
On `p-norm Robustness of Ensemble Decision Stumps and Trees

A. Proof of Proposition 1
Proposition 1. Given a box B = (l1, r1]⇥ · · ·⇥ (ld, rd] and a point x 2 Rd. The closest `p distance (p 2 [0,1]) from x

to B is kz � xkp where:

zi =

8
><

>:

xi, li  xi  ui

li, xi < li

ui, xi > ui.

Proof. For p > 0, The goal is to minimize the following objective:

min
z
kz � xkpp = min

z

dX

i=1

|zi � xi|p

s.t. li < zi  ri, 8i 2 [d].

And for p = 0, the objective is

min
z
kz � xk0 = min

z

dX

i=1

I(zi 6= xi)

s.t. li < zi  ri, 8i 2 [d].

where I(·) is an indicator function. For p =1, the objective is

min
z
kz � xk1 = min

z

dX

i=1

|zi � xi|

s.t. li < zi  ri, 8i 2 [d].

Since each term in the summation is separable, we can consider minimizing each term in the summation signs separately.
Given the constraints on zi, the minimum is achieved at the condition specified in Eq. (3) regardless of the choice of p:

zi =

8
><

>:

xi, li  xi  ui

li, xi < li

ui, xi > ui.

B. Closed form update rule for `p Stump Ensemble Training
For exponential loss we can rewrite eq (15) as

N�1X

i=1

L(D̃(d✏e, d)) =
N�1X

i=1

�i exp(�yiwl)

=
X

yi=1

�i exp(�wl)+
X

yi=�1

�i exp(wl)

where

�i = L(D̃(d✏e, d)� yiwl)

which is fixed with a fixed wr.

On `p-norm Robustness of Ensemble Decision Stumps and Trees

And we can further derive the optimal wl at each update step
X

yi=1

�i(� exp(�w⇤
l)) +

X

yi=�1

�i exp(w
⇤
l) = 0

X

yi=1

�i exp(�w⇤
l) =

X

yi=�1

�i exp(w
⇤
l)

w
⇤
l = ln

P
yi=1 �iP
yi=�1 �i

/2.

C. Robustness verification for ensemble trees
In this section, we provide the detail algorithm of robustness verification for ensemble trees. This algorithm is based
on the robustness verification framework in (Chen et al., 2019b). In Algorithm 1, we describe the modified function
CliqueEnumerate, which is the key procedure of this framework. The main difference is that after we form the initial
set of cliques, we will recheck whether the formed cliques have intersection with the `p perturbation ball (line 18 to 22).

D. Proof of Theorem 2
Proof. By definition, we have

L(D̃(d✏e, d)) = L(min(D̃L(d✏e,d), D̃R(d✏e,d)))
= max(L(D̃L(d✏e,d)), L(D̃R(d✏e,d))).

Exponential loss L is convex and monotonically increasing; L(D̃L(d✏e,d)) and L(D̃R(d✏e,d)) are both jointly convex in
wl, wr. Note that the dynamic programming related terms become constants after they are computed, so they are irrelevant
to wl, wr. Therefore, L(D̃(d✏e, d)) and further

PN�1
i=0 L(D̃(d✏e, d)) are jointly convex in wl, wr.

Dataset ensemble stumps lr. ensemble trees lr. `1 training
ensemble trees sample size

breast-cancer 0.4 - -
diabetes 0.4 - -

Fashion-MNIST shoes 0.4 1.0 5000
MNIST 1 vs. 5 0.4 1.0 5000
MNIST 2 vs. 6 0.4 1.0 5000

Table 6. Detail settings of the experiments. Here we report the learning rate of different training methods for ensemble stumps and trees.
We also report the sample size in experiments for ensemble tree training and the scheduling length in `p robust training for ensemble
stumps.

D.1. Detail settings of the experiments

Here we report the detail settings of our experiments in Table 6. For most of the experiments, we follow the learning rate
settings in (Andriushchenko & Hein, 2019). For ✏ scheduling length, we empirically set to the best value near ✏p/✏std for
each dataset and ✏ settings (e.g., for `1 norm training, the best schedule length is among 2, 3 and 4 epochs for ✏1 = 1.0 and
✏std = 0.3). Here the ✏std is ✏1 used in (Andriushchenko & Hein, 2019). For each dataset, different methods are trained
with the same group of parameters.

For `1 robust training for ensemble trees, we use a subsample of training datasets to reduce training time. On Fashion-MNIST
shoes, MNIST 1 vs. 5 and MNIST 2 vs. 6 datasets, we subsample 5000 images of the selected classes from the original
dataset. For `2 robust training, we subsample 1000 images of the selected classes from the original dataset.

D.2. `1 vs. `p robust training

For a binary classifier y = sgn(F (x)), and a fixed ✏, we have mink�kp✏ yF (x+ �) � mink�k1✏ yF (x+ �). Therefore,
the exact `1 robust loss can be a natural upper bound of `p robust loss. This explains the close result from `1 and `p robust
training, when using the same ✏. However, this `1 upper bound tends to hurt the clean accuracy , which we can see from
Table 4. Additionally, unlike `1 or `2 norms, it is impossible to set this `1 perturbation to a large value (e.g., ✏1 = 1.0).

