Linear Bandits with Stochastic Delayed Feedback

A. Proof of Theorem 3

For p,q € (0,1) let d(p,q) = plog(p/q) + (1 — p)log((1 — p)/(1 — ¢)) be the relative entropy between Bernoulli
distributions with biases p and ¢ respectively. For 6 € [0, 1]¥ let £y denote the expectation when the algorithm interacts
with the Bernoulli bandit determined by 6 € [0,1]%. Let 0 = (1/2 + A,1/2,...,1/2) where A € (0,1/4) is some
parameter to be tuned subsequently. Then let

i = argmin Ey[Ng(T)].
k>1

By the pigeonhole principle it follows that IEg[N;(T')] < T'//(K — 1). Then define ¢ € [0, 1]* so that ¢; = 6; for all j # i
and ¢; = 1/2 + 2A. By the definitions of 6 and ¢ we have

Ry(T) > A(T ~ Eg[Ni(T)]) and  Ry(T) > ABy[N(T)],

which means that

Ro(T) > %IPG(Nl(T) <T/2) and Ry(T) > %M(M(T) > T/2).

Summing the two regrets and applying the Bretagnolle-Huber inequality shows that

Ro(T) + Ry(T) > 122 (By(Ny(T) < T/2) + By(Ni(T) > T/2))

> T2 exp (K L(®o. Py))

The next step is to calculate the relative entropy between IPg and IP,. Both bandits behave identically on all arms except
action 4. When action 7 is played the learner effectively observes a reward with bias either 7,,, /2 or 7,,(1/2+2A). Therefore

KL(Py,Py) = Eg [N:(T)] d(Tin /2, T (1/2 + 2A)) .
Upper bounding the relative entropy by the y-squared distance shows that

2 (T /2 — Tm(1/2 + 2A))?

(T /2, T (1/2 + 200)) < s 28]

< 327,,A%,

where we used the assumption that 2A < 1/4. Therefore
327, AT
KL(Py,Py) < 327, A2Ey[N;(T)] < %

Finally we conclude that

The result follows by tuning A.



