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Abstract
In this paper, we introduce a powerful and effi-
cient framework for direct optimization of ranking
metrics. The problem is ill-posed due to the dis-
crete structure of the loss, and to deal with that,
we introduce two important techniques: stochastic
smoothing and novel gradient estimate based on
partial integration. We show that classic smooth-
ing approaches may introduce bias and present
a universal solution for a proper debiasing. Im-
portantly, we can guarantee global convergence
of our method by adopting a recently proposed
Stochastic Gradient Langevin Boosting algorithm.
Our algorithm is implemented as a part of the Cat-
Boost gradient boosting library and outperforms
the existing approaches on several learning-to-
rank datasets. In addition to ranking metrics, our
framework applies to any scale-free discrete loss
function.

1. Introduction
The quality of ranking algorithms is traditionally mea-
sured by ranking quality metrics such as Normalized Dis-
counted Cumulative Gain (NDCG), Expected Reciprocal
Rank (ERR), Mean Average Precision (MAP), Mean Recip-
rocal Rank (MRR), and so on (Sakai, 2013). These metrics
are defined on a list of documents sorted by their predicted
relevance to a query and capture the utility of that list for
users of a search engine, who are more likely to scan doc-
uments starting at the top. Direct optimization of ranking
metrics is an extremely challenging problem since sorting
makes them piecewise constant (as functions of predicted
relevances), so they are neither convex nor smooth. Many
algorithms were proposed for different ranking objectives
in the learning-to-rank (LTR) research field. We refer to Liu
(2009) for a systematic overview of some classic methods.
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To deal with the discrete structure of a ranking loss, one can
use some smooth approximation, which is easier to optimize.
This technique lies behind such well-known algorithms as
SoftRank (Taylor et al., 2008), ApproxNDCG (Qin et al.,
2010), RankNet (Burges, 2010), etc. The obtained smooth
function can be optimized by gradient-based methods and,
in particular, by Stochastic Gradient Boosting (SGB) that
is known to be the learning algorithm behind most state-
of-the-art LTR frameworks and is commonly preferred by
major search engines (Chapelle & Chang, 2011; Yin et al.,
2016). Unfortunately, all known smoothing approaches
suffer from bias (see Sections 4.2-4.3) which prevents them
from truly direct optimization. Moreover, smoothed ranking
loss functions are non-convex, and existing algorithms can
guarantee only local optima.

Our ultimate goal is to solve these problems and propose
a truly direct LTR algorithm with provable guarantees of
global convergence and generalization. We adopt a theoreti-
cal approach, so we start with formal definitions of the class
of ranking losses and its generalization to scale-free (SF)
discrete loss functions (Section 3.2). Our results hold for the
general class of SF losses, which, in addition to all ranking
metrics, includes, e.g., a recently proposed loss function for
Learning-to-Select-with-Order (Vorobev et al., 2019). Then,
to mitigate the discontinuity of the loss, we use stochastic
smoothing. We prove that previous smoothing-based ap-
proaches are inconsistent with the underlying loss (due to
the problem of ties, which we discuss in the next section)
and propose a universal solution to this problem (relevance-
based consistent smoothing, see Section 4.3). Next, we
derive a novel stochastic gradient estimate, which can be
applied to the entire class of SF losses (see Section 5). The
obtained estimate has low variance and uniformly bounded
error, which is crucial for our analysis. Finally, to guarantee
global convergence of the algorithm, we adopt a recently
proposed Stochastic Gradient Langevin Boosting (SGLB)
algorithm (Ustimenko & Prokhorenkova, 2020). SGLB is
based on a well studied Stochastic Gradient Langevin Dy-
namics (Gelfand et al., 1992; Raginsky et al., 2017; Erdogdu
et al., 2018) and converges globally for a wide range of loss
functions including non-convex ones. We adapt SGLB to
our setting and obtain a gradient boosting algorithm that
converges globally for the entire class of SF loss functions
with provable generalization guarantees (see Section 6).
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To sum up, to the best of our knowledge, the proposed
StochasticRank algorithm is the first globally converg-
ing LTR method with provable guarantees that optimizes
exactly the underlying ranking quality loss. Stochastic-
Rank is implemented within the official CatBoost li-
brary (Prokhorenkova et al., 2018; CatBoost, 2020). Our
experiments show that StochsticRank outperforms the exist-
ing approaches on several LTR datasets.

