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Supplementary Material

A. Proof of Theorem 2
In the beginning, we define several auxiliary variables, which will be used in this proof.
Letz(m) =137  z;(m)and g(m) = L 37" | g;(m). Then, we define
Frnpa(x) = nz(m +1) "x + ||x|3
and X(m + 1) = argmin F},, 11 (x). Similarly, let X;(m) = argmin nz;(m) " x + ||x||3.
xes xeRs

Moreover, we introduce the following two lemmas with respect to the theoretical guarantees of d-smoothed function.

Lemma 8 (Lemma 2.6 in Hazan (2016)) Let f(x) : R? — R be convex and G-Lipschitz over a convex and compact set
K C R% Then, fs5(x) is convex and G-Lipschitz over K, and it holds that | f5(x) — f(x)| < 0G for any x € Ks.

Lemma 9 (Lemma 4 in Garber & Kretzu (2019)) Let f(x) : R? — R be convex and suppose that all subgradients of f are

upper bounded by G in {3-norm over a convex and compact set K C R%. For any x € K3, Vﬁ;(x) Il < G.
We first assume that forall: € Vandm=1,---, B,
Igi(m)ll2 < 5.
Let x* € argmin Zthl fi(x) and x* = (1 — 6 /r)x*. Forany ¢,j € V, we have
xeX
T
me yilt me ) =" frj(xi(m) + ous(t me
t=1
T T
< (frGa(m) + Gllow(1)]12) = > (f1;(X*) = GI%" = x|2)
t=1 t=1
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0GRT
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t=1 t=1
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~ 0GRT
<3 Frs(xilme) +6G) = 3 (Fijs(X") — 6G) + 6GT +
t=1 t=1

(Fugs(xi(me)) = Fojs(X)) + 36GT + %ﬂ

] =

<
t

I
—

where the first inequality is due to Assumption 1 and the third inequality is due to Lemma 8.

Then, similar to the proof of Theorem 1, we derive an upper bound of ||x;(m) — X(m)||2 by further introducing the following
lemma.

Lemma 10 Ler X;(m) = argmin F,,, ;(x), for m € [B]. Assume ||g;(m)||2 < B foranyi € V and m € [B), Algorithm 3
x€s

withe < 8R? and L = li};g (naB/e +n*a?pB?) has

Fm,i(Xi(m)) — Fm’z(ﬁl(m)) S €

foranyi € V andm € [B|, where o = 1+62(P)f+ 1.

Applying Lemma 2 with ||g;(m)||2 < 3, we have
12i(m) —2(m)||2 < o'8 (17)
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Jn

I
where o’ = T—oa(P)"

Furthermore, applying Lemma 3 with (17), we have
[%i(m) = x(m)l2 < nllzi(m) — 2(m)|l2 < na'
which implies that
[[xi(m) = x(m)l2 <[|xi(m) = Xi(m)ll2 + [[Xi(m) —X(m)]|
</ Fon i (xi(m)) — F i(Re(m)) + 108 (18)
<Ve+na'p

where the second inequality is due to the fact F,;, ;(x) is 2-strongly convex and (5), and the last inequality is due to Lemma
10.

For brevity, let ¢ = /€ + na’S. Then, we can use (18) to bound the first term in the right side of (16) as

(frgo(xi(me)) = iy s(X")

T

(ftja(( me) = Jogs (X)) + D GlIR(me) = xi(mo)|l2

t=1

- vmﬂ I

IN

(fris(xi(me)) — frjs(X +ZG”X my) — x;j(my)l|2 + GTe

o~
Il
_

V Frio(xi(me) T (x;(me) — X*) + 2GTe’

o~
Il
_

T T (19)
= Vs (xi(me)) T (x5 (me) — %(m)) + Y Vs (x5 (me)) T (%(me) — %) + 2GT€
t=1 t=1
< NV Fega(xima) ol (me) = %(my)ll2 + YV Fijs(xi(me) T (X(me) — %) + 2GT€
t=1 t=1
T N T
<N Ve (me) T (%(me) —X*) + Y Glx(me) — x;(my)l|2 + 2GTe

ﬁ’j,ﬁ(xj (mt))—r(i(mt) —X*) +3GT¢

t

Il
-

where the third inequality is due to the convexity of ft ;,5(x) and the fifth inequality is due to Lemma 9.
Combining (16), (19) and €’ = /e + na’B, for any ¢ € V, we have

Zme yi(t Zwa

t=1 j=1 t=1 j=1

nGRT

<3N Vs (me) T (R(my) — %) + 36nGT +

t=1 j=1

+ 3nGT (Ve + no'B).

