3. Comparison with State-of-the-arts

In this section, we evaluate the proposed framework with
existing post-training quantization approaches. The results
are shown in Table 4, which are summarized under differ-
ent bit-widths: A8W4 represents 8-bit activations and 4-bit
weights, and A4W4 indicates both weights and activations



Towards Accurate Post-training Network Quantization via Bit-Split and Stitching

Table 3. Comparison results of Top-1 and Top-5 accuracy (%) for post-training quantization of both weights and activations for various
bit-widths. Bold values indicate the best results.

Model 8-bit 7-bit 6-bit 5-bit 4-bit 3-bit
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ResNet-18
(69.76, 89.08)

TF-Lite 69.57 89.02 69.46 88.87 67.95 88.02 61.47 83.43 18.84 36.33 0.13 0.61
Bit-split 69.74 89.09 69.68 89.07 69.58 88.96 69.28 88.77 67.56 87.76 61.30 83.47

ResNet-50
(76.15, 92.87)

TF-Lite 76.05 92.93 75.75 92.70 73.83 91.66 65.46 86.34 10.40 22.36 0.11 0.54
Bit-split 75.96 92.83 76.09 92.84 75.90 92.75 75.38 92.59 73.71 91.62 66.22 87.18

ResNet-101
(77.47, 93.56)

TF-Lite 76.78 93.31 74.07 91.79 31.78 55.96 0.82 2.65 0.25 0.98 0.09 0.54
Bit-split 77.23 93.55 77.20 93.47 76.93 93.42 76.07 92.95 74.68 92.18 63.96 85.65

VGG-16-BN
(73.37, 91.50)

TF-Lite 73.31 91.53 72.94 91.25 70.65 89.77 54.45 78.18 3.41 10.17 0.18 0.78
Bit-split 73.43 91.54 73.43 91.55 73.34 91.45 72.89 91.22 71.14 90.29 66.11 86.92

Table 4. Comparison of different post-training quantization approaches on ImageNet classification benchmark. Top-1 accuracy (%) is
reported. We also indicate whether per-layer or per-channel activation quantization, and unified-precision or mixed-precision quantization
schemes are utilized. Bold values indicate the best results.

Model Per-layer Unified-precision ResNet-18 ResNet-50 ResNet-101 VGG-16-BN
Full-precision - - 69.76 76.15 77.47 73.37

A8W4 TF-Lite (Krishnamoorthi, 2018)
√ √

55.5 70.1 72.6 66.4
ACIQ (Banner et al., 2019) ×

√
67.4 74.8 76.3 71.7

ACIQ-Mix (Banner et al., 2019) × × 68.3 75.3 76.9 72.4
Bit-split

√ √
69.1 75.6 76.9 73.0

A4W4 TF-Lite (Krishnamoorthi, 2018)
√ √

18.8 10.4 0.3 3.4
TensorRT (Migacz, 2017)

√ √
31.9 46.2 49.9 -

LAPQ (Nahshan et al., 2019)
√ √

59.8 70.0 59.2 -
ACIQ-Mix (Banner et al., 2019) × × 67.0 73.8 75.0 71.8

Bit-split
√ √

67.6 73.7 74.7 71.1
Bit-split-per-channel ×

√
68.1 74.2 75.3 71.8

are quantized into 4-bit. For comprehensive comparison,
we also report whether per-layer or per-channel activation
quantization, and unified-precision or mixed-precision quan-
tization schemes are utilized.

Table 4 shows that the proposed bit-split frameworks dramat-
ically outperforms previous results when per-layer activa-
tion quantization and unified precision quantization schemes
are utilized. With 4-bit weight quantization, our bit-split
framework even outperforms current state-of-the-art method
ACIQ-Mix, which utilizes per-channel quantization, mixed-
precision and dynamic quantization. When we utilize per-
channel quantization for the proposed bit-split framework,
the accuracy can further be improved, setting new state-of-
the-arts for post-training quantization.

4.4. Object Detection and Instance Segmentation

To show the generalization ability of our proposed frame-
work, we conduct experiments on object detection and in-
stance segmentation. MS COCO dataset is used for evalu-
ation. The experiments are conducted using mmdetection1

toolbox. The pre-trained models are trained on 80k training

1https://github.com/open-mmlab/
mmdetection

Table 5. Object detection (bounding box AP) and instance segmen-
tation (mask AP) results on COCO minival set.