The rest of the paper is organized as follows. In the next
section, we briefly overview the related research on learning
to rank. In Section 3, we formalize the problem and, in
particular, define a general class of ranking loss functions.
In Section 4, we formulate the problem of smoothing bias
and propose an unbiased solution. Then, in Section 5, we
derive a novel stochastic gradient estimate for the whole
class of loss functions under consideration. In Section 6, we
show how SGLB can be used to achieve global convergence.
Finally, Section 7 empirically compares the proposed algo-
rithm with existing approaches, and Section 8 concludes the
paper.

2. Related Work
Usually, researches divide all LTR methods into three cate-
gories: pointwise, pairwise, and listwise (Liu, 2009).

Pointwise are the earliest and simplest methods: they ap-
proximate relevance labels based on simple or ordinal re-
gression or classification. Such methods were shown to be
ineffective for LTR, since loss functions they optimize (e.g.,
RMSE for relevance labels) differ significantly from the
target ranking metric, e.g., NDCG@k.

Pairwise methods make a step forward and focus on pair-
wise preferences and thus known to outperform pointwise
approaches significantly. Nevertheless, pairwise approaches
still suffer from the problem of solving a different task rather
than optimizing a ranking quality objective.

Listwise methods try to solve the problem directly by de-
veloping either smooth proxies of the target ranking metric
like SoftRank (Taylor et al., 2008), BoltzRank (Volkovs
& Zemel, 2009), ApproxNDCG (Qin et al., 2010),
RankNet (Burges, 2010) or by Majorization-Minimization
procedure that builds a convex upper bound on the metric on
each iteration like LambdaMART (Wu et al., 2010), Lamb-
daLoss (Wang et al., 2018), PermuRank (Xu et al., 2010),
SVMRank (Cao et al., 2006), etc.

As discussed in the previous section, algorithms based on
smooth approximations suffer from bias and local optima.
Also, there are listwise approaches that try to optimize the
target loss function without smoothing. For instance, Direct-
Rank (Tan et al., 2013) constructs an ensemble of decision
trees, where the values in the leaves are chosen to optimize

the original loss. However, due to greediness, this approach
can guarantee only local optima.

Finally, let us note that algorithms optimizing a convex up-
per bound instead of the original loss cannot be truly direct
since the optimum for the upper bound can potentially be
far away from the true optimum. This is nicely illustrated
by Nguyen & Sanner (2013) for accuracy optimization. Let
us also mention a recent approach for improving learning-
to-rank algorithms by adding Gumbel noise to model predic-
tions (Bruch et al., 2020). This is a regularization technique
since it builds a convex upper bound on any given convex
loss (e.g., LambdaMART).1 Thus, from a theoretical point
of view, this approach cannot be truly direct since it uses
convex upper bounding.

The issue of smoothing bias mentioned in the introduction is
connected to the problem of ties: if predicted relevances of
some documents coincide, one has to order them somehow
to compute a ranking metric. This situation may occur when
two documents have equal features. More importantly, ties
are always present in boosting algorithms based on discrete
weak learners such as decision trees. Unfortunately, this
problem is rarely addressed in LTR papers. In practice, it is
reasonable to use the worst permutation. First, due to strong
penalization, it would force an optimization algorithm to
avoid ties. Second, in practice, one cannot know how a
production system would rank the items, and often some
attribute negatively correlated with relevance is used (e.g.,
sorting by a bid in online auctions). The importance of using
the worst permutation is also discussed by Rudin & Wang
(2018), and this ordering is adopted in some open-source
libraries like CatBoost (Prokhorenkova et al., 2018). An
alternative choice is to compute the expected value of a
ranking metric for a random permutation. This choice is
rarely used in practice, since it is computationally complex
and gives non-trivial scores to trivial constant predictions,
but is often assumed (explicitly or implicitly) by LTR algo-
rithms (Kustarev et al., 2011).

3. Problem Formalization
3.1. Examples of Ranking Loss Functions

Before we introduce a general class of loss functions, let us
define classic ranking quality functions widely used through-
out the literature and in practice.2 These loss functions
depend on z, which is a vector of scores produced by the
model, and r, which is a vector of relevance labels for a
given query. The length of these vectors is denoted by n
and can be different for different queries.

1Nesterov & Spokoiny (2017) prove this for Gaussian noise,
but the same result generalizes to any centered noise.