Moreover, to bound 23:1 Z;”Zl Vﬁ, 5.6(xi(my)) T (X(my) — X*), we introduce the following lemma.
Lemma 11 LetzZ(m) = 1 Y7 z;(m) and g(m) = L 37" | g;(m). Moreover, we define

Frga(x) = nz(m + 1) "x + [|x]|3
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and X(m + 1) = argmin F,,, 11 (x). Assume ||g;(m)||2 < B for anyi € V and m € [B), with probability at least 1 — 7,
xXEKs

Algorithm 3 has
EMUIN 1 nR?
DD Vi iis(xi(me)) T (x(my) — X*) < 2nR(KG + ), /2BIn St nnB3?
t=1 j=1

where X* = (1 — 0/r)x* and x* € argmin 23:1 fr(x).
xEK

According to Lemma 11, assume that ||g;(m)||2 < /5 for any ¢ € V and m € [B], with probability at least 1 — -y, we have

T n

DD i) =D fri(x")

t=1 j=1 t=1 j=1

1 2 T
<2nR(KG + B3),/2B1In S + % + B + 36nGT + MGTR +3nGT (Ve +na'B).

Substituting n = —<B_T-3/4 § = I—1/* ¢ = 4R?*T1/2, 3 = QTM + KG and K = T2 into the above

()LTdM
M I M
Rr; <2nR <2G 4 ord ) J2m Ly T B s
c ~y c

inequality, we have
M
+n <R—|— ;RG ) (O‘Tf + G) T3/

+3enGT A+ PR 6 apre
T

+3a'nG (R + d{%:) T3/4

ardM
<0 (aTT3/4) .

Let A denote the event of ||g;(m)||2 < 3,Vi € V,m € [B]. Because we have used the event A as a fact, the above result
should be formulated as

Pr (RTJ- <0 (aTT3/4) ‘ A) >1— 1. (20)
Furthermore, we introduce the following lemma with respect to the probability of the event .A.

Lemma 12 Foralli € V and m € [B), Algorithm 3 has
~ B\ dMvK
g (m)]2 < <1+,/81n"7> s tKG

Then, applying Lemma 12 with B = T/K = /T, we have

with probability at least 1 — .

Pr(A4)>1-17. 2D
Combining (20) with (21), we complete the proof.
B. Proof of Lemma 10
For m = 1, because x;(1) = X;(1) = argmin ||x||3, we have

xXEKs

Fri(xi(1) = F1i(Xi(1)) =0 < e (22)
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Then, for m = 2, we have

Fri(xi(m —1)) = Fy i(Xi(m))
=Fp1,:(xi(m = 1)) + n(zi(m) — zi(m — 1)) "x;(m — 1)
m—14(Xi(m)) = n(zi(m) — z;(m — 1)) '%;(m)
SFm—Li(Xz‘(m —1)) — Fo1,i(Xi(m — 1))
) = zi(m — 1)) T (x;(m — 1) = %;(m))

+ n(zi(m
<e+nl|zi(m) — z;(m — 1)|2]x;(m — 1) — X;(m)||2 (23)
<e+nlzi(m) — z;(m — 1)||2]lx;(m — 1) — X;(m — 1)[|2
+nllzi(m) — zi(m — 1)[]2[[%:(m — 1) — X;(m)]|2
<e+nllzi(m) — z;(m — 1)H2\/Fm71,i(xi(m —1)) = Fpo1,i(Xi(m — 1))
+nllzi(m) — zi(m — 1)[]2[|%;(m — 1) — X;(m)]|2
<e+nlzi(m) — zi(m — 1)[2v/e + nllzi(m) — z;(m — 1)[|2[|X:(m — 1) = Xi(m)]|2

where the first inequality is due to X;(m — 1) = argmin F},,_; ;(x) and the fourth inequality is due to that F},,_;(x) is
x€s
2-strongly convex and (5).

