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Abstract
We propose a method for training a determinis-
tic deep model that can find and reject out of
distribution data points at test time with a single
forward pass. Our approach, deterministic uncer-
tainty quantification (DUQ), builds upon ideas of
RBF networks. We scale training in these with a
novel loss function and centroid updating scheme
and match the accuracy of softmax models. By
enforcing detectability of changes in the input
using a gradient penalty, we are able to reliably
detect out of distribution data. Our uncertainty
quantification scales well to large datasets, and
using a single model, we improve upon or match
Deep Ensembles in out of distribution detection
on notable difficult dataset pairs such as Fashion-
MNIST vs. MNIST, and CIFAR-10 vs. SVHN.

1. Introduction
Estimating uncertainty reliably and efficiently has remained
an open problem with many important applications such
as guiding exploration in Reinforcement Learning (Os-
band et al., 2016) or as a method for selecting data points
for which to acquire labels in Active Learning (Houlsby
et al., 2011). Until now, most approaches for estimating
uncertainty in deep learning rely on ensembling (Laksh-
minarayanan et al., 2017) or Monte Carlo sampling (Gal
& Ghahramani, 2016). In this paper, we introduce a deep
model that is able to estimate uncertainty in a single forward
pass. We call our model DUQ, Deterministic Uncertainty
Quantification, and we construct it by re-examining ideas
originally suggested in the 90s. We combine these with
recent advances and make a number of improvements which
enable scalable training of modern deep learning architec-
tures. We evaluate our model against the current best ap-
proach for estimating uncertainty in Deep Learning, Deep
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(a) Deep Ensembles (b) Our model - DUQ

Figure 1. Uncertainty results on two moons dataset. Yellow in-
dicates high certainty, while blue indicates uncertainty. DUQ is
certain only on the data distribution, and uncertain away from
it: the ideal result. Deep Ensembles is uncertain only along the
decision boundary, and certain elsewhere.

Ensembles, and show that DUQ compares favourably on a
number of evaluations, such as out of distribution (OoD) de-
tection of FashionMNIST vs MNIST, and CIFAR vs. SVHN.
We visualise how DUQ performs on the two moons dataset
in Figure 1. We see that DUQ is only certain on the training
data, and its certainty decreases away from it. Deep Ensem-
bles are not able to obtain meaningful uncertainty on this
dataset, because of a lack of diversity in the different models
in the ensemble. We make our code publicly available1.

DUQ consists of a deep model and a set of feature vectors
corresponding to the different classes (centroids). A pre-
diction is made by computing a kernel function, a distance
function, between the feature vector computed by the model
and the centroids. This type of model is called an RBF
network (LeCun et al., 1998a) and uncertainty is measured
as the distance between the model output and the closest
centroid. A data point for which the feature vector is far
away from all centroids does not belong to any class and can
be considered out of distribution. In this paper, we define
uncertainty to be predictive uncertainty.

The model is trained by minimising the distance to the
correct centroid, while maximising it with respect to the
others. This incentivises the model to put the features of
training data close to a particular centroid, however there is
no mechanism that dictates what should happen away from
the training data. Therefore we need to enforce that DUQ is

1https://github.com/y0ast/
deterministic-uncertainty-quantification

https://github.com/y0ast/deterministic-uncertainty-quantification
https://github.com/y0ast/deterministic-uncertainty-quantification
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sensitive to changes in the input, such that we can reliably
detect out of distribution data and avoid mapping out of
distribution data to in distribution feature representations
— an effect we call feature collapse. The upper bound of
this sensitivity can be quantified by the Lipschitz constant
of the model. We are interested in models for which this
sensitivity is not too low, but also not too high, because that
could hurt generalisation and optimisation. DUQ achieves
this result by regularising the Jacobian with respect to the
input, as was first introduced by Drucker & Le Cun (1992).

In practice, RBF networks prove difficult to optimise, be-
cause of instability of the centroids and a saturating loss. We
propose to make training stable by updating the centroids
using an exponential moving average of the feature vectors
of the data points assigned to them, as was introduced in
van den Oord et al. (2017). We use a “one vs the rest” loss
function minimising the distance to the correct centroid,
while maximising the other distances. We find that these
two changes stabilise training and lead to accuracies that are
similar to the standard softmax and cross entropy set up on
standard datasets such as FashionMNIST and CIFAR-10.