On `p-norm Robustness of Ensemble Decision Stumps and Trees

E. Additional experiment results
E.1. Comparison of `1 robustness

In this section, we report the `1 verified errors of models in Table 4. For each model in the table, we verify the models
using `1 robustness verification of decision stumps (Andriushchenko & Hein, 2019) with perturbation norm ✏1. In general,
Andriushchenko & Hein (2019) produces better `1 norm verification error because it is designed for that case, but when
training using our `1 robust training procedure with a larger `1, models also get relatively good `1 robustness. Note that
here we train different number of stumps for different ✏1(e.g. For MNIST dataset, we train 20 stumps for ✏1 = 0.3 and 40
stumps for ✏1 = 1.0). And for a fixed ✏, we train the `1 robust model with the same number of stumps with other methods
when making comparisons.

Dataset standard training `1 training `1 training
name ✏1 ✏1 `1 verified err. `1 verified err. `1 verified err.

breast-cancer 0.3 1.0 88.32% 10.94% 17.51%
diabetes 0.05 0.05 42.85% 35.06% 31.81%

Fashion-MNIST shoes 0.1 0.1 69.85% 11.35% 11.75%
0.2 0.5 98.85% 19.30% 27.60%

MNIST 1 vs. 5 0.3 0.3 67.09% 4.09% 4.05%
0.3 1.0 66.20% 3.60% 11.59%

MNIST 2 vs. 6 0.3 0.3 97.74% 8.63% 9.10%
0.3 1.0 100.0% 8.69% 15.28%

Table 7. `1 robustness of ensemble decision stumps. This table reports the `1 robustness for the same set of models in Table 4. For
each dataset, we evaluate standard models, the `1 robust models trained using (Andriushchenko & Hein, 2019) with perturbation norm
✏1, and our `p robust model with p = 1 and perturbation norm ✏1. We test the models with `1 norm perturbation ✏1. Standard test
errors are omitted as they as the same as in Table 4.

E.2. `2 robust training

In Section 5 we mainly presented results for the p = 1 setting, however our robust training procedure works for general
`p norm. In this section, we show some `2 robust training results. For each dataset, we train three models using standard
training, `1 robust training (Andriushchenko & Hein, 2019) with `1 perturbation norm ✏1, and `p robust training with
p = 2 and `2 perturbation norm ✏2. And in Table 8 and 9, we report the verification results of these models from `2

verification.

Dataset standard training `1 training `2 training
name ✏1 ✏2 standard err. `2 verified err. standard err. `2 verified err. standard err. `2 verified err.

breast-cancer 0.3 0.7 0.73% 97.08% 4.37% 99.27% 8.76% 39.42%
Fashion-MNIST shoes 0.2 0.4 5.05% 69.85% 9.25% 81.05% 14.55% 49.55%

MNIST 1 vs. 5 0.3 0.8 0.59% 67.09% 1.33% 66.45% 4.44% 36.56%
MNIST 2 vs. 6 0.3 0.8 2.81% 97.74% 3.91% 85.52% 13.67% 76.98%

Table 8. `2 robust training for ensemble stumps In this table, we train the model with p = 2 and compare the results with `1 trained
models. For each dataset, we train three models using standard training, `1 norm robust training with ✏1 and `2 norm robust training
with ✏2. And we test and compare the `2 robustness of these models using `2 robust verification.

Dataset standard training `1 training (Andriushchenko & Hein, 2019) `2 training (ours)
name ✏1 ✏2 n. trees depth standard err. verified err. standard err. verified err. standard err. verified err.

Fashion-MNIST shoes 0.2 0.4 3 5 8.05% 99.40% 7.65% 93.49% 17.36% 68.23%
breast-cancer 0.3 0.8 5 5 1.47% 97.06% 1.47% 97.79% 12.50% 55.88%

MNIST 1 vs. 5 0.3 0.8 3 5 2.37% 100.0% 2.12% 97.72% 23.25% 50.54%
MNIST 2 vs. 6 0.3 0.8 3 5 3.82% 100.0% 3.12% 100.0% 19.80% 93.56%

Table 9. `2 robust training for tree ensembles. We report standard and `2 robust test error for all the three methods. We also report ✏1
and ✏2 for each dataset, and the number of trees in each ensemble.

On `p-norm Robustness of Ensemble Decision Stumps and Trees

Algorithm 1 Enumerating all K-cliques on a K-partite graph with ✏p, dimension d and example x

input :V1, V2, , . . . , VK are the K independent sets (“parts”) of a K-partite graph; the graph is defined similarly as in
Chen et al. (2019b).

1 for k 1, 2, 3, . . . , K do
2 Uk {(Ai, B

i(k)

)|i(k) 2 Vk, Ai = {i(k)}} /* U is a set of tuples (A,B), which stores a
set of cliques and their corresponding boxes. A is the set of nodes in one clique
and B is the corresponding box of this clique. Initially, each node in Vk forms a
1-clique itself. */

3 end
4 CliqueEnumerate(U1, U2, , . . . , UK)
5 Function CliqueEnumerate(U1, U2, , . . . , UK)
6 Ûold U1

7 for k 2, 3, . . . , K do
8 Ûnew ;
9 for (Â, B̂) 2 Ûold do

10 for (A, B) 2 Uk do
11 if B \ B̂ 6= ; then

/* A k-clique is found; add it as a pseudo node with the intersection of
two boxes. */

12 Ûnew Ûnew [{(A [Â, B \ B̂)}
13 end
14 end
15 Ûold Ûnew

16 end
17 Û ;
18 for (A,B) 2 Ûnew do
19 if CheckClique(B, d, p, ✏p) then

/* After finding all the k-cliques, we need to recheck whether these cliques have
intersection with the `p perturbation ball around the example x. */

20 Û Û [{(A,B)}
21 end
22 return Û

23 end
24 Function CheckClique(B, d, p, ✏)
25 dist minz2Bkz � xkpp using Proposition 1
26 if dist < ✏

p then
27 return false
28 return true
29 end