Model AP0.5:0.95 AP0.5 AP0.75

RetinaNet
(Box)

Full-precision 35.6 55.5 38.3
A8W4 34.4 54.2 36.5

Mask R-CNN
(Box)

Full-precision 37.3 59.0 40.2
A8W4 36.2 57.5 39.3

Mask R-CNN
(Mask)

Full-precision 34.2 55.9 36.2
A8W4 33.4 54.4 35.4

images and 35k of validation images (trainval35k), and is
evaluated on the remaining 5k validation images (minival).
Input images are resized to 800 pixels in the shorter edge.

We evaluate bit-split framework using single-stage object de-
tection of RetinaNet (Lin et al., 2017a), as well as the object
detection and instance segmentation using two-stage Mask
R-CNN (He et al., 2017). Both networks using ResNet-50
as backbone. We quantize all layers into 4bit except the first
layer and the final output layers which are quantized to 8bit.
Activations are quantized into 8bit. The results are shown in
Table 5. We can see that there are about 0.8%∼1.2% mAP
degradation with 8bit activations and 4bit weights without
fine-tuning, which demonstrates the generalization ability
of the proposed framework.

https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmdetection


Towards Accurate Post-training Network Quantization via Bit-Split and Stitching

5. Conclusion
In this work, we propose a Bit-Split and Stitching frame-
work for lower-bit post-training quantization with minimal
accuracy degradation. The proposed framework is effective
and hyper-parameter free, which can be easily implemented
and integrated into current network quantization libraries.
Based on the Bit-split framework, we also propose an Error
Compensated Activation Quantization method, which could
lower the quantization error for activations. The proposed
framework is validated on a variety of computer vision tasks,
including image classification, object detection, instance
segmentation with various network architectures, showing
close to full-precision results even for 3-bit quantization
without fine-tuning.

Acknowledgements
This work was supported in part by National Natural Sci-
ence Foundation of China (No.61906193), the Strategic
Priority Research Program of Chinese Academy of Sci-
ence (No.XDB32050200), the Advance Research Program
(No.31511130301), National Key R&D Plan of China
(No.2018AAA0103304) and Jiangsu Frontier Technology
Basic Research Project (No.BK20192004).

References
Banner, R., Nahshan, Y., and Soudry, D. Post training

4-bit quantization of convolutional networks for rapid-
deployment. In Advances in Neural Information Process-
ing Systems, pp. 7948–7956, 2019.

Cai, Y., Yao, Z., Dong, Z., Gholami, A., Mahoney, M. W.,
and Keutzer, K. Zeroq: A novel zero shot quantization
framework. arXiv preprint arXiv:2001.00281, 2020.

Cai, Z., He, X., Sun, J., and Vasconcelos, N. Deep learning
with low precision by half-wave gaussian quantization.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

Chatfield, K., Simonyan, K., Vedaldi, A., and Zisserman, A.
Return of the devil in the details: Delving deep into con-
volutional nets. arXiv preprint arXiv:1405.3531, 2014.

Chen, Q., Cheng, A., He, X., Wang, P., and Cheng, J. Spa-
tialflow: Bridging all tasks for panoptic segmentation.
arXiv preprint arXiv:1910.08787, 2019.

Faraone, J., Fraser, N., Blott, M., and Leong, P. H. Syq:
Learning symmetric quantization for efficient deep neural
networks. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich
feature hierarchies for accurate object detection and se-

mantic segmentation. In Computer Vision and Pattern
Recognition, 2014.

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan,
P. Deep learning with limited numerical precision. CoRR,
abs/1502.02551, 392, 2015.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network. In
Advances in Neural Information Processing Systems, pp.
1135–1143, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. Mask r-
cnn. In Proceedings of the IEEE international conference
on computer vision, pp. 2961–2969, 2017.

Horowitz, M. 1.1 computing’s energy problem (and what
we can do about it). In 2014 IEEE International Solid-
State Circuits Conference Digest of Technical Papers
(ISSCC), pp. 10–14, Feb 2014. doi: 10.1109/ISSCC.
2014.6757323.

Hu, Q., Li, G., Wang, P., Zhang, Y., and Cheng, J. Training
binary weight networks via semi-binary decomposition.
In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 637–653, 2018a.