Uncertainty quantification in deep neural networks with a
softmax output is generally done by measuring the entropy
of the predictive distribution, so the maximally uncertain
output is achieved by uniformly assigning probabilities over
all the classes. The only way to achieve a uniform output
for out of distribution data, is by training on additional
data and hoping it generalises to out of distribution samples
at test time. This does not happen in practice, and it is
found that the only uncertainty that can reliably be captured
by looking at the entropy of the softmax distribution is
aleatoric uncertainty (Gal, 2016; Hein et al., 2019). In DUQ,
it is possible to predict that none of the classes seen during
training is a good fit, when the distance between the model
output and all centroids is large.

The contributions of this paper are as follows:

• We stabilise training of RBF networks and show, for
the first time, that these type of models can achieve
competitive accuracy versus softmax models.

• We show how two-sided Jacobian regularisation makes
it possible to obtain reliable uncertainty estimates for
RBF networks.

• We obtain excellent uncertainty in a single forward
pass, while maintaining competitive accuracy.

2. Methods
DUQ consists of a deep feature extractor, such as a ResNet
(He et al., 2016), but without the softmax layer. Instead, we
have one learnable weight matrix Wc per class, c. Using the
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Figure 2. A depiction of the architecture of DUQ. The input is
mapped to feature space, where it is assigned to the closest centroid.
The distance to that centroid is the uncertainty.

output and the class centroids, we compute the exponenti-
ated distance between the model output and the centroids:

Kc(fθ(x), ec) = exp

[
−

1
n ||Wcfθ(x)− ec||22

2σ2

]
, (1)

with fθ : Rm → Rd our model, m the input dimension, d
the output dimension, and parameters θ. ec is the centroid
for class c, a vector of length n. Wc is a weight matrix of
size n (centroid size) by d (feature extractor output size)
and σ a hyper parameter sometimes called the length scale.
This function is also referred to as a Radial Basis Function
(RBF) kernel. The class dependent weight matrix allows
features insensitivity on a class by class basis, minimising
the potential for feature collapse. A prediction is made by
taking the class c with the maximum correlation (minimum
distance) between data point x and class centroids E =
{e1, . . . , eC}:

argmax
c

Kc(fθ(x), ec). (2)

we define the uncertainty in this model as the distance to
the closest centroid, i.e. replacing the argmax operator by
a max in Equation (2).

The loss function is the sum of the binary cross entropy
between each class’ kernel value Kc(·, ec), and a one-hot
(binary) encoding of the label. For a particular data point
{x,y} in our data set {X,Y }:

L(x,y) = −
∑
c

yc log(Kc) + (1− yc) log(1−Kc) (3)

where we shortened K(fθ(x), ec) as Kc. During train-
ing, we average the loss over a minibatch of data points,
and perform stochastic gradient descent on θ and W =
{W1, · · · ,Wc}. The class centroids, E, are updated using
an exponential moving average of the feature vectors of data
points belonging to that class. If the model parameters, θ
andW , are held constant, then this update rule leads to the
closed form solution for the centroids that minimises the
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loss:

Nc,t = γ ∗Nc,t−1 + (1− γ) ∗ nc,t (4)

mc,t = γ ∗mc,t−1 + (1− γ)
∑
i

Wcfθ(xc,t,i) (5)

ec,t =
mc,t

Nc,t
(6)

where nc,t is the number of data points assigned to class
c in minibatch t, xc,t,i is element i of a minibatch at time
t, with class c. γ is the momentum, which we usually set
between [0.99, 0.999]. This method of updating centroids
was introduced in the Appendix of van den Oord et al. (2017)
for updating quantised latent variables. The high momentum
leads to stable optimisation that is robust to initialisation.

The proposed set up leads to the centroids being pushed
further away at each minibatch, without converging to a
stable point. We avoid this by regularising the l2 norm of
θ. This restricts the model to sensible solutions and aids
optimisation.

2.1. Gradient Penalty

As discussed in the introduction, without further regular-
isation deep networks are prone to feature collapse. We
find that it can be avoided by regularising the representa-
tion map using a gradient penalty. Gradient penalties were
first introduced to aid generalisation in Drucker & Le Cun
(1992), who named it “double backpropagation”. Recently,
this type of penalty has been used successfully in training
Wasserstein GANs (Gulrajani et al., 2017) to regularise the
Lipschitz constant.

In our set up, we consider the following two-sided penalty:

λ ·

[
||∇x

∑
c

Kc||22 − 1

]2
, (7)

where ||·||2 is the l2 norm and the targeted Lipschitz constant
is 1. We found empirically that regularising the gradient of∑
cKc works better than fθ(x) or Kc(x) (which is the vec-

tor of kernel distances for input x). A similar approach was
taken for softmax models by Ross & Doshi-Velez (2018).