2To obtain the loss function from the corresponding quality
function, we multiply it by −1.
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Let s = argsort(z), i.e., si is the index of a document at i-th
position if documents are ordered according to their scores
(if zi = zj for j 6= i, then we place the less relevant one
first). Let us define DCG@k, where k denotes the number
of top documents we are interested in:

DCG@k(z, r) =

min{n,k}∑
i=1

2rsi − 1

24 log2(i+ 1)
, (1)

where ri ∈ [0, 4] are relevance labels. This quality function
is called Discounted Cumulative Gain: for each document,
the numerator corresponds to gain for the relevance, while
the denominator discounts for a lower position. NDCG@k
is a normalized variant of DCG@k:

NDCG@k(z, r) =
DCG@k(z, r)

maxz′∈Rn DCG@k(z′, r)
. (2)

Expected Reciprocal Rank ERR@k assumes that rj ∈ [0, 1]:

ERR@k(z, r) =

min{n,k}∑
i=1

rsi
i

i−1∏
j=1

(1− rsj ). (3)

Mean reciprocal rank (MRR) is used for binary relevance
labels rj ∈ {0, 1}:

MRR(z, r) =

n∑
i=1

rsi
i

i−1∏
j=1

(1− rsj ), (4)

which is the inverse rank of the first relevant document.

Finally, let us define a quality function for the LSO (learning
to select with order) problem introduced by Vorobev et al.
(2019), which is not exactly a ranking metric, but has a
similar structure. The order of elements is predefined (docu-
ments are sorted by their indices), but the list of documents
to be included is determined by (1{zi>0})

n
i=1 ∈ {0, 1}n:

DCG-RR(z, r) =

n∑
i=1

ri 1{zi>0}

1 +
∑
j<i 1{zj>0}

. (5)

In the sum above, for each included document we divide its
relevance by its rank.

3.2. Generalized Ranking Loss Functions

To develop a stochastic ranking theory, we first formalize
the class of loss functions to which our results apply. We
start with a very general class of scale-free (SF) discrete loss
functions. Further, by ξ we denote a vector of context, which
may include relevance and any other factors affecting the
ranking quality value (like query type or document topic).

Definition 1. A function L(z, ξ) :
∐
n>0 Rn × Ξn → R

is a Scale-Free Discrete Loss Function iff the following
conditions hold:

• Uniform boundedness: There exists a constant l > 0
such that |L(z, ξ)| ≤ l holds ∀n, ∀ξ ∈ Ξn, ∀z ∈ Rn;

• Discreteness on subspaces: For each n ∈ N and lin-
ear subspace V ⊂ Rn there exist convex open subsets
U1, . . . , Uk ⊂ V, k = k(n, V ) (w.r.t. induced topology
on V ), mutually disjoint Ui ∩ Uj = ∅ for i 6= j, with
everywhere dense union ∪iUi = V (X denotes the clo-
sure ofX w.r.t. the ambient topology), such that for any
ξ ∈ Ξn and i ≤ k holds L(z, ξ)

∣∣
Ui
≡ const(i, ξ, V );

• Jumps regularity: By reusing Ui defined above, for
any z 6∈ ∪iUi either of the following conditions holds:

lim inf
z′→z

L(z′, ξ) < L(z, ξ) ≤ lim sup
z′→z

L(z′, ξ),

lim inf
z′→z

L(z′, ξ) = L(z, ξ) = lim sup
z′→z

L(z′, ξ),

where z′ → z means z′ ∈ ∪Ui, z′ → z.

• Scalar freeness: For any n > 0, ξ ∈ Ξn, z ∈ Rn, λ >
0 holds L(λz, ξ) = L(z, ξ).

We denote the class of all SF discrete loss functions byR0.
Informally speaking,R0 is a class of bounded discrete func-
tions on a sphere. The jumps regularity property is needed
to exclude the breaking points from arg minL. One can
show that all loss functions defined in Section 3.1, including
the LSO loss DCG-RR, belong toR0.

StochasticRank out-of-box can be applied to any SF discrete
loss function. However, to guarantee global convergence,
we need to use consistent smoothing (see Section 4.3),
which has to be chosen based on the properties of a par-
ticular metric. We propose smoothing which is consistent
for the whole class of ranking loss functions defined below.

Assume that Ξn = Rn × Ξ′n and ξ ∈ Ξn is a tuple (r, ξ′),
where r ∈ Rn is a vector of relevance labels. As discussed
in Section 2, a particular definition of a ranking loss depends
on tie resolution. When some documents have equal scores,
we may either use the worst permutation (as commonly
done in practice) or compute the average over all orderings
of such documents (as usually assumed by LTR algorithms).
The definition below assumes the worst permutation.
Definition 2. A function L(z, ξ) ∈ R0 is a Ranking Loss
Function iff the following properties hold:

• Relevance monotonicity: For each n > 0 and z, r ∈
Rn, there exists ε0 = ε0(r, z) > 0 such that ∀ε ∈
(0, ε0] ∃δ = δ(ε, r, z) > 0 such that ∀z′ : ‖z′ − z‖ <
δ:

lim sup
z′′→z

L(z′′, ξ) = L(z′ − εr, ξ).

