
Uncertainty Estimation Using a Single Deep Deterministic Neural Network

A. Experimental Details
This section contains all info to reproduce our experiments.
In all experiments, we initialise the centroids using draws
from N(0, 0.05In). All convolutional layers are initialized
using the default in PyTorch 0.4.2 based on (He et al., 2015).

A.1. Two Moons

We set the noise level to 0.1 and generate 1000 points for
our training set. Our model consists of three layers with 20
hidden units each, the embedding size is 10. We use the
relu activation function and standard SGD optimiser with
learning rate 0.01, momentum 0.9 and L2 regularisation
with weight 10−4. Our batch size is 64 and we train for a
set 30 epochs. We set the length scale to 0.3, γ to 0.99 and
λ to 1.0.

A.2. FashionMNIST

We use a model consisting of three convolutional layers of
64, 128 and 128 3x3 filters, with a fully connected layer of
256 hidden units on top. The embedding size is 256. After
every convolutional layer, we perform batch normalization
and a 2x2 max pooling operation.

We use the SGD optimizer with learning rate 0.05 (decayed
by a factor of 5 every 10 epochs), momentum 0.9, weight
decay 10−4 and train for a set 30 epochs. The centroid
updates are done with γ = 0.999. The output dimension of
the model, d is 256, and we use the same value for the size
of the centroids, n.

We normalise our data using per channel mean and standard
deviation, as computed on the training set. The validation
set contains 5000 elements, removed at random from the
full 60,000 elements in the training set. For the final results,
we rerun on the full training set with the final set of hyper
parameters.

A.3. CIFAR-10

We use a ResNet-18, as implement in torchvision version
0.4.24. We make the following modifications: the first con-
volutional layer is changed to have 64 3x3 filters with stride
1, the first pooling layer is skipped and the last linear layer
is changed to be 512 by 512.

We use the SGD optimizer with learning rate of 0.05, de-
cayed by a factor 10 every 25 epochs, momentum of 0.9,
weight decay 10−4 and we train for a set 75 epochs. The
centroid updates are done with γ = 0.999. The output di-
mension of the model, d is 512, and we use the same value
for the size of the centroids n.

4Available online at: https://github.com/pytorch/
vision/tree/v0.4.2

Figure 9. Uncertainty results on two moons data set. Yellow means
certain, while blue indicates uncertainty. The model is a reversible
feature extractor in combination with the kernel based output as in
DUQ.

We normalise our data using per channel mean and standard
deviation, as computed on the training set. We augment
the data at training time using random horizontal flips (with
probability 0.5) and random crops after padding 4 zero pix-
els on all sides. The validation set contains 10,000 elements,
removed at random from the full 50,000 elements in the
training set. For the final results, we rerun on the full train-
ing set with the final set of hyper parameters.

B. Deep Ensemble Uncertainty
The uncertainty in Deep Ensembles is measured as the en-
tropy of the average predictive distribution:

p̂(y|x) = 1

N

N∑
i=1

pθi(y|x)

H(p̂(y|x)) = −
C∑
i=0

p̂(yi|x) log p̂(yi|x),

with θi the set of parameters for ensemble element i.

C. Gradient Penalty Alternatives
C.1. Reversible Models

An alternative method of enforcing sensitivity is by using an
invertible feature extractor. A simple and effective method
of doing so is by using invertible layers originally intro-
duced in (Dinh et al., 2014). Using these type of layers
leads to strong results on the two moons dataset as seen
in Figure 9. Unfortunately, it is difficult to train reversible
models on higher dimensional data sets. Without dimension-
ality reduction, such as max pooling, the memory usage of
these type of networks is unreasonably high (Jacobsen et al.,

https://github.com/pytorch/vision/tree/v0.4.2
https://github.com/pytorch/vision/tree/v0.4.2

Uncertainty Estimation Using a Single Deep Deterministic Neural Network

2018) . We found it impossible to obtain strong accuracy
and uncertainty using these type of models, indicating that
dimensionality reduction is an important component of why
these models work.

C.2. Gradient Penalty

Empirically, we found that computing the penalty on
∇x

∑
cKc works well. However there are two other candi-

dates to enforce the penalty on: ∇xKc, the vector of kernel
distances and∇xfθ(x), the feature vector output of the fea-
ture extractor. At first sight, these targets might actually
be preferential. Sensitivity of fθ(x) ought to be sufficient
to obtain the out of distribution sensitivity properties we
desire.

Computing the Jacobian of a vector valued output is expen-
sive using automatic differentiation. To evaluate the two
alternative candidates we turn to the Hutchinson’s Estimator
(Hutchinson, 1990), which allows us to estimate the trace of
the Jacobian by computing the derivative of random projec-
tions of the output. This approach was previously discussed
in the context of making neural networks more robust by
Hoffman et al. (2019).

While we were able to get good uncertainty on the two
moons data set using both alternative targets, the results
were not consistent. We attempted to reduce the variance
of the Hutchinson’s estimator by using the same random
projection for each element in the batch, which worked
well on two moons, but lead to unsatisfactory results on
larger scale data sets. In conclusion, we found that while
∇x

∑
cKc is not a priori the best place to compute the

gradient penalty, it is still preferable over the noise that
comes from applying Hutchinson’s estimator on any of the
alternatives, at least in our experiments.

