Supplementary material for

Logistic Regression for Massive Data with Rare Events

In this section, we prove all theoretical results in the paper. To facilitate the presentation
of the proofs, denote
a, = Vneont,
The condition that E(e!l¥l) < oo for any ¢ > 0 implies that
E(e"l|z") < oo, (5.1)

for any t; > 0 and t5 > 0, and we will use this result multiple times in the proof. The
inequality in (S.1) is true because for any ¢; > 0 and t5 > 0, we can choose t > t; and k > t,
so that

_ k,—t _ k,—t
X > g—tofllell — gt otilel i)l %etlx”z\\k > %enx

]|,
with probability one.
S.1 Proof of Theorem 1
Proof of Theorem 1. The estimator 6 is the maximizer of
00) =" [(a +xIB)y; — log{1 + exp(a +x!' B)}], (S-2)
i=1
so u,, = an(é — 0,,;) is the maximizer of
y(a) = €0, + a; ) — £(0,). (S.3)
By Taylor’s expansion,
y(u) = a, ' u"0(6,) + 0.5, > " ¢i(0n + a, " 4)(z 1), (S.4)

1=1

where ¢;(0) = p;(a, B){1 — pi(a, B)},

() = ):Z {vi — pi(0)}z; = Z{yz pi(a, B)}z;



is the gradient of (@), and 1 lies between 0 and u. If we can show that
a, " 0(6n) — N(0, My), (S.5)

in distribution, and for any u,

a,’ Z ¢i(0n; + a;, 0)ziz] — My, (S.6)

i=1

in probability, then from the Basic Corollary in page 2 of Hjort & Pollard (2011), we know
that a, (0 — 0,;), the maximizer of v(u), satisfies that

n(0 — 0,) = M;' x a, ' {(0,) + 0p(1). (S.7)

Slutsky’s theorem together with (S.5) and (S.7) implies the result in Theorem 1. We prove
(S.5) and (S.6) in the following,.
Note that

Z {yz Y2 antn@t }Zm (88)

is a summation of i.i.d. quantities. Since a,; — —oo as n — oo, the distribution of
{y — p(ane, Bi) }z depends on n, we need to use a central limit theorem for triangular arrays.
The Lindeberg-Feller central limit theorem (see, Section *2.8 of van der Vaart, 1998) is
appropriate.

We exam the mean and variance of a;'/(8,,). For the mean, from the fact that

E[{y: — pi(ant, Be) }zi] = E[E{y: — pi(cns, Br)|2i }z:] = 0,

we know that E{a; '4(6,,)} = 0.
For the variance,

V{a_lf( nt) ZV{% pi(Qnt, Br) }2i) = a,, nIE{gb( nt)zz }

=1

— 20K et B X7, T _E Bl *g7T
n (1 _|_€ant+,3;rx)2 (1 _|_€ant+,3;rx)2 .

Note that

T
ePi X7z T

(1 + eant+5?x)2

T
— P *gg T,

almost surely, and

eﬁ’fo“ZHQ BEx|[, 112 . BEx||., 112
(L o B2 <ePrX|z||f with  E(eP||z]|*) < co.



Thus, from the dominated convergence theorem,

T
ePi X771

1 + eant+:3th)2

V{a 10(6,,)} = IE{ ( } — E(eP*zz").

Now we check the Lindeberg-Feller condition. For any ¢ > 0,

D E {1~ pulevse B}l L {3 — pilev B} > )

= nE[[{y = p(Ou)}2IP1(I{y — p(6u)}2] > an)|
= nE[p(8u) {1 — p(6) 2P L1 {1 = p(Bu)}2l| > ane)]
+ E[{1 = p(6) Hp(60) P 1221 ([p(600)7]] > re)]
< 1B [p(8,) 2] 1([21] > ne)] + nE[{p(8,0) 2> ([[p(8re)2] > ane)]
< E{HI2)21(|12]) > ae)} + aZE{I I 221 (|12]) > ane))

= o(ap),

where the last step is from the dominated convergence theorem. Thus, applying the Lindeberg-
Feller central limit theorem (Section *2.8 of van der Vaart, 1998), we finish the proof of (S.5).
The last step is to prove (S.6). We first show that

.2 6iOn + a )|z — a7 Y 6i(0,)||i]?
=1 =1

a,” Z |0i(One + a;,"10) — 63(00)[|2:])*

< lla, tla, QZPZ ]

Tﬂt +an uTzz

_ uH 3
- Z{1+60Tz+a LaTg }2” ZH

Ha;lﬁ!l Tl -+
< e Ze(llﬁ DA+l |1 2,12 = op(1). (S.9)

i=1

Here, the last inequality in (S.9) is because u lies between 0 and 1, and thus |la, 'l < |Jul]
for a, > 1.