Informally, −r is the worst direction for the loss func-
tion, i.e., near a breaking point with zi = zj and
ri > rj for some i, j, it is better to have zi > zj .
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• Strong upper semi-continuity (s.u.s.c.): For each n >
0 and z, r ∈ Rn:

lim sup
z′→z

L(z′, ξ) = L(z, ξ).

Informally, this means that if we do not know how to
rank two items (i.e., zi = zj for i 6= j), then we shall
rank them by placing the less relevant one first.

• Translation invariance:3 For any n > 0, r, z ∈ Rn,
λ ∈ R holds: L(z + λ1n, ξ) ≡ L(z, ξ), where 1n :=
(1, . . . , 1) ∈ Rn.

• Pairwise decision boundary:4 Partition of the space
for discreteness on subspaces {Ui} for Rn can be
obtained as connected components of Rn\ ∪i,j {z :
zi − zj = 0}, similarly for an arbitrary subspace V .

We denote this class of functions byR1. It can be shown that
R1 includes all ranking losses defined in Section 3.1, but not
the LSO loss DCG-RR which does not satisfy Relevance
monotonicity.

Let us now define a classRsoft1 , where instead of the worst
ranking for ties, we consider the expected loss of a random
ranking. For this, we replace the s.u.s.c. condition by:

• Soft semi-continuity (s.s.c.): For each n > 0 and
r, z ∈ Rn we have:

lim
σ→0+

EL(z + σε, ξ) = L(z, ξ),

where ε ∼ N (0n, In) is a normally distributed random
variable.

We will show that under some restrictive conditions (that
are commonly assumed in the LTR literature), it does not
matter which of the two definitions we use (R1 orRsoft1 ) as
they coincide almost surely and have equal arg minL sets.
However, we will explain why these conditions do not hold
in practice and in general the minimizers forR1 andRsoft1

do not coincide.

3.3. Model Assumptions

We assume that for each n > 0 and ξ ∈ Ξn there is a model
fξ(θ) : Rm → Rn such that fξ(θ) = Φξθ for some matrix
Φξ ∈ Rn×m, where θ ∈ Rm is a vector of parameters (inde-
pendent from ξ) and m ∈ N is the number of parameters.
Typically, each row of Φξ is a feature vector. Gradient boost-
ing over decision trees satisfies this assumption. Indeed, let

3This property is assumed only to be consistent with the
learning-to-rank literature and can be omitted.

4This condition can also be removed, but it simplifies the anal-
ysis of smoothing bias.

us consider all possible trees of a fixed depth formed by a
finite number of binary splits obtained by binarization of
the initial feature vectors. To get a linear model, we say that
θ is a vector of leaf weights of these trees and Φξ is a binary
matrix formed by the binarized feature vectors.

We will also assume that 〈1n, z〉2 = 0. Indeed, instead
of z = fξ(θ) we can define the model as z = fξ(θ) −
1
n1Tnfξ(θ)1n, which is equivalent due to the translation
invariance property.

3.4. Data Distribution

Assume that we are given some distribution ξ ∼ D on
Ξ :=

∐
n>0 Ξn meaning that ξ also implicitly incorporates

information about the number of items n, i.e., for ξ ∈ Ξ
there exists a unique number n > 0 so that ξ ∈ Ξn. D is
some unknown distribution, e.g., the distribution of queries
submitted to a search system. We are given a finite i.i.d.
sample ξ1, . . . , ξN ∼ D that corresponds to the train set.
Let DN := 1

N

∑N
i=1 δξi be the empirical distribution.

3.5. Optimization Target

The assumptions and definitions above allow us to define
the expected (generalized) ranking quality for the function
L ∈ R0 with respect to ξ ∼ D and model parameters
θ ∈ Rm: L(θ) := Eξ∼DL(fξ(θ), ξ). Our ultimate goal is
to find arg minθ L(θ). However, since the distribution D is
unknown, we have only i.i.d. samples ξ1, . . . , ξN as defined
above. So, we consider the expected ranking quality under
the empirical distribution DN :

LN (θ) := Eξ∼DNL(fξ(θ), ξ) =
1

N

N∑
i=1

L(fξi(θ), ξi).

We want to optimize L(θ) globally by optimizing LN (θ).
This is possible because of the stability of global minimiz-
ers even for discontinuous functions: for N � 1 an al-
most minimizer of LN (θ) should be an almost minimizer
of L(θ) (Artstein & Wets, 1995).

