Undirected Graphical Models as Approximate Posteriors
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Figure 5: Optimization of KL divergence from an RBM to
a mixture of Bernoulli distributions using the proposed gra-
dient estimator. Increasing the number of MCMC updates ¢
does not improve the gradient estimation.

A. Toy Example: RBM Posterior

In this section, we examine the dependence of the gradient
estimator the number of MCMC updates ¢ on a toy exam-
ple. Here, a 4+4 bit RBM is learned to minimize the KL
divergence to a mixture of Bernoulli distributions:
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We choose C' = 3 mixture components with weights «; cho-
sen uniformly and Bernoulli components having variance
0.09. The training of parameters ¢ is done with the Adam
optimizer (Kingma & Ba, 2014), using learning rate 0.003
for 10000 iterations. We show the results for several values
of ¢ in Fig 5. In all cases the optimization locates the global
minimizer. We note that the effectiveness of optimization
does not depend on .

B. Examining the Shared Context

For the directed posterior baselines, we initially experi-
mented with the structure introduced in DVAE#S in which
each factor q(z;|z, 2<;) is represented using two tanh non-
linearities as shown in Fig. 3(b). However, initial experi-
ments indicated that when the number of latent variables is
held constant, increasing the number of subgroups, L, does
not improve the generative performance.

In undirected posteriors, the parameters of the posterior
for each training example are predicted using a single
shared context feature (¢(z) in Fig. 3(a)). However, in
DVAE#, parallel neural networks generate the parameters
of the posterior for each level of the hierarchy. Inspired
by this observation, we define a new structure for the

These models are also used in DVAE++ and GumBolt.

directed posteriors by introducing a shared (200 dimen-
sional) context feature that is computed using two tanh
nonlinearities. This shared feature ¢(z) is fed to the subse-
quent conditional each represented with a linear layer, i.e.,
q(2lz) =TT, a(zile(x), 2<;) (see Fig. 3(c).

In Table 5, we compare the original structure used in DVAE#
to the structure with a shared context. In almost all cases
the shared context feature improves the performance of
the original structure. Moreover, increasing the number of
hierarchical layers often improves the performance of the
new structure.

Note that in Table 5, we report the average negative log-
likelihood measured on the test set for 5 runs. Inthe L =1
case, both structures are identical and they achieve statisti-
cally similar performance.

C. Annealing the Importance Weighted
Bound

KL annealing (Sgnderby et al., 2016) is used to prevent
latent variables from turning off in VAE training. A scalar A
is introduced which weights KL contribution to the ELBO
and A is annealed from zero to one during training:

AKL(q(z[2)||p(2)).  (19)

Since the KL contribution is small early in training, the VAE
model initially optimizes the reconstruction term which
prevents the approximate posterior from matching to the
prior.

L= Eq(z\a:)[logp(mb)} -

Here, we apply the same approach to the importance
weighted bound by rewriting the IW bound by:
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where 21, ~ Hfil q(2;|x). Similar to the KL annealing
idea, we anneal the scalar A during training from zero to one.
When ) is small, the IW bound emphasizes reconstruction
of the data which inhibits the latent variables from turning
off. When K = 1, Eq. (20) reduces to Eq. (19).

The gradient of Eq. (20) with respect to ¢, the parameters
of q(z|x) and 0, the parameters of the generative model is:
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where w; = pg(2;)*pe The gradient

Og log w; is evaluated as:

Op logw; = —A0g log q¢(zi|x)+ (0. log w;)(0p2;). (22)

The second term in the right hand side of Eq. (22) is the path-
wise gradient that can be computed easily using our biased
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Table 5: The performance of structure with a shared context feature (Fig. 3(c)) is compared against the original structure
used in DVAE# (Fig. 3(b)). The shared context feature often improves the performance.

Prior RBM Size: 100+100 Prior RBM Size: 2004200
DVAE# GumBolt PWL DVAE# GumBolt PWL

context X v X v X v X v X v X v
lo| 1| 84.95 | 84.97 || 84.65 | 84.66 || 84.57 | 84.62 || 83.26 | 83.21 || 83.21 | 83.19 || 83.23 | 83.22
£ 22| 84.81 | 84.96 || 84.75 | 84.71 84.70 | 84.50 83.26 | 83.13 || 83.24 | 83.04 || 83.38 | 82.99
1% 4| 84.61 | 84.58 || 84.90 | 84.39 || 85.00 | 84.07 83.13 | 82.93 || 83.69 | 83.14 || 83.85 | 82.90
|| 1]101.69 | 101.64 || 101.41 | 101.41 || 101.21 | 101.24 || 99.53 | 99.51 || 99.39 | 99.39 || 99.37 | 99.32
% 5 21101.84 | 101.75 || 102.45 | 101.39 || 101.64 | 101.14 || 99.66 | 99.40 || 100.52 | 99.12 || 100.07 | 99.10

41101.93 | 101.74 || 102.76 | 102.04 || 101.97 | 101.14 || 99.63 | 99.47 || 100.99 | 99.97 || 100.45 | 99.30

gradient estimator. This term does not have any dependence
on the partition function Z4 since

Oz,logw; = 0y, (lngﬂ(zi)Ap0(1:|zi) — Alog Q¢(Zz‘|ﬁ’))

and 0, log g4 (2;|x) = —0,,F4(2z;) depends only on the
energy function.