To finish the proof, we only need to prove that

0,2 ¢i(0n)zizd — E(eP *zz"), (S.10)

i=1
in probability. This is done by noting that

1 n thZi

_92 - T e n T
a i(Ont)ziz; = Z,Z; S.11
o 2 0Bzl =) (.11)
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== Z 72} = E(e%*zz") + 0p(1), (S.12)
(1+e ntzl

by Proposition 1 of Wang (2019). O

S.2 Proof of Theorem 2
is the maximizer of ¥

Proof of Theorem 2. The estimator 0 ... v der

V &n(eunder et) is the maximizer Of ’yunder< ) = gunder(ent + an u) é?lvnder
expansion,

(0) defined in (10), so
(60,¢). By Taylor’s

1 . 0; ,
’ander(u) - _uTEZVnder(e’ﬂt) + 5= Z ;¢l(0nt + aT_Llu) (Z;I‘u)27 (S]'S)

where

(e (0) = —tnde— under Z {yz pi(0)}z; = Z {yz pi(e, B)}zi

is the gradient of £¥ ,..(0), and 1 lies between 0 and u. Similarly to the proof of Theorem 1,
we only need to show that

—1 W
Qp, Eunder

(0,0) — N[O, E{eP™(1+ ceﬁ?X)zzT}], (S.14)

in distribution, and for any u,

anm O 1 x
a,’ Z ;Qﬁi(ant + a;")z;z] — E(eﬁtT zzT)7 (S.15)

i=1

in probability.
We prove (S.14) first. Recall that D,, is the full data set and §; = y; + (1 — y;) L (u; < ),
satisfying that
=E(6i|Dy) = yi + (1 — yi)mo = mo + (1 — m0) ;.

We notice that

E(5i|zi) = pz‘(ant,ﬂt) + {1 - pi(ant7/6t)}7TO = Ty + (1 - Wo)pi(antaﬁt)-

Let n; = %{yZ — pi(Ont)}z;, we know that n;, i = 1,...,n, are i.i.d., with the underlying
distribution of n; being dependent on n. From direct calculation, we have

E(U1|Zz) = 07 and
|z.) — {yi — pi(0)}° .
Vil =8| O, ]
= [Pi(0n){1 = pi(00)}* + 75 {1 = pi(0ne) Hpi(0ne) }*] 22
= {1 = pi(Ont) + 75 ' Pi(Ont) }0i(0ne) {1 — pi(Ons) }ziz]
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1+ 7r_160¢nt+xiTﬂt
- (1 +Za"t+xT,3t) pi(Ont)2:2;

< ant(1+7r 1 Oéntexl,@t) X; ’BtZiZT
> i

Thus, by the dominated convergence theorem, we obtain that
V() = E{V(ni|z;)} = ea"t]E{exiTﬁt(l + ce®i ﬂt)z 2, }{1 +o(1)}. (S.16)

Now we check the Lindeberg-Feller condition (Section *2.8 of van der Vaart, 1998). For
simplicity, let 7 = 79 + (1 — 7o)y and 6 = y + (1 — y)I(u < 7), where u ~ U(0, 1). For any
e >0,

S E{InlPI(n] > aue)}

=nE[[|7'0{y — p(0n) 2P (|77 6{y — p(Oui)}zl| > ane)]
=monE[[|[7~ {y — p(0ne) }2|*I(||7{y — p(Oui) }2l| > ane)]

+ (1= mo)nE[7 ly{y — p(0n) }2l L7~ y{y — p(Bur)}2]| > ane)]
=monlk [p(ent)”{l - p(ent)}ZHQI(H{l — p(Ont) }z|| > ane)]

+ 75 NE[{1 = p(0u) HIp(One)2l|* I (75 |p(6ne)2]| > ane)]