Thus, we need to find a global minimizer of LN . Due to
the discrete structure, we can ignore sets of zero Lebesgue
measure. Recall that essential infimum (ess inf) is infimum
that ignores sets of zero measure and intU denotes an open
interior of the set U .
Definition 3. For any function L(θ) : Rm → R with L∗ :=
ess infθ∈Rm L(θ) > −∞, we define

arg minL(θ) := int
{
θ ∈ Rm : L(θ) = L∗

}
.

We need this unusual definition because of the discrete struc-
ture of our loss: we want to exclude the breaking points from
arg min. One can see that despite L(·, ·) satisfies Jumps reg-
ularity, the function LN (θ) does not have to.
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Statement 1. The set arg minθ∈Rm LN (θ) is not empty.

The proof is straightforward (see Section A of the supple-
mentary materials).

4. Stochastic Smoothing
4.1. Smoothing of Scores

The discrete structure of ranking loss functions prevents
their effective optimization. Hence, some smoothing is
needed and a natural approach for this is mollification (Er-
moliev et al., 1995; Dolecki et al., 1983), i.e., adding ran-
domness to parameters. We refer to Section B.1 of the
supplementary materials for the formal definition and the
reasons why this approach is not applicable in our case.

Thus, instead of acting on the level of parameters θ, we
act on the level of scores z: Lπξ (z, σ) := EL(z + σε, ξ),
where ε is a random variable with p.d.f. π(z). We multiply
the noise by σ to preserve Scalar-freeness in a sense that
Lπξ (λz, λσ) = Lπξ (z, σ) for any λ > 0.

In the linear case f(θ) = Φ θ, if rk Φ = n, it is not hard to
show the convergence of minimizers. However, in general,
we cannot assume rk Φ = n. In particular, this property is
violated in the presence of ties that always occur in gradient
boosting due to the discrete nature of decision trees. As
a result, there is a smoothing bias that alters the set of
minimizers.

4.2. Simple Example of Smoothing Bias

Within this section, assume for simplicity that we are
dealing with one function L(z) := L(z, ξ) : Rn → R
for some arbitrary fixed n and ξ ∈ Ξn. Let Φ =
Φξ ∈ Rm×n and L(θ) := L(Φ θ). To clearly see how
a smoothing bias can be introduced, consider the case
when im(Φ) ⊂ Rn \∪ki=1Ui, where Ui are from the Dis-
creteness on subspaces assumption for V = Rn. De-
note by c1, . . . , ck ∈ R the values of L(z) on the cor-
responding subsets Ui. Consider the functions L(θ) and
Lπ(θ) := limσ→0+ Eε∼πL(Φθ + σε).

The value of Lπ(θ) is fully determined by π, c1, . . . , ck
and the subsets U1, . . . , Uk in the following way: Lπ(θ) =∑
i αici with

αi = αi(π, θ, U1, . . . , Uk) = lim
σ→0+

P(Φ θ + σε ∈ Ui).

In contrast, the value L(θ) depends on the values c1, . . . , ck
much weaker: for fixed θ, consider the values c′1, . . . , c

′
k′

that correspond to Ui such that Φθ ∈ Ui, then the only
limitation we have is min c′i < L(θ) ≤ max c′i (this is
required by Jumps regularity), which clearly allows more
flexibility than the linear combination defined above.

In LTR, the issue of smoothing bias is connected to the
problems of ties: the situations when zi = zj and ri 6= rj .

4.3. Consistent Smoothing

Definition 4. We say that the family of distributions πξ(z) :∐
n>0 Rn × Ξn → R+ is a consistent smoothing for

L(z, ξ) ∈ R0 and for the model fξ iff for each n > 0,
ξ ∈ Ξn the following limit holds almost surely locally uni-
form in θ:

L(fξ(θ), ξ) = lim
σ→0+

Lπξ (fξ(θ), σ).

If π is smooth enough and consistent, then the function
LπN (θ, σ) := 1

N

∑N
i=1 L

π
ξi

(fξi(θ), σ) is also smooth and
almost surely locally uniformly approximates the discrete
loss LN (θ) as σ → 0+.

To optimize ranking losses, it is important to find a con-
sistent smoothing π for functions in R1. Fortunately, we
can do this with an arbitrary precision by shifting the nor-
mal distribution by −µr for large enough µ. Relevance
monotonicity and s.u.s.c. imply the following pointwise
limit:

lim
µ→∞

lim
σ→0+

Eε∼N (−µr,In)L(z + σε, ξ)

= lim
µ→∞

lim
σ→0+

Eε∼N (0n,In)L(z−σµr+σε, ξ) = L(z, r) