
1. Supplementary material
1.1. Orthogonal parametrisation

In this section we present the details on the orthonormal matrix parametrisation we use. Let us define as Skewd the set of all
real d× d skew-symmetric matrices {S | ST = −S}. We also write Matd×d for the set of all real d× d matrices. Clearly,
Skewd can be associated with a d·(d−1)

2 -dimensional space as it is uniquely defined by the elements under the diagonal. One

can consider the exponential map exp : Matd×d → Matd×d that can be defined explicitly as exp(A) =
∞∑

n=0

An

n! . It is known

that this sum always converges and defines a bijective smooth map from Skewd to the space of all orthogonal matrices with
a positive determinant SO(d). Once we are looking for non-oriented interpretable directions, without loss of generality we
may assume that the desired latent basis has positive orientaion. Otherwise we may flip the first direction. Following these
considerations, we may use R

d·(d−1)
2 as the latent directions parametrisation once we set them to be orthonormal. See e.g.

Fulton & Harris (2013) for further details.

1.2. Direction Variation Naturalness (DVN)

We also experimented with an alternative measure for individual interpretability that does not require human supervision.
We refer to this measure as Direction Variation Naturalness (DVN). DVN measures how “natural” is a variation of images
obtained by moving in a particular direction in the latent space. Intuitively, a natural factor of variation should appear
in both real and generated images. Furthermore, if one splits the images based on the large/small values of this factor,
the splitting should operate similarly for real and generated data. We formalize this intuition as follows. Let us have
a direction hF in the latent space that corresponds to a semantic factor F . We always scale the shift hF length to be
equal to 6 which is the maximal amplitude while training. Then we can construct a pseudo-labeled dataset for binary
classification DF = {(G(z ± hF ),±1)} with z ∼ N (0, I). Given this dataset, we train a binary classification model
MF : G(z) −→ {−1, 1} to fit DF . After that, MF can induce pseudolabels for the dataset of real images D, which
results in pseudo-labeled dataset Dreal

F ={(I,MF (I)), I ∈ D} (see Figure 1). We expect that if the factor of variation F is
responsible for a single and easy-to-interpret attribute, the split of real images Dreal

F will be consistent with DF . Therefore,
the pseudo-labels-pretrained classifier is expected to demonstrate high performance on DF . On the contrary, if the factor
of variation is mixed and uninterpretable, we expect that the classifier, trained on Dreal

F , will perform poorly on DF (see
Figure 2). Thus, we re-train the model MF from scratch on Dreal

F and compute its accuracy on DF . The obtained accuracy
value is referred to as DVN.

Figure 1. Left: generator samples from DF grouped by latent shift direction. Right: split of the real MNIST images according to a model,
trained on the generated samples split. They form the pseudo-labeled dataset Dreal

F
.

In the experiments below, we report the DVN averaged over all directions. Since the directions with higher DVN values are
typically more interpretable, we additionally report the average DVN over the top 50 directions (DVNtop). Following the
experiment in Section 4, in Table 1 the directions discovered by our method are compared in terms of DVN with random
and coordinate directions.

In all the experiments, we use a LeNet-like classification model (see Table 2) with the cross-entropy objective. We train it
for both DF and Dreal

F for 100 steps of Adam optimizer, as in all our experiments it converges rapidly. We use batch 32 and
learning rate 0.001. The sizes of DF and Dreal

F always equal 3200 and we did not observe any difference from the usage of
more samples.
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Figure 2. DVN computation process. Purple: generated images domain, yellow: real images domain. Top row: the split of generated
images naturally transfers to the real images domain and finally induces almost the same split of the generated images. Bottom row: the
split of the generated images is difficult to interpret and does not correspond to any natural factor of variation. Therefore, it is hard for a
simple classification model to “generalize” to real data, which results in lower DVN values.

Table 1. Quantitave comparison of our method with random and coordinate axes directions in terms of DVN.

Directions MNIST Anime CelebA ILSVRC
DVN

Random 0.87 0.81 0.56 0.71
Coordinate 0.87 0.82 0.59 0.65

Ours 0.95 0.84 0.66 0.71
DVNtop

Random 0.89 0.92 0.64 0.82
Coordinate 0.89 0.93 0.74 0.78

Ours 0.99 0.93 0.82 0.83



Figure 3. Image variations obtained by moving latent codes along four directions and the corresponding DVN values. The directions with
high DVN are easier to interpret.

LeNet-based binary classifier
input: C × h× w

CONV, kernel: 5× 5, channels: 6
BN, RELU

MAXPOOL, kernel: 2× 2, stride: 2
CONV, kernel: 5× 5, channels: 16

BN, RELU
MAXPOOL, kernel: 2× 2, stride: 2
CONV, kernel: 5× 5, channels: 120

BN, RELU, AVGPOOL

FC, channels: 84
BN, RELU

FC, channels: 2

Table 2. The binary classification model used for DVN computation.

1.3. Discovered directions uniformity.

As for further analysis, we report the global affect of a latent shift for some of the discovered directions. We calculate the
Fréchet Inception Distance (Fulton & Harris, 2013) between the real images and the shifted distribution {G(z + h), z ∼
N (0, I)} for different shift magnitudes. We compute FID with ILSVRC test data and 50.000 randomly sampled latent
z. Table 3 presents the affect of different shift scales for some of directions from BigGAN latent space. The base model
performs with FID = 10.2. Notably, the generated data transformation appears to be more homogeneous for different
directions compared to i.e. (Jahanian et al., 2020). Apparently, this happens because we learn these directions simultaneously
instead of independently.

shift scale -12 -6 -3 0 3 6 12
Backgndound removal 16.5 11.8 10.4 10.2 11.3 14.9 27.3

Lighting 13.0 11.0 10.3 10.2 10.6 11.4 15.3
Vertical shift 40.3 15.1 12.7 10.2 11.8 14.3 44.2

Zooming 21.6 12.6 10.9 10.2 10.4 11.8 17.9

Table 3. FID for different shift magnitudes for some of explored latent directions.

1.4. Alternative disentanglement metrics.

In our work, we have introduced three quantitative measures to compare different sets of directions from the same latent
space. We do not use the common disentanglement metric from the β-VAE paper (Higgins et al., 2017), since it heavily
relies on an additional encoder that can be difficult to obtain for existing GAN models. Moreover, metric from (Higgins



et al., 2017) is typically applied for a relatively small number of factors K (up to five) and it is unclear if it is reliable for
large K.

1.5. Other details

Interestingly, the discovered directions sometimes behave in an unexpected manner. For instance, we have observed that the
BigGAN direction responsible for the background removal simply blanks the images that do not have explicit foreground
objects (see Figure 4).

As a final comment, we describe the exact procedure we have followed to find the desired interpretable directions. Once
the method proposes K directions, we sort them with respect to the individual DVN values. Then for each direction hk,
we draw the images G(z + εA(hk)) varying ε from −9 to 9. We review them manually and highlight the most interesting
directions. For instance, for K=128 this procedure takes about ten minutes for a single person.

Figure 4. Variation along the background removal direction for the BigGAN generator with class “coral reef”. As there seems to be no
foreground, the model blanks the whole image
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