Safe Reinforcement Learning in Constrained Markov Decision Processes

Appendices
A. Definitions

We repeat the relevant definitions in our paper.

Al. Safe Space: For more details, see Turchetta et al. (2016).

Set of the states identified as safe up to some confidence level of ¢:

R¥(X)=XU{seS|3s' € X :g(s') — ey — Ld(s,s') > h}.

Set of states with reachability from X:

Rreach(X) =XU {S eS | 33/ S X,(Z S A(S/) L8 = f(S/,CL)}.

Set of states with returnability to X:

Re(X, X)=XU{s€ X |Ja€ A: f(s,a) € X},
R?et(XVY) = RTSI(X’ R:é:l(X,X)),With eret(X7X) = Rrel(XvX)a
Rua(X. X) = lim R (X, X).

ret

Set of safe states with reachability and returnability:

Re,(X) = R (X) N Rueacn(X) N Rt (RE*(X), X),
Rc,(X) = R, (RZH(X)), with R (X) = R (X),

R.,(X) = Jim R (X).

Pessimistic safe space:

Sy ={seS8S|3s' eX ", :l(s')—L-d(s,s") > h},
X, ={s €S, |5€ Reeacn(X;_1) N Rret(st_vxtil)}-

Optimistic safe space:

SH={seS|3s' e X", :u(s)—L-d(s,s") > h},
Xt+ ={se S:?L |s€ Rreach(xttﬂ N Rret(sjvxttl)}

A2. Optimization of Cumulative Reward

For optimal policy:

Via(se) = smglzi)j(so) [7(se41) +YVaq(8e41) |-

For balancing exploration and exploitation (neither ES? nor P-ES? is used):

Ui(s) = ui(s) + n; - o1 (s),

J;‘Y(Stvbg’bi‘]): max [Ut(st+1)+’7J;k((st+1vb:7bg)]'

St4+1€X, .
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A3. ES? Algorithm

For checking whether the termination condition is satisfied:

Vm, (8t) = max [7(8141) + 7V, (8e41) ],
St41€X,

Vi={s' eS8t |Vse X :s = f(s,m(a]s))}
Yy C A

For balancing exploration and exploitation in terms of reward:

J3(se,b],b) = max [ Up(se1) +7J5(se41, b7, b7) |.

St+1€YVe

Ad. P-ES? Algorithm

For checking whether the termination condition is satisfied:

V. () = max [P*{r'(s;1) + 9V, (s141)} ],
St41€X,

Zi={s eS8t |VvsecX :s = f(s,7(a]s))},
Z,Cx.

For balancing exploration and exploitation in terms of the reward:

J%(Shb:,b?) = max [Ut(st+l) +7J§(St+17b:,bf) ]

Sst+1€2¢

B. Preliminary Lemma

Lemma 3. For two arbitrary functions f1(x) and fa(x), the following inequality holds:
max fi () —max fa(x) > min(fi(z) = f2(z)).

Proof. For two arbitrary functions f4(x) and f5(z), the following inequality holds:
max f1(@) + max fy(x) = max{fa(e) + f5(2)}.

Let f2(z) = fa(x) + f5(z) and f3(z) = — fa(x). Then,
max{—f3(z)} + max{fa(z) + fs(x)} > max fo(z),

masc{fo(e) + fo(@)} — max fo(x) > — max{~ fa(e)},
max{fo(z) + f3(x)} — max fo(z) =min f(z).
Finally, let f1(z) = fa(2z) 4+ f3(z). Then, the desired lemma is obtained. O

C. Near-optimality

Lemma 4. Let J% (s, by, b)) be the value function calculated by SNO-MDP without the ES? algorithm. Then,
J% (81, b7, bY) satisfies the following inequality:

Ty (s, by,b]) > V*(s4).

Proof. Consider a state s; and beliefs b} and b. Also, let I denote the following safety indicator function:

L 1 if s € Reg (S()),
I(s) = { 0 otherwise. )
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Then, the following chain of equations and inequalities holds:

JQ*C(SM bzv btg) - V*(St)

= max [U(sit1) +7J%(se41,68,07) | = max — [r(se41) +9Vi(s141) ]
Si41€X5 st+1€Re, (So)

> max  [Ui(se41) +9J% (841, 07,b7) | —  max  [r(se1) +7Vi(se41) ]
st4+1€Re  (So) st4+1€Re, (So)

= max[I(se41) - {Ue(se41) + 7 3 (se41, b7, b{)}] - max [ [(se1) - {7(se1) +7Via(se41)} ]
2 min[I(se+1) - {Us(se41) = r(se41)} + 71 (8e41) T3 (se41, b7, bF) = 7L (8042) V7 (8141) |
= min[I(se41) - {Us(se41) = 7(se41)} + 71 (se1){Jx (8641, %, b{) = V*(si11)}].