The two-sided penalty was introduced by Gulrajani et al.
(2017), who mention that despite a one-sided penalty being
sufficient to satisfy their requirements, the two sided penalty
proved to be better in practice. The one-sided penalty is
defined as:

λ ·max(0, ||∇x
∑
c

Kc||2F − 1). (8)

In Section 4.1, we show the difference between the single
and two sided penalties experimentally. We find the two-
sided penalty to be ideal for enforcing sensitivity, while still
allowing strong generalisation.

2.2. Intuition about Gradient Penalty

A gradient penalty enforces smoothness, limiting how
quickly the output of a function changes as the input x
changes. Smoothness is important for generalisation, espe-
cially if we are using a kernel which depends on distances
in the representation space. It is simple to show that regu-
larising the l2 norm of the Jacobian, J , enforces a Lipschitz
constraint at least locally, since for a small region around x
we have g(x+ ε)− g(x) ' Jg(x)ε ≤ ||J(x)||2||ε||2.

However, smoothness still leaves us vulnerable to the feature
collapse problem outlined earlier, where multiple inputs are
mapped to the same g(x). Lipschitz smooth functions can
collapse their inputs — the constant function g(x) = c is
Lipschitz for any Lipschitz constant L. Collapsing features
can be beneficial for accuracy, but it hurts our ability to per-
form out of distribution detection, since it has the potential
to make input points indistinguishable in the representation
space. We find empirically in our work that the two sided
penalty is extremely important: using the one sided penalty,
i.e, enforcing only smoothness, is not sufficient to produce
the sensitive behaviour we want in our representation. This
can be seen in Figure 4b, in contrast to Figure 1b with the
two-sided penalty.

By keeping the norm of the Jacobian above some value, in-
tuitively we encourage sensitivity of the learnt function, by
preventing it from collapsing to a locally constant function,
ignoring all changes in the input space. This argument is
speculative, as this regularisation scheme has no effect on
sensitivity in directions orthogonal to the local Jacobian,
and more work is needed to explain definitively exactly why
this penalty seems to encourage sensitivity, as it would seem
mathematically that collapsing the representation would
still be possible. However, we find empirically that it is
important for preserving out of distribution performance. In
Appendix C, we evaluate a number of alternative approaches
such as using a reversible model as feature extractor (guar-
anteed to be invertible) and computing the Jacobian with
respect to the vector Kc and fθ(x).

2.3. Epistemic and Aleatoric Uncertainty

When quantifying uncertainty, it can be useful to distinguish
between “epistemic” and “aleatoric” uncertainty. Epistemic
uncertainty comes from uncertainty in the parameters of the
model. This uncertainty is high for out of distribution data,
but also for example for informative data points in active
learning (Houlsby et al., 2011). Aleatoric uncertainty is
uncertainty inherent in the data such as an image of a 3 that
is similar to an 8 (Smith & Gal, 2018). In this case, the true
class cannot be determined.

In practice, DUQ captures both aleatoric and epistemic
uncertainty. Informally, when a point is far from all cen-
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Figure 3. The uncertainty learned by DUQ on a simple problem of
classifying samples from two overlapping Gaussian distributions.
Yellow indicates certainty, while blue indicates uncertainty. There
is significant aleatoric uncertainty due to the overlap between the
classes. DUQ can express high aleatoric uncertainty by placing
centroids close to each other in feature space, and is able to learn
this in practice if the task needs it, as shown here by the higher
uncertainty around the 0 mark on the x axis.

troids in feature space there is epistemic uncertainty. While
aleatoric uncertainty is expressed by placing centroids so
that they are close in feature space (see Figure 3) and map-
ping a data point close to both of them. It is important that
the centroids are close in feature space, because otherwise
the model would not map them in between as it incurs a
large loss, following Equation 3. We do not currently have
a formal way to distinguish between these two kinds of
uncertainty in DUQ. Solving this problem is an interesting
direction for future research.