However, the first term in the right hand side of Eq. (22)
does contain dg4 Zg which can be high-variance. We apply
the doubly reparameterized method proposed by (Tucker
et al., 2018) to remove this term. Following a derivation
similar to (Tucker et al., 2018), it is easy to show that:
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where w; = w;/ Ej w;.

D. The Effect of Gibbs Chain Lengths s and ¢

In Table. 6, we study the effect of changing the number of
Gibbs sampling steps on the final performance of DVAE##.
We vary the number of discrete Gibbs steps s and the number
of relaxed Gibbs steps ¢ in training the DVAE## model on
MNIST with the variational bound for an RBM size of
100 4 100. We observe that the final performance does not
change for s > 5, however, increasing ¢ decreases the final
log likelihood. This degradation with increasing ¢ likely
arises as sampling from the relaxed chain diverges from the
exact discrete chain resulting in increasingly biased gradient
estimates.

E. MCMC Sampling from True Posterior

A natural question to ask is how our method compares
against MCMC approaches, which approximately sample
from the true posterior, instead of sampling from an amor-
tized undirected approximate posterior. In this section,
we provide a small experiment to compare these two ap-
proaches.

Training a generative model using MCMC is similar to train-
ing a VAE, with the main difference that, instead of using

Table 6: The performance of DVAE## trained on MNIST
with the variational bound is compared for varying num-
bers of discrete Gibbs steps s and relaxed Gibbs steps .
The mean=+standard deviation of the negative log-likelihood
over 4 runs is reported. Final performance does not change
for s > 5, but increasing ¢ degrades performance.

RBM Size: 1004100
s=1 s=5
84.11+0.04 | 84.06-+0.04
84.20+0.05 | 84.12+0.04
84.46+0.04 | 84.321+0.05

s=10
84.09+0.03
84.12+0.06
84.34+0.02
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an encoder to sample from an approximate posterior, we
use MCMC to approximately sample from the true posterior.
Given the samples from true posterior, we use the following
objective to train the parameters of the generative model ():

meax Eszo(zlm) [logpo (mv Z)] : (23)
There are several pitfalls in using MCMC to sample from
the true posterior in generative models. First, we mainly
consider binary latent variables in this paper. Thus, gradient-
based MCMC techniques such as Hamiltonian Monte Carlo
are not available. To overcome this, we sample one bit at a
time from the true posterior, and in each sweep, we iterate
over all the bits. Second, MCMC may take many iterations
to reach equilibrium. To address this, we use persistent
sampling for each data point in the training set. We start the
MCMC chains from the state of the chains from the previous
epoch, and we use 10 sweeps before each parameter update.
Finally, in the absence of encoders. computing the log-
likelihood of the MCMC approaches on the test dataset is
not trivial. The best known approach is AIS (Wu et al.,
2017) which is challenging to implement. To address this,
we limit the latent space to only 16 bits, and we compute
log-likelihood exactly by enumerating all the states.

In Table 7, we report the negative log-likelihood on the
training and test datasets and training time per iteration. We
make two observations. First, the training log-likelihood
for both RBM posteriors and the true posteriors are not
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Table 7: The performance of DVAE## trained on MNIST
with the variational bound is compared against using
MCMC to sample from the true posterior. Here, we limit
the latent space to 16 bits. The negative log-likelihood on
the training and test dataset and training time per iteration
in milliseconds are reported.

Prior Size: 16 bits
DVAE## MCMC
RBM approx. posterior | True posterior
train neg. LL 105.7+03 106.7+13
test neg. LL 110.9+03 113.4+15
Time (ms) 22 103

significantly different. However, the test log-likelihood is
inferior to the MCMC baseline. When we examine training
the MCMC baseline, we notice that the training dynamic for
the MCMC method is very different than DVAE##. MCMC
training is sensitive to the initialization and is prone to over-
fitting. We hypothesize that MCMC methods require their
own special treatment (beyond the scope of this paper),
making a direct comparison against VAE models unfair.

Second, we note that training using MCMC sampling from
the posterior is ~5x slower than training using the RBM
approximate posteriors. This is mostly because, in the RBM
approximate posteriors, each conditional in the transition
kernel is a linear function. However, in the MCMC sampling
from the true posterior, we require computing the likelihood
p(z|z) in each sampling step, which is computationally
expensive as p(z|z) is implemented by a neural network.
We expect MCMC approaches to be even slower as the
generative model becomes deeper and more complex while
the computational complexity of sampling from the RBM
approximate posteriors does not depend on the generative
model.