The third line follows from X, O Reg (Sp) in Theorem 1. Also, the fourth line follows from the definition of I, and the
fifth line follows from Lemma 3. Because s is arbitrary in the above derivation, we have

min[ J% (s;, b7, b7) = V*(s:) ] > min [1(st41){Ut(st41) = 7(Se41)} + YL (Se4:0){T " (8e41, b7, b) — V™ (s241)} ]
By Lemma 2, the following equation holds with probability at least 1 — A”:

min[ Jx (s;, b7, b7) = V*(s4,b7,6]) | = 7 min [L(se41){T% (St41, b7, bf) = V™ (s141)} ]

Repeatedly applying this equation proves the desired lemma. Therefore, we have
Jx (84,07, b]) = V" (s¢)
with high probability. O

Lemma 5. (Generalized induced inequality) Lez b", b9, r and I;T, 697 T be the beliefs (over reward and safety, respectively)
and reward functions (including the exploration bonus) that are identical on some set of states ) — i.e., b" = b, b9 = b9,
and r = 7 for all s € Q. Let P(Aq) be the probability that a state not in ) is generated when starting from state s and
following a policy w. If the value is bound in [0, Vinax|, then

Vﬂ-(sa brv bga 7") Z Vﬂ-(sa 67'7 697 72) - VmaXP(AQ)a
where we now make explicit the dependence of the value function on the reward.

Proof. The lemma follows from Lemma 8 in Strehl & Littman (2005). O

Lemma 6. Assume that the reward function r satisfies ||r||2 < B", and that the noise n} is o,-sub-Gaussian. If oy =
B" 4 0,1/2(T;_y + 1 +1og(1/A")) and C,. = 8/1og(1 + 0,°2), then the following holds:

1 [Croay=TT.
LG g )

Proof. The lemma follows from Lemma 4 in Chowdhury & Gopalan (2017). O

with probability at least 1 — A",

D. Es? algorithm

Lemma 7. Assume that }; C X;” holds. Suppose that we obtain the optimal policy, T, on the basis of J3 (8¢, b, b)) =
maxg, , cy, [Ut(st—H) +7J3(8¢+1, b7, b?)]. Then, for all t, the following holds:

St € Yy = S¢41 € V.
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Proof. When ), C X, holds, we have
{s'eST|Vsel:s'=f(s,ma|s)}C{s' €St |VseX :s'=f(s,m(als))}
=)

This means that the next state s, 1 will be within ), if the agent is in ), and decides the action based on W;. Therefore, we
have the desired lemma. O

Lemma 8. Assume that Y, C X;” holds, and let J3,(s, b}, b]) be the value function calculated by SNO-MDP with the
ES? algorithm. Then, for all s, € X, J3 (8¢, bt by) satisfies the following equation:

J;(St, b;, bf) Z V*(St).

Proof. Consider a state s; € X, and beliefs b" and bY. Also, we define the function I as in (5). Then, the following chain
of the equations and inequalities holds:

J,‘;(Sh b;‘v bf) - V*(St)

= max, [ Ui(st41) + 73 (8641, b7, b{) | = max [1(st+1) - {r(se+1) + 7V (8e41)} ]
St+1 2

= max [Ui(se+1) +7J5(8041,b0,67) | = max  [I(sp41) - {r(se41) +7Vi(8041)} ]
St+1€Ve sir1€X,T

= max [Up(ses1) +7J5(8e41,b,b) | = max [I(spe1) - {r(ser1) +7Vi(8041)} ]
St+1€Ve St4+1€Vs

> mleny [Ui(se41) + 73 (8041, b7, 07) = I(s141) - {r(se11) + 7 Vig(8e41)} ]
St41 t

> min [ Ui(st41) + 73 (8041, b7, 07) — {r(se41) +7Vi(s041)} |
St+41 t

= Inlel’ly [Ut(8t+1 -Tr St+1) + 7Jy(8t+1,bt,b ) ’yVXA(St+1) ]
St41 t

The second and third lines follow from the definitions of I and V{,. The forth line follows from the definition of ) and the
assumption of V; C X, . The fifth line follows from Lemma 3.

Then, by Lemma 2, the following equation holds with probability at least 1 — A”:

min [ J5(s0,0],b7) = V*(s)}] > v min [ Jp(si1,b)5) — Vig(sin) |

siEX] St4+1E€Ve

>4% - min [ J5(8e42,b7,67) — Vig(sis2) |-
St42€Vt

The second line follows from Lemma 7. Repeatedly applying this equation proves the desired lemma. Therefore, for all
st € X, , we have
T3 (s0,05.b0) > V*(s1).

E. Main Theoretical Results

Theorem 1. Assume that the safety function g satisfies ||g||3 < BY and is L-Lipschitz continuous. Also, assume that S # ()
and g(s) > h for all s € Sy. Fix any e, > 0 and A9 € (0, 1). Suppose that we conduct the stage of “exploration of safety”
with the noise n} being o 4-sub-Gaussian, and that ; = B9 + o, \/Q(Ff_l + 1+ 1log(1/A9)) until maxsc, wi(s) < €
is achieved. Finally, let t* be the smallest integer satisfying

o Colfio(So)|

- D(M),
,8,5*Ff* - 6?7 ( )

with Cy = 8/ log(1 + 09_2). Then, the following statements jointly hold with probability at least 1 — AY:
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o Vt>1,g(st) > h,

o 3tg < t*, Re,(S0) € X, € Ro(So).