2.4. Why Sensitivity can be at odds with Classification

In this section we analyse some of the trade-offs and as-
sumptions encoded in detecting out-of-distribution inputs.
We show in a toy experiment that standard classification
losses can hurt out-of-distribution detection. Consider fit-
ting a model on a problem with two features, x1 and x2,
both sampled from a unit Gaussian, and output y, such that
y = sign(x1) ∗ ε, where ε is noise with a low probability of
flipping the label. The optimal decision function in terms of
the empirical risk, no matter the algorithm, is the function
f(x1, x2) = sign(x1). But this says nothing about the out
of distribution behaviour. What happens if we now see the
input x1, x2 = 1, 1000? By our definition of the problem,
this is out of distribution, as it lies many standard deviations
away from the observed data. But should it be detected as
out of distribution? The data does not define what could
be given as the input, at least if we take a conventional
empirical risk minimisation approach.

In this situation, it seems natural to prefer the kind of de-
cisions which would be made by a generative model, for

example. If x1 and x2 represent medical data, then pre-
sumably a highly abnormal value for x2 is notable, and we
would like to detect it. However, if x2 is a truly irrelevant
variable, say, the temperature on the surface of a distant
planet, then presumably our model is correct to ignore its
value, even if the value of the irrelevant variable is highly
abnormal. When training using empirical risk minimisation,
features not relevant to classification accuracy can simply be
ignored by the feature extractors of a neural network. This
makes out-of-distribution detection more difficult using fea-
ture space methods, even those that use a distance loss as
we do. It is important to note that there is a potential tension
here with classification accuracy. Enforcing sensitivity can
make accurate classification harder because it forces the
model to represent changes in input — as in the example
above, these may be irrelevant to the causal structure of the
problem. If we know about invariances that are appropriate
for the problem at hand, we can enforce these by correspond-
ing construction of the network. For example, we enforce
translation invariance by using convolutional networks in
this paper.

3. Related Work
The largest body of research on obtaining uncertainty in
deep learning are Bayesian neural networks (MacKay, 1992;
Neal, 2012). While exact inference in them is intractable, a
range of approximate methods have been proposed. Mean-
field variational inference methods, such as Bayes by Back-
prop (Blundell et al., 2015) and Radial BNNs (Farquhar
et al., 2020) are a promising direction but have not yet lead
to stable training on large image datasets. A more scal-
able alternative is MC Dropout (Gal & Ghahramani, 2016),
which is very simple to implement and evaluate. In prac-
tice, these variational Bayesian methods are outperformed
by Deep Ensembles (Lakshminarayanan et al., 2017). This
is a simple, non-Bayesian, method that involves training
multiple deep models from different initialisations and a
different data set ordering. Snoek et al. (2019) showed that
Deep Ensembles consistently outperform Bayesian neural
networks that were trained using variational inference. This
performance comes at the expense of computational cost,
Deep Ensembles’ memory and compute use scales linearly
with the number of ensemble elements at both train and test
time.

Aside from using discriminative models, there have also
been attempts at finding out of distribution data using gener-
ative models. Nalisnick et al. (2019a) showed that simply
measuring the likelihood under the data distribution does
not work. Recently, a more advanced approach that in-
volves separating the likelihood of the semantic foreground
from the background did show promising results on selected
datasets (Ren et al., 2019). While generative models are a
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promising avenue for out of distribution detection, they are
not able to assess predictive uncertainty; given that a data
point is in distribution, can our discriminative model actu-
ally make a reliable prediction? Further, generative models
are significantly more expensive to train than classification
models.

Our approach is distinct from both ensembles/Monte Carlo
methods, which aim to find different explanations for the
data and increase uncertainty when these disagree, and gen-
erative models which model the data distribution directly.
Instead our approach is more related to pre-deep learning
kernel methods (Quinn & Sugiyama, 2014; Schölkopf et al.,
2000), such as Gaussian processes which revert to a prior
away from data, and Support Vector Machines, where the
distance to the separating hyperplane is informative of the
uncertainty. These approaches have never scaled to high di-
mensional data, because of a lack of well performing kernel
functions.

The decision function based on kernel distances was first
used in the context of convolutional neural networks by
LeCun et al. (1998a). They were quickly abandoned for
softmax models, because they were difficult to scale and
optimise with gradient-based approaches due to saturating
gradients and unstable centroids. Notable improvements
in our work over the original are the updating mechanism
of the centroids and the loss function that is based on a
multivariate Bernoulli, solving the problems of unstable
centroids and saturating gradients.