Moreover, because for each m = 1,-- -, B, Fy,, ;(x) is 2-strongly convex, we also have

[%i(m = 1) = Xi(m) |3 <Fmi(Xi(m — 1)) = Fpni(Xi(m))
=Fp1,i(Xi(m — 1)) 4 n(zi(m) — zi(m — 1)) 'R;(m — 1)
— Fop1,4(Rs(m)) = n(zi(m) — zi(m — 1)) "%i(m)
=Fp—1,i(Xi( 1)) = Fin—1,i(Xi(m))
+n(zi(m) — z;(m — 1)) T (Xi(m — 1) — Xi(m))
<nllzi(m) — zi(m — 1)|2[|%;(m — 1) — Xi(m)||2

(m —

which further implies that

[%:(m — 1) = X;(m) |2 < nllzi(m) — z;(m — 1) 2. (24)
For m € [B], applying Lemma 6 with ||g;(m)||2 < 8, we have
[zi(m +1) — z;(m)|2 < aB. (25
Substituting (24) and (25) into (23), we have

Foi(xi(m = 1)) = Fo 4(Xi(m)) <e +lzi(m) — zi(m — 1)||av/e + n°||zi(m) — zi(m — 1)|[3
<e +nafve+nta’ B2

According to Algorithm 3, we have x;(m) = CGSC(Ks, €, L, Fy, ;(x),x;(m — 1)). Because F,, ;(x) is 2-smooth and
2-strongly convex, ¢ < 8R? and L = 16;12%2 (naB+/e +n2a?B3?), applying Lemma 7 with K’ = K, we have

Frni(xi(m)) — F,i(Xi(m)) <e

for m = 2. By induction, we can complete the proof form =1,--- | B.

C. Proof of Lemma 11

We first introduce the classical Azuma’s inequality (Azuma, 1967) for martingales in the following lemma.
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Lemma 13 Suppose D1, - - - , D, is a martingale difference sequence and
1Dj| < ¢
almost surely. Then, we have
> (s
Pr D;>A) <exp T~ |-
j=1 2 Zj =16
To apply Lemma 13, with 7., = {(m — 1)K + 1,--- ,mK}, we define

D= 303 (Vo sloes(m) — (1) ((m) — %)

t€Tm j=1

n T
=2 < Y Viisexi(m) - g (m)> (x(m) — X).

j=1 \t€Tm

(26)

According to Algorithm 3 and Lemma 1, we have
E [Dp|x1(m), -+ , x5 (m),x(m)] =0
which further implies that Dy, - - - , Dp is a martingale difference sequence with

n T
1D = > (Z V frjs(x;(m)) — @j(”ﬂ) (X(m) —x7)

J=1 \t€Tm

n
<.

j=1

j=1

Y Viiga(xi(m) — &(m)

t€Tm

[(x(m) =X,

2

> Viige(xi(m))

t€Tm

+ g (m)ll,
2

<23 3 |VFatxsm)|, + 208

j=1tETm
< 2nRKG + 2nRp

where the last inequality is due to Lemma 9.

Then, applying Lemma 13 with A = 2nR(KG + 8),/2B1n %, with probability at least 1 — =y, we have

B
megAzan(KG+5),/QBln%. 27)

m=1
Additionally, combining (26) with g(m) = = 37" | g;(m), we further have

T

n B B
SN Viaxim) T (&x(m) = %) = > Dy +n Y glm) " (x(m) — %), (28)

t=1 j=1 m=1

Therefore, we still need to bound Zizl g(m)T(x(m) — x*). According to Assumption 4, it is easy to verify that

2(m + 1) Zzlm+ :%Z S Pyzy(m) +8i(m) | = 2(m) + g(m).