Proof. This is an extension of Theorem 1 in Turchetta et al. (2016) to our settings, where ¢ represents not the number of
samples but the number of actions. O

Theorem 2. Assume that the reward function r satisfies ||r||3 < B", and that the noise is o,-sub-Gaussian. Let T; denote
the policy followed by SNO-MDP at time t, and let s; and b}, b; be the corresponding state and beliefs, respectively.

Let t* be the smallest integer satisfying Bff*rg > C”'i‘)z(SO)‘D(M), and fix any A" € (0,1). Finally, set oy = B" +
or/2(C7_y + 1+ log(1/A")) and

6*{/ = Vmax : (Ag + DI /Rmax)a

with ¥} = %\/ % Then, with high probability,
Vv (St, b;, b?) > V*(St) — C;K/

— i.e., the algorithm is €5,-close to the optimal policy — for all but t* time steps, while guaranteeing safety with probability
at least 1 — AY.

Proof. Define 7 as the reward function (including the exploration bonus) that is used by SNO-MDP. Let 7 be a reward
function equal to 7 on 2 and equal to 7 elsewhere. Furthermore, let 7 be the policy followed by SNO-MDP at time ¢, that is,
the policy calculated on the basis of the current beliefs, (i.e., bj and bf ) and the reward 7. Finally, let A, be the event in
which 7 escapes from 2. Then,

V™ (r, 84, b5, b7) > VT (7,84, b7, b7) — Vinax P(Aq)

by Lemma 5. In addition, note that, for all ¢ > ¢*, because # and 7 differ by at most a}*/ 20{* at each state,

T (a T T (=~ T 1 T
V(#5067 b]) = V7 (7,50, b7, b]) | < 7—— — ol (s)
S Vmax/Rmax . Eg* . (6)

For the above inequality, we used Lemma 6. Here, consider the case of 2 = X.. Once the safe region is fully explored,
P(Agq) < AY holds after ¢* time steps. Then, the following chain of equations and inequalities holds:

V™ (R, s,b) > VT (R, s,b) — Vinax - P(Aq)
=V™(R,8,b) — Viax - P(Ax-)
> V™(R,8,b) — Vinax - A9
> V7 (R, 8,b) — Vinax - (A + 7. / Rinax)
= J5(R, 8,b) — Vinax - (A9 4+ 37, /Rinax)
>V*(R,8) — Vinax - (A9 + 20/ Rinax)-

In this derivation, the second line follows from the assumption of {2 = X', the third line follows from P (4 x-) < A9 the
fourth line follows from (6), the fifth line follows from the fact that 7 is precisely the optimal policy for R and b, and the
final line follows from Lemma 4. ]

Theorem 3. Assume that the reward function r satisfies ||r||z < B", and that the noise is o,.-sub-Gaussian. Let
denote the policy followed by SNO-MDP with the the ES? algorithm at time t, and let s; and b}, b] be the corresponding
state and beliefs, respectively. Let T be the smallest integer for which (4) holds, and fix any A € (0,1). Finally, set
o = B"+0,/2(T;_; + 1+ 1og(1/A")) and

EV = Vmax : (Ag + ZE/Rmax)a
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Cra;I’
. r l ks f
with Zf =3

. Then, with high probability,
v (stv b:» b?) 2 V*(St) —€v

— i.e., the algorithm is &, -close to the optimal policy — for all but t time steps while guaranteeing safety with probability at
least 1 — A9,

Proof. The proof of Theorem 3 is analogous to that of Theorem 2. Define 7 as the reward function (including the exploration
bonus) that is used by SNO-MDP. Let  be a reward function equal to 7 on ) and equal to 7 elsewhere. Furthermore, let 7
be the policy followed by SNO-MDP with the ES? algorithm at time ¢, that is, the policy calculated on the basis of the
current beliefs, (i.e., b} and bf ) and the reward 7. Finally, let Ay, be the event in which 7 escapes from ). Then,

V™ (1,84, b5,b7) > VT (7,8, b7, b7) — Vinax P(Ay)

1/2

by Lemma 5. In addition, note that, for all ¢ > t, because 7 and 7 differ by at most oz O'E at each state,

_ N 1
V(0,67 6]) = V(T 31, b)| < 1 ca?o7(s)
S Vmax/RmaX . E; (7)

For the above inequalities, we used Lemma 6. Then, the following chain of equations and inequalities holds:

V™ (R, 8,b) = VT (R, 8,b) — Vinax - P(Ay)
> V7(R,8,b) = Vinax - A
> V™(R, 8,b) — Vinax - (A9 + 27/ Rinax)
= J}(R, s, )— Vinax * (A7 + X7/ Rinax)
> V*(R, 8) — Vinax - (A + 27/ Riac).

In this derivation, the second line follows from PgAy) < A9, the third line follows from (7), the fourth line follows from
the fact that 7 is precisely the optimal policy for R and b, and the final line follows from Lemma 8. O