Regularising the Jacobian has a long history, starting with
Drucker & Le Cun (1992) and more recently Ross & Doshi-
Velez (2018). Both papers aim to regularise the l2 norm
of Jacobian down to zero. In the first case to obtain better
generalisation, while the second paper aims to achieve ad-
versarial robustness and interpretability. In neither case are
the authors interested in increasing the Jacobian. Gulrajani
et al. (2017) showed how a gradient penalty can be applied
to training GANs with the Wasserstein distance, which was
a more scalable and simpler alternative to weight clipping.
They use the double sided penalty and mention it works
better in practice. Follow up work has analysed the penalty
in more detail and concluded that, contrary to our case, for
training Wasserstein GANS the one-sided penalty is prefer-
able theoretically and practically (Jolicoeur-Martineau &
Mitliagkas, 2019; Petzka et al., 2017).

4. Experiments
We show the behaviour of DUQ in two dimensions, with the
two moons dataset and show the effect of leaving out the
gradient penalty and using a one sided penalty. We continue
by looking at the out of distribution detection performance
for some notable difficult data set pairs (Nalisnick et al.,

(a) DUQ - No penalty (b) DUQ - One-sided penalty

Figure 4. Uncertainty results for two variations of DUQ: left with-
out gradient penalty, and right with a one-sided gradient penalty
(λ = 1). Yellow indicates certainty, while blue indicates un-
certainty. Both results are significantly worse than DUQ with a
two-sided penalty.

2019a), such as FashionMNIST vs MNIST, and CIFAR-10
vs SVHN. We further study sensitivity to two important
hyper parameters the length scale σ and gradient penalty
weight λ and propose how to tune them without relying on
example OoD data.

4.1. Two Moons

We use the scikit-learn (Pedregosa et al., 2011) implemen-
tation of this dataset and describe the model architecture
and optimisation details in Appendix A.1. For colouring
the visualisations, we normalise the colour map within the
figure.

The result of our model trained with a two-sided gradient
penalty is shown in Figure 1b. The uncertainty is exactly as
one would expect for the two moons dataset: certain on the
training data, uncertain away from it and in the heart within
the two moons. The difference with Deep Ensembles is
striking (Figure 1a). The uncertainty for DUQ is quantified
as the distance to the closest centroid (max over the kernel
distances), the uncertainty for Deep Ensembles is computed
as the predictive entropy of the average output, see Appendix
B. The ensemble elements were trained separately using the
same model as described in Appendix A.1, but without L2
regularisation to encourage diverse solutions.

Discussion While Figure 1b is an impressive result in deep
learning, it is worth highlighting that Gaussian processes
are able to obtain such result too. A good visualisation
can be found in Bradshaw et al. (2017). Interestingly, even
though Deep Ensembles have been successfully applied to
many large datasets (Snoek et al., 2019), they fail to estimate
uncertainty well on the two moons dataset. This is due to
the simplicity and low dimensionality of this dataset, the
ensembles generalise in nearly the same way — with a
diagonal line dividing the top left and the bottom right.

Gradient Penalty In Section 2.1, we introduced the two-
sided gradient penalty. Figure 4 shows why it is important.
In Figure 4a, we show the result of having no gradient
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penalty, which shows that the model is certain every far
away from the data. In Figure 4b, we see that the uncertainty
does not improve when only a one-sided penalty is applied.
In both cases, there are ’blobs’ sticking out of the training
data domain that are also classified with high certainty.

Hyper parameters We found classification performance
on two moons to be insensitive to our setting of the gradient
penalty weight λ, likely because of the simplicity of the
two moons dataset. For the uncertainty visualisation, we
found it important to set the length scale to be small (in the
interval [0.05, 0.5]), despite accuracy not being affected by
this hyper parameter. In the following experiments, we will
discuss methods for picking the length scale and the weight
of the gradient penalty.

4.2. FashionMNIST vs MNIST

In this experiment, we assess the quality of our uncertainty
estimation by looking at how well we can separate the test
set of FashionMNIST (Xiao et al., 2017) from the test set
of MNIST (LeCun et al., 1998b) by looking only at the
uncertainty predicted by the model. We train our model on
FashionMNIST and we expect it to assign low uncertainty to
the FashionMNIST test set, but high uncertainty to MNIST,
since the model has never seen that dataset before and it is
very different from FashionMNIST.

During evaluation we compute uncertainty scores on both
test sets and measure for a range of thresholds how well
the two are separated. As in previous work (Ren et al.,
2019), we report the AUROC metric, where a higher value
is better and 1 indicates that all FashionMNIST data points
have a higher certainty than all MNIST data points. We
picked FashionMNIST vs MNIST, because it is a notably
difficult dataset pair (Nalisnick et al., 2019a), while MNIST
vs NotMNIST (Bulatov, 2011) is much simpler.