+ (1= 70)nE [p(8ne) [{1 = p(8ne) }2[*I([{1 — p(8u) }2l| > ane)]
<nE{p(0n)||z]*I(||z]| > ane) } + nmg E{||p(0n)2|I*I(||75 ' p(8nr)z]| > ane) }
gnea"t]E{eﬁt *|z|*1(||z]| > ane)} + nmg 1620‘"’51E41{6ﬂT"||z|| I(my e e ||z| > ane)}
=o(ne*) = o(ay),

where the second last step is from the dominated convergence theorem and the facts that
a, — oo and lim, , €*/my = ¢ < co. Thus, applying the Lindeberg-Feller central limit

theorem (Section *2.8 of van der Vaart, 1998) finishes the proof of (S.14).
Now we prove (S.15). By direct calculation, we first notice that

_ - {yi + M (u; < 7TO>}€XZ P T
Al = Z ¢l nt Z 1 n eant-‘rxTﬁt) Zizi (817)
=1

has a mean of

B x -
E(A)) :E{ s ea 5 )2ZZT} = E(e’*zz") + o(1), (S.18)
ent + X

where the last step is by the dominated convergence theorem. In addition, the variance of
each component of A; is bounded by

1E{(ew%ww }SE@thW):dU, S0

n | 7(1 4+ eant+BF x)4 nmo




where the last step is because ne* — oo and e* /1y — ¢ < oo imply that nmy — oo. From
(S.18) and (S.19), Chebyshev’s inequality implies that A; — E(eﬁ? *zz") in probability.
Notice that

n n

_ 52 1., _ 51
3 Ot o Dzl = o 3 (Ol
< llay "tlla;,® Zn: O (O + a0 2]
>~ n n - T n

1 6
< la; M x gz_fe(llﬁz\\+||ull)l\zill||ZZ.||3 = |la,; ]| x As.
i=1 "

Since ||a;,'a|| — 0, to finish the proof of (S.15), we only need to prove that A, is bounded
in probability. Using an approach similar to (S.18) and (S.19), we can show that A, has a
mean that is bounded and a variance that converges to zero.

O

S.3 Proof of Theorem 3

Proof of Theorem 3. If we use Ty, to denote the under-sampled objective function shifted
by b, i.e., Tpe(8) = °,..(0 —b), then the estimator "¢ is the maximizer of

under under
Ty (0) = Z 6;[(0 —b)"z;y; — log{1 + e(efb)Tz’}}. (S.20)

We notice that \/@(0“1"3 — 0, is the maximizer of yy.(0) = Tpe(Ops + a; 1) — Tpe(Or).

under
By Taylor’s expansion,

1 s 1 < iy
’)/p<U) = —uTTbC(Hm) + E ; 61(251(07” —b -+ CLnll,I) (Z;Fll)2, (821)

n

where

a,rbc

T170(0) = Z‘S {3/@ pz 0, — }ZZ Z(S {yl pz Qg — b /Bt)}zl

=1

is the gradient of Y.(0), and 1 lies between 0 and u.
Similarly to the proof of Theorem 1, we only need to show that

an Tbc<9nt) — N{O, E(m) }, (822)
in distribution, and for any u,
v 1 exi P T
an2 ; 52¢2(0nt —b + Clnll,I)ZZ'ZZ-T — E (mzizi ) (823)
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in probability.
We prove (S.22) first. Define 1,; = 0;{y; — pi(ne — b, B¢) }z;. We have that

E(nui|z:) = E[{Wo +yi(1 — WO)}{yz‘ — pi(an — b, ,Bt)}|zi]zi
= [pi<ant7/6t>{1 _pi<ant - b; lgt>} - 7‘-0{1 - pi(antvﬁt)}{pi(ant - b7 ﬁt)}]zl = 07

which implies that E(n,;) = 0. For the conditional variance

V(nuilzi) = E[{mo + yi(1 — 7o) Hyi — pi(ane — b, Bt)}zfzi]ziz;r
= [pi(ant7 Bl — pilan — b, Bt)}z + mo{1 — pilant, Be) Hpi(ans — b, ﬁt)}Q] ZiZ;r

eam+x?ﬁt + 7T0€2(Oént_b0+x;-rﬁt)
_ T
= Z;Z;

(1 + eant-l—x;r,@t)(l + eant—bo-&-xgﬁz)?