=1 JEN;
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Moreover, according to the definition, we have

%(m + 1) = argmin F),, ;1 (x) = argminnz(m + 1) " x + ||x]|2.
x€Ks xEKs

So, applying Lemma 5 with the linear loss functions { g(m)Tx}izl, the decision set ' = K; and the regularizer
R(x) = ”’;”2 we have

S %11 3

D gm) T (x(m) — %) < = -0+ 37 gm) T (x(m) —x(m + 1)

m=1 m=1 (29)
gf+z||g Jlal[x(m) = (m + 1)l

IN

Then, it is easy to verify that F},, 1 (x) is 2-strongly convex, which implies that

1%(m) = %(m + 1|3 < Fasa(X(m)) = Fapa(X(m +1))
= Fy(x(m)) +ng(m) "x(m) — Fpn(x(m + 1)) — ng(m) "x(m + 1)
= Fin(%(m)) — Fin(x (m +1)) +ng(m) " (x(m) —x(m + 1))

The above inequality can be simplified as
[%(m) —x(m + 1)[l2 < nllg(m)|l2- (30)

Substituting (30) into (29), we have

B
> &(m) " (x(m) —x")

R? &
<—+n)_ llgm)ls
m=1 n m=1
R? 1 — ’
=—+ 77 E Z gi(m
" i=1 5 31)
n ~
By Z Z & (m)13
m=11i=1
= i +nBf2.
n
Finally, substituting (27) and (31) into (28), we complete the proof.
D. Proof of Lemma 12
According to Algorithm 3, forany i € V and m = 1, -- , B, conditioned on x;(m),

gi((m —1K +1),---,gi(mK)
are K independent random vectors.

For brevity, forj = 1,--- | K, let
X; =gi(t;)

where t; = (m — 1)K + j,and let N = HZf ‘ =2 ki Xk andX be the set

{X1,, X1, X1, Xk )
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To bound N by using Lemma 13, we define X = 0, X; = {X;,---, X} for j > 1 and a sequence D1, - -- , Dk as
D; = E[N|X,] — E[N|X,_1].

It is not hard to verify that
E[D;|X;-1] = E[E[N]X;] — E[N[X;_1])[X;-1] =0
which implies that D, - -- , D is a martingale difference sequence.

Moreover, we have
1D;| = [E[N[X;] = E[N[X;_1]| < sup|N — E[N[X;]|. (32)
X

Using the triangle inequality, we have
N < [1Sjll2 + X512 and N > [[Sla = | X;]|2- (33)

According to the Algorithm 3, we have

d dM
11 = | sttt | < %5
2
Therefore, combining (32) with (33) and the above inequality, we further have
S 2dM
1D < [1X%ll2 + E[IX5]121%5] < —— (34)
Let A = @, /81n %. Then, applying Lemma 13, with probability at least 1 — =, we have
X VKM nB
N — E[N] = E[N|Xx] = EIN[Xo] = - D; < == [8In ">
j=1
which implies that
~ KdM B KdM B
fstmla = v < YEDL fsa, 0= +EIN] < *ﬁé 8ln == + /B[N (35)

It is easy to provide an upper bound of E[IN?] by following the proof of Lemma 5 in Garber & Kretzu (2019). We include
the detailed proof for completeness.

According to the definition, we have

K K
EN? =E |E [Y X X;|xim)| | +E[E > Y X]Xi|x;(m)
j j=1 ke[K]|Nk#j

~E|E ZHXJ-H% x| “E[> 3 B0l m) E )

L 1] j:l ke[K]Nk#j

<E|E ZHX I3 xi(m) | | +E Z Yo B Xl xi(m)] 2l E Xkl xi(m)] |l

L ke[K|Nk#j
dM
<K 5 +E Z Z 1E [X;]x:(m)] [|2]|E [Xk]xi(m)] ]2
J=1 ke[K]|Nk+£j
2
gK(dM) + ( K)G?
1)
2
gK(dgw) + K%G?
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where the third inequality is due to Lemmas 1 and 9.

Combining the above inequality with (35), with probability at least 1 — -5, we have

B\ dMVE
[8i(m)ll2 < (1 + M) dT\ﬁ +KG.

Finally, using the union bound, we complete the proof foralli € Vandm =1,--- , B.