Experimental set up Our model is a three layer convolu-
tional network and we report all architectural and optimisa-
tion details in Appendix A.2. It is important to note that at
test time we set Batch Normalization to evaluation mode,
meaning that we use the mean and standard deviation of
the feature activations computed from the training set (i.e.
FashionMNIST). It is unlikely that in practice we would get
an entire batch of (uncorrelated) OoD points, so we can not
normalise using test time batch statistics2. Further, we use
the same data normalisation for the out of distribution set as
the in distribution set. Skipping either of these steps makes
the problem artificially simple.

Length Scale Most hyper parameters, such as as the learn-
ing rate or weight decay parameter, can be set using the
standard train/validation split. However there are two hyper

2Just one datapoint needs to have significantly different activa-
tion statistics for the entire batch to be easily detectable.

Figure 5. ROC curve for DUQ trained on FashionMNIST and eval-
uated on FashionMNIST and MNIST. The task is to separate these
data sets based on uncertainty estimates.

parameters that are particularly important: the length scale
σ and the gradient penalty weight λ. We set the length scale
by doing a grid search over the interval (0, 1] while keeping
λ = 0. We pick the value that leads to the highest validation
accuracy. Following this process, we found that a length
scale of 0.1 leads to the highest accuracy, as measured over
five runs. While this process might not result in a length
scale that leads to the best OoD performance, it works well
in practice.

Gradient Penalty Setting the λ parameter is more involved:
from Section 2.4, we know that the accuracy can suffer as
a result from gaining the ability to do out of distribution
detection, so we cannot rely on it to select the best λ. We
also cannot use the AUROC score on the MNIST dataset,
because that would give the method an unfair advantage:
we cannot assume access to the OoD set in advance in prac-
tice.3 Instead we use a third dataset on which we evaluate
the AUROC and select our λ values based on that. We fol-
low previous work (Ren et al., 2019) and use NotMNIST
as the third dataset for this pair. The results can be seen
in Table 1. As expected, the accuracy goes down as λ in-
creases, and we also observe that the best AUROC result for
NotMNIST coincides with the best score for MNIST, which
shows that the strategy of selecting a hyper parameter based
on the NotMNIST data set is reasonable. We note that while
NotMNIST generalises to MNIST, we cannot rely on this
property in general. Therefore, we propose an alternative
method for model selection based on predictive uncertainty
in Section 4.3.

Comparison We show our results and compare with alter-
native methods in Table 2. Our proposed method, DUQ,
outperforms all other classification based methods. The only
method that is better is LL ratio (Ren et al., 2019), which is
based on generative models. These type of models are more

3If we do assume access, then we can trivially train a binary
classifier on the original and OoD set.
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Figure 6. Rejection classification plot: accuracy on a combination
of FashionMNIST and MNIST test sets. The x-axis indicates the
proportion of data rejected based on the uncertainty score. The
theoretical maximum is computed from a classifier with 100%
accuracy on FashionMNIST and rejects all MNIST points first.

computationally costly to train than DUQ. The PixelCNN++
(Salimans et al., 2017) used by LL ratio for FashionMNIST
uses 2 blocks of 5 gated ResNet layers, while our model is
a simple three layer convolutional network. An alternative,
competitive approach is Mahalanobis Distance (Lee et al.,
2018), which computes a distance in the feature space of a
pretrained softmax/cross entropy model in combination with
a number of dataset specific augmentations. The method
relies on hyper parameter tuning using 1,000 samples of the
out of distribution dataset.

The difference in AUROC between our Deep Ensemble
result and Ren et al. (2019)’s is due to using different archi-
tectures. For a fair comparison, we use the same architecture
for the ensemble elements as for DUQ (replacing the class
dependent final layer by the usual single linear layer). In
Figure 5, we show the complete ROC curve for our imple-
mentation of Deep Ensembles and DUQ. We see that DUQ
outperforms Deep Ensembles at all chosen rates.

Accuracy and Gradient Penalty To confirm that training
using DUQ’s distance based output achieves competitive
accuracy, we train two models using our architecture: the
standard softmax and cross entropy set up and DUQ with
λ = 0. We obtained 92.4%± 0.1 accuracy for the softmax
model, and for our proposed set up 92.4% ± 0.2, both av-
eraged over five runs. The results show that we can obtain
competitive accuracy using DUQ, resolving previous prob-
lems with RBF networks. In Table 1, we show how accuracy
changes for an increasingly weighted gradient penalty. The
accuracy only degrades slightly, while AUROC is improved.