eQnt +xT B¢

T nt JX& T
- 1 + eont—bo+x B {1 - pi(amf? Bt)}zizi < erte 'Gtzizi )

where eXi Pt z;z; is integrable. Thus, by the dominated convergence theorem, V(n,;) satisfies
that

ePix

V(i) = BE{V(nuilz:)} = ea"‘E< ){1 +o(1)}. (S.24)

1+ cePix
Therefore, we have

eBix

2N V(N E( ———2zz" ). S.25
3 Vlo) — B ) (529

Now we check the Lindeberg-Feller condition. For any ¢ > 0,

S E{ P (il > ane)}
=1

=nE[[|6{y — p(8ne — ) }2l*I(16{y — (O — b)}z|| > ane)]
—ranE[|{y — (O — D)2 ({y — p(B, — D)}l > ave)]

+ (1= mo)nE[lly{y — p(One — b)}zlIPI(lly{y — p(On — b)}z| > ane)]
=1onE [p(8ne) [{1 — p(Onr — D)}zl I([{1 — (6 — b)}z]| > ane)]

£ 7nE ({1~ p(0,) o0, — D)2 PI([p(0r — Dz > )]

+ (1= mo)nE[p(0ne) {1 = p(0ne — )}z I({1 = p(8nt — b)}2l| > ane)]
<HE{p(0,0) 2 *1(12] > 0,6)} + monE[[p(6,1 — b)z (2] > a,)]
Sneo‘"tE{eﬁngszI(Hz|| > age)} + ngneQQ"tE{ethx||zH2[(HZH > age) }

—o(ne*) = oa2).

where the second last step is from the dominated convergence theorem. Thus, applying the
Lindeberg-Feller central limit theorem (Section *2.8 of van der Vaart, 1998) finishes the proof
of (5.22).



No we prove (S5.23). First, letting

T
,2 {yz ]_ — yl (Uz < 7T0)}6_b0+xi Bt 1
Zéz¢z nt — Z {1 + eont— bO+XT,@t}2 2;,Z; , (826)

the mean of Aj satisfies that

E(A) = i W] g
3) = — 27 | = —zz | +o(l), (S.27)

(Lt et} {14 conetorol) el

by the dominated convergence theorem, and the variance of each component of As is bounded
by

{y + (1 — y)](u < 7TO)}6_217()—i_2'6?)( H H4 < E<€2,8;FX||Z||4) 0(1) (S 28)
Z —_— = ) .
n {1 _|_ eant b0+ﬁTX}4 - nﬂ-o
Thus, Chebyshev’s inequality implies that
ePix
e T
As _)]E(l—l—ceﬁthZZ ), (S.29)

in probability. Furthermore,

—225@ (6, —b+a, u>||zz||2—a-22<z¢z wt — b))z

=1
< ||a;1ﬁ||a;225ipz'(9nt —b +a; )]z
i=1

o Nl

Z \ﬁtll+lluH)(1+szll)HZ ||3 = Ha UH X Ay = 0P(1) (S,30)
7T0

=1

n

where the last step is because A, is bounded in probability due to the fact that it has a
mean that is bounded and a variance that converges to zero. Combing (S.29) and (S.30),
(S.23) follows. O

S.4 Proof of Proposition 1

Proof of Proposition 1. Let
g = %{E(h_lva)}lv - \/E{IE(VVT)}AV.

Since gg! > 0, we have

1

0 <E(gg") = {]E(VVT>}_1]E(hVVT){E<VVT)}_1 —{E(h'vwwh} T,

which finishes the proof. O



S.5 Proof of Theorem 4

Proof of Theorem 4. The estimator Y, is the maximizer of (20), so \/a, (0., — 0,) is the
maximizer of 7Y (u) = €% (0, + a,'u) — €% .(0,:). By Taylor’s expansion,
Ay (u) = iuTéw (0n1) + = z”: ﬂ@-(ent + a; ') (z] u)? (S.31)
over a/n over QG% — wZ n 7 ?
where
) aggvver 0 - Ti - Ti
in(0) = 22O S T B0}z =3 T i b B
i=1 " i=1 "

is the gradient of £ _ (8), and 1 lies between 0 and u. Similarly to the proof of Theorem 1,

over
we only need to show that

Lo L+ A%+ A .
anlﬁover(em) — N{O, ﬁﬂi(eﬂ? ZZT)}7 (832)
in distribution, and for any u,
a,’ Z 5¢¢(9m + a,'0)zz] — E(QB?XZZT), (S.33)
i=1 !

in probability.