Hu, Q., Wang, P., and Cheng, J. From hashing to cnns:
Training binary weight networks via hashing. In AAAI,
February 2018b.

Krishnamoorthi, R. Quantizing deep convolutional net-
works for efficient inference: A whitepaper. CoRR,
abs/1806.08342, 2018.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Advances in neural information processing systems,
pp. 1097–1105, 2012.

Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., and
Lempitsky, V. Speeding-up convolutional neural net-
works using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

Li, Z., Ni, B., Zhang, W., Yang, X., and Gao, W. Perfor-
mance guaranteed network acceleration via high-order
residual quantization. In IEEE International Conference
on Computer Vision, ICCV 2017, Venice, Italy, October
22-29, 2017, pp. 2603–2611, 2017.

Lin, D. D., Talathi, S. S., and Annapureddy, V. S. Fixed
point quantization of deep convolutional networks. In
Proceedings of the 33nd International Conference on



Towards Accurate Post-training Network Quantization via Bit-Split and Stitching

Machine Learning, ICML 2016, New York City, NY, USA,
June 19-24, 2016, pp. 2849–2858, 2016.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P.
Focal loss for dense object detection. In Proceedings of
the IEEE international conference on computer vision,
pp. 2980–2988, 2017a.

Lin, X., Zhao, C., and Pan, W. Towards accurate binary
convolutional neural network. In Advances in Neural
Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, 4-9
December 2017, Long Beach, CA, USA, pp. 344–352,
2017b.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,
C. Y., and Berg, A. C. Ssd: Single shot multibox detector.
In European Conference on Computer Vision, 2016.

Long, J., Shelhamer, E., and Darrell, T. Fully convolutional
networks for semantic segmentation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3431–3440, 2015.

Migacz, S. 8-bit inference with tensorrt. In GPU technology
conference, volume 2, pp. 5, 2017.

Miyashita, D., Lee, E. H., and Murmann, B. Convolutional
neural networks using logarithmic data representation.
arXiv preprint arXiv:1603.01025, 2016.

Nagel, M., Baalen, M. v., Blankevoort, T., and Welling, M.
Data-free quantization through weight equalization and
bias correction. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 1325–1334, 2019.

Nahshan, Y., Chmiel, B., Baskin, C., Zheltonozhskii,
E., Banner, R., Bronstein, A. M., and Mendelson, A.
Loss aware post-training quantization. arXiv preprint
arXiv:1911.07190, 2019.

Ren, S., He, K., Girshick, R., and Sun, J. Faster r-cnn:
Towards real-time object detection with region proposal
networks. In Advances in neural information processing
systems, pp. 91–99, 2015.

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta,
C., and Bengio, Y. Fitnets: Hints for thin deep nets. arXiv
preprint arXiv:1412.6550, 2014.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Tang, W., Hua, G., and Wang, L. How to train a compact bi-
nary neural network with high accuracy? In Proceedings
of the Thirty-First AAAI Conference on Artificial Intel-
ligence, February 4-9, 2017, San Francisco, California,
USA., pp. 2625–2631, 2017.

Wang, P. and Cheng, J. Accelerating convolutional neu-
ral networks for mobile applications. In Proceedings of
the 2016 ACM on Multimedia Conference, pp. 541–545.
ACM, 2016.

Wang, P. and Cheng, J. Fixed-point factorized networks. In
The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

Wang, P., Hu, Q., Zhang, Y., Zhang, C., Liu, Y., and Cheng,
J. Two-step quantization for low-bit neural networks. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4376–4384, 2018.

Wang, P., He, X., Li, G., Zhao, T., and Cheng, J. Sparsity-
inducing binarized neural networks. In AAAI, pp. 12192–
12199, 2020.

Wu, J., Leng, C., Wang, Y., Hu, Q., and Cheng, J. Quantized
convolutional neural networks for mobile devices. IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Zhou, A., Yao, A., Guo, Y., Xu, L., and Chen, Y. Incre-
mental network quantization: Towards lossless cnns with
low-precision weights. arXiv preprint arXiv:1702.03044,
2017.

Zhu, S., Dong, X., and Su, H. Binary ensemble neural
network: More bits per network or more networks per
bit? In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.