Rejection Classification In Figure 6, we visualise how well
these algorithms work in a more realistic scenario. We com-
bine the FashionMNIST and MNIST test sets, then we reject

Figure 7. A histogram of uncertainty estimates as computed using
DUQ (λ = 0.5). CIFAR-10 and SVHN are clearly separated. The
counts are normalised, because the SVHN test set is significantly
larger than CIFAR-10’s.

a certain portion of the combined dataset by uncertainty
score. Next we compute the accuracy on the remaining data
for each portion, considering all predictions on the OoD
MNIST set to be incorrect. We expect the accuracy to go up
as we reject more of the data points on which the model is
uncertain. Ideally, we reject the incorrectly classified Fash-
ionMNIST points and all MNIST points. The Theoretical
Maximum is computed by assuming a model that has perfect
accuracy on the FashionMNIST test set and is able to reject
all MNIST data before any FashionMNIST data. This exper-
iment combines out of distribution detection, with detecting
difficult to classify data points, which is closer to actual
deployment scenarios than the AUROC metric, and also a
suggested practically informed evaluation method by Filos
et al. (2019). Note that the ensemble model has an accuracy
of 93.6% on FashionMNIST, giving it a 1.2% head start on
DUQ, which has an accuracy of 92.4%. We see that DUQ
outperforms Deep Ensembles in this more realistic scenario.

λ Acc (FM) AUROC (NM) AUROC (M)
0 92.4%± .2 0.933± .009 0.948± .004

0.05 92.4%± .2 0.946± .018 0.955± .007
0.1 92.4%± .1 0.938± .0018 0.948± .005
0.2 92.2%± .1 0.945± .019 0.944± .011
0.3 92.3%± .1 0.944± .013 0.941± .011
0.5 92.0%± .1 0.946± .014 0.932± .009
1.0 91.9%± .1 0.945± .018 0.934± .006

Table 1. FM stands for FashionMNIST, NM for NotMNIST, and M
for MNIST. The results are mean/std computed from 5 experiment
repetitions. We show AUROC for separating FashionMNIST from
NotMNIST and MNIST; higher is better. We see that the gradient
penalty improves AUROC performance slightly, but performance
on this dataset pair is already very strong.
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4.3. CIFAR-10 vs SVHN

In this section we look at the CIFAR-10 dataset (Krizhevsky
et al., 2014), with SVHN (Netzer et al., 2019) as OoD set.
We use a ResNet-18 (He et al., 2016) as feature extractor
fθ(·), specifically the version provided by PyTorch (Paszke
et al., 2017) with some minor modifications: we use 64
filters in the first convolutional layer, and skip the first pool-
ing operation and last linear layer. CIFAR-10 is a difficult
dataset for out of distribution detection for several reasons.
There is a significant amount of data noise: some of the dog
and cat examples are not distinguishable using only 32 by 32
pixels. The training set is small compared to its complexity,
making it easy to overfit without data augmentation.

Experimental set up As in the previous section, we tune
the length scale using the accuracy on the validation set,
and find that 0.1 works best from a range of [0.05, 1]. We
train for a fixed 75 epochs and reduce the learning rate
by a factor of 0.2 at 25 and 50 epochs. We use random
horizontal flips and random crops as data augmentation and
find that this is enough regularisation to prevent the model
from overfitting. All architectural and optimisation details
are described in Appendix A.3. We obtain an accuracy
of 94.1% ± 0.2 using the standard softmax/cross entropy
loss. A Deep Ensemble of several softmax models obtains
an accuracy of 95.2%. DUQ without a gradient penalty
(λ = 0) obtains 94.2% ± 0.2 accuracy, while accuracy of
DUQ with λ = 0.5 is 93.2%± 0.4.

Gradient Penalty For CIFAR-10, we do not use a third
dataset to set λ. Instead, we avoid using more data and
use in-distribution uncertainty. We measure this using the
AUROC of detecting correctly and incorrectly classified val-
idation set data points using the predicted uncertainty. We
found that optimising λ using this procedure also transfer
to λ values that lead to strong out of distribution detection
performance. In general, this approach is preferable over
using a third dataset, because it is difficult to find an ap-
propriate out of distribution dataset, which will have the
same characteristics as those encountered during deploy-
ment. Imagine a particular difficult traffic situation or an

Method AUROC
DUQ 0.955
LL ratio (generative model) 0.994
Single model 0.843
5 - Deep Ensembles (ours) 0.861
5 - Deep Ensembles (ll) 0.839
Mahalanobis Distance (ll) 0.942

Table 2. Results on FashionMNIST, with MNIST as OoD set. Deep
Ensembles is by Lakshminarayanan et al. (2017), Mahalanobis
Distance by Lee et al. (2018), LL ratio by Ren et al. (2019). Results
marked by (ll) are obtained from Ren et al. (2019), (ours) is imple-
mented using our architecture. Single model is our architecture,
but trained with softmax/cross entropy.