We prove (S.32) first. Denote Now; = 7w; {1y — pi(0ni) }2i, S0 Nows, # = 1,...,n, are i.i.d.
with the underlying distribution of 7,,; being dependent on n. From direct calculation, we
have

]E(nowi\zi) = 0, and

_ {yi(?’)‘n + A%) + 1}{,%‘ - pi(ent>}2 T
V(Nowi|zi) = ]E{ (15 )2 z; | 2;2;
(14+ )2+ A

. [pxem){l (0 {1 (0,0} (pu(0)) | 2aa!

(14 X,)2
T+ M)+ M o, g7x
= e ma {1+ op(L):

where the op(1) is bounded. Thus, by the dominated convergence theorem, we obtain that

(1+X)2+ A
(1+X)2

Now we check the Lindeberg-Feller condition (Section *2.8 of van der Vaart, 1998). Let
w=1+ Ay and 7 = yv + 1, where v ~ POI()\,). For any € > 0,

V(Nows) = e“”tIE(exTﬁtzzT) {1+0(1)}.

S [l | > n)]

i=1



— nE[[|w 7 {y — p(0.)}2|* I (|w ™ {y — p(6.)}2l| > ane)]
< B[ r{y — p(6.0)alf

- L[ Lty 6.l

L T et e () ) + ({0000} oI
- a?n 1+ 7(A1HJTA63)% + Af’zE(exfﬁtHz”?)) T %M”tl@(éx?ﬂt 1z|]?) = o(a2).

IN

n

Thus, applying the Lindeberg-Feller central limit theorem (Section *2.8 of van der Vaart,
1998) finishes the proof of (S.32).
Now we prove (S.33). Let

n xTﬁf
- Ti r 1 i exi Pt T
AEa2§ —0;(0,,,)z;z; = — — Z,7Z; .
> " =) ’wlgbZ( nt) v n < 1 Wy (1 + eant+XiTﬁt>2 T
1= 1=

Since

Pl x
E(As) :E{ T eamﬁfx)zZZT} - E(eﬁ?xzzT) +0(1),

by the dominated convergence theorem, and each component of As has a variance that is
bounded by

- L — o),

TX TX
Lpf 2e%z|  _ 2E(e* |z
(1 + eant+:6;rx)4 -

applying Chebyshev’s inequality gives that
Ay —> ]E(eﬁ?xzzT),

in probability. Thus, (S.33) follows from the fact that

n n

- Ti 1. _ T;
a,’ Z J@(em + a,Ma)||zi|* — @, Z E¢i(0nt)||zi||2

=1 " i=1

n
1 — T; 1u
< lla "lla,® Y | —=pi(On + ay ) ]|
i=1
n

< o, 4] S T el +aile
n — Wi

zi]|* = op(1),

where the last step is because n =t Y7 rw; ' ellBellHIublzill]| 2|13 has a bounded mean and a
bounded variance and thus it is bounded in probability. ]
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S.6 Proof of Theorem 5

ubc

e, is the maximizer of

Proof of Theorem 5. The over-sampled estimator 0

n

1
ESWD

Toe(8) = 7.[(6 + b,) Tzy; — log{1 + % @ 1bo)}]. (S.34)

Thus, \/@(é‘mc —0,;) is the maximizer of V,c(u) = Yoe(0ps + a, 1) — Tpe(0,;). By Taylor’s

over
expansion,

L1y 1 - —123\(,T.\2
’)/oc(u) = au TOC(Ont) + m ; Tiqbi(ent + bo + a, 11) (Zi U) 5 (835)
where
. OToe(0) 1 O
Toc(e) - 69 - 1 + /\n ;Tz{yz - pz(ant + baOaﬁt)}Zz

is the gradient of Y,.(0), and 1 lies between 0 and u.
Similarly to the proof of Theorem 1, we only need to show that

s (1+ A2+ A ePrx -
a, Yoe(Ont) — N [0, TESNE E o coeﬁ;rx)QZZ : (S.36)
in distribution, and for any u,
N Bt byt a e B S.37
W izln@( nt +bo +a, Wziz; — E{ e ) (S.37)

in probability.
We prove (S.36) first. Let nop = (1 + Ao) " 17i{ys — pilns + boo, B¢) }z;. We have that
(14 A)EMopi|zi) = E[(1 4+ Aayi){yi — pilane + boo, Be) } 2] 2
= [pi(ant, Br) (1 + An){1 — pi(ant + boo, Br) }
— {1 = pilans, Be) Hpi(ane + boo, Br) }zi = 0,

which implies that E(74;) = 0. For the conditional variance

(1+ )‘n)2V<nobi‘Zi)
= E[{1 + 3Ny + Aoy Hyi — pian + boo, Be) Y| zi)ziz;
= [pi(ent, B) (1 + 3\, + N2){1 — pioms + boo, Br) }?

+ {1 = pi(ant, Be) Hpi(ant + boo, ﬁt)}Z] ZiZ;r

(14 3\, + A2)emt+xl B 1 e2anttbootx )

= 7:7
(1 + eant-‘rx;fﬁt)(l + eant-&-boo-l-xiT,@t)Q t
14+2Xn A2 T
2 T n n ant‘i‘xl /Bt
(14 3\, + A7 Jetmtx A L+ Taesse T

= 7:7
(1 + eam—i-boo—‘rxiTﬁt)Q 1+ eont+x; Bt 14
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(1482, 4 Al
o ( 1+ eant+b00+x?,3t )2

ziz;f{l +op(1)}
ex;rﬁt

= e (143X, + AD)——
( )(1 + e B2

z;z; {1 +op(1)},

where the op(1)’s above are all bounded and the last step is because (1 + A,)e*™ — ¢,.
Thus, by the dominated convergence theorem, V(7,;) satisfies that

2 eﬁ;rx
V(1oni) = €0t (1g i)A; AE{ T e }{1 +o(1)}, (5.38)

which indicates that

1 L+ A2+ A ePix
= i) — St ], (539
n =1

(1+X)2 (1 + coePex)?

Now we check the Lindeberg-Feller condition. Recall that 7 = yv + 1, where v ~ POI(\,).
We can show that E{(1 +v)3} < 2(1+ \,)3. For any € > 0,

an€(1+X)> > E{ 06l P (1706l > ane)} < (14 X0)® > " E(|[10lI*)
1=1

= nE[[|7*{y — p(6n: + bo)}2|]

= nE[p(0n)(1 +0)*[{1 = p(Ons + bo)}2l’] +nE[{1 — p(6,) }[[P(Oni + bo)z]”]
< 2n(1 + M)’ E{p(0,)||2]1°} + nE{|[p(8n: + bo)z|*}

< 2n(1 4 A2 B (e |2]%) + n(1 + A,) e E (0% |z

= (14 X,)°0(a?).

This indicates that a,;? Y7 E{||106:||*L(||70bi]] > an€)} = o(1), and thus the Lindeberg-Feller
condition holds. Applying the Lindeberg-Feller central limit theorem (Section *2.8 of van der
Vaart, 1998) finishes the proof of (S.36).

No we prove (S.37). Let

_ & (1 4+ v;y;)ex e T
Ag = mzwz n +bo)ziz; = Z T +eam+b00+x Tagatic (540)
Note that
_ (1 + Any)eﬂ?x T

E(Ag) = ]E{ 0+ eant+b00+ﬁ?x)2zz (S.41)
]E{ > T} (S.42)

= 77 .

(1 _.I_ eant‘f’ﬁt’rx)(l _|_ eant+b00+Bth)
ePix

—E (mzzT> +o(1), (S.43)
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by the dominated convergence theorem, and the variance of each component of Ag is bounded

by

lp[ _(twped>
n {1 + e"‘nt+boo+,6th}4‘ ZH
g (L BA (.0},
= n {1 + eant+b00+ﬁt x}4
E(e?||z]|!) = e (3\, + A2)

< n]E 3ﬁ?x 4: 1
< L)y S R (0] ) = o(1),

where the last step is because n=te®\2 = (e ),)%a;? — 0 and both expectations are

finite. Therefore, Chebyshev’s inequality implies that Ag — 0 in probability. Thus, (S.37)
follows from the fact that

1 2
mZTz(bz nt+b +a u)HZzH ( ZTZ(bz nt+b )HZ’LH
a4 anz i+ by + i) ]
- a2 1 + ) "
a,la
|| s Z BTzl 13 = (1),
where the last step is from the fact that n= Y7 (1 + vy, )elBl+lublzl|z,||3 has a bounded
mean and a bounded variance, and an application of Chebyshev’s inequality. O]
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