Figure 8. Rejection classification plot, which shows model perfor-
mance on a mix of CIFAR-10 and SVHN, while rejecting uncertain
points. The theoretical maximum is achieved when a hypotheti-
cal classifier obtains 100% accuracy on CIFAR-10 and rejects all
SVHN data points first. We see that DUQ and a 5 element Deep
Ensemble perform very similar.

MRI scan which shows a new type of disease, these sce-
narios have no reasonable out of distribution set available.
Generative models are not able to take this approach, be-
cause they do not have predictive uncertainty. Even if we
use a hybrid model (Nalisnick et al., 2019b), then the dis-
criminative part, a softmax/cross entropy model, does not
have reliable predictive uncertainty.

Results In Figure 7, we show a a normalised histogram
for the kernel distances of CIFAR-10 and SVHN. We see
that most of CIFAR-10 is very close to 1, while SVHN is
uniformly spread out over the range of distances. This shows
that DUQ works as expected and that out of distribution data
ends up away from all of the centroids in feature space.

The rejection classification plot, Figure 8, is created sim-
ilar to the previous experiment in the last section. Note
that this time the Theoretical Maximum line is significantly
lower, because the SVHN test set contains close to 26, 000
elements, while CIFAR-10’s only contains 10, 000. This
means that the best possible accuracy when 100% of the
data is considered is about 28%. We see that DUQ and Deep
Ensembles perform similarly.

In Table 3, we compare DUQ with several alternative meth-
ods. We see that DUQ performs competitively with a num-
ber of recent approaches. Interestingly, on these more com-
plicated data sets Deep Ensembles performs the best. We
suspect this is because the complexity of the data set al-
lows the ensemble elements to be more diverse while still
explaining the data well.

We further see a significant gap between DUQ with and
without a gradient penalty: there is a big improvement going
from λ = 0 to λ = 0.5. We suspect this is because there is
a lot of within class variation, which incentivises the model
to collapse more diverse data points to the class centroids.
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Method AUROC
DUQ (λ = 0.5) 0.927± 0.013
DUQ (λ = 0) 0.861± 0.032
LL ratio (generative model) 0.930
Single model 0.906± 0.007
3 - Deep Ensembles 0.926± 0.010
5 - Deep Ensembles 0.933± 0.008
10 - Deep Ensembles 0.941
15 - Deep Ensembles 0.942

Table 3. Deep Ensembles is by Lakshminarayanan et al. (2017),
but re-implemented and evaluated using our architecture. LL ratio
is as reported in Ren et al. (2019). Single model is our architecture,
but trained with softmax/cross entropy. We show the AUROC for
separating CIFAR-10 from SVHN.

Runtime One of the main advantages of DUQ over Deep
Ensembles is computational cost. For Deep Ensembles, both
computation and memory cost scale linearly in the number
of ensemble components, during both train and test time.
DUQ has to compute the Jacobian at training time, which is
expensive, but at test time there is only a marginal overhead
over a softmax based model. Training for one epoch on a
modern 1080 Ti GPU, takes 21 seconds for a softmax/cross
entropy model, which leads to 105 seconds for a Deep
Ensemble with 5 components. DUQ with gradient penalty
needs 103 seconds for one epoch at training time, but only
27 seconds without gradient penalty. DUQ is 25% slower at
test time than single softmax/cross entropy model, but about
4 times faster than a Deep Ensemble with 5 components.

5. Conclusion
We introduced DUQ, Deterministic Uncertainty Quantifica-
tion, a simple method for obtaining uncertainty using a deep
neural network in a single forward pass. Evaluations show
that our method is better in some scenarios and competitive
in others with the more computationally expensive Deep
Ensembles.

Interesting future work would be to place DUQ in a prob-
abilistic framework, enabling a calibrated notion of uncer-
tainty and a rigorous way of separating out epistemic and
aleatoric uncertainty.
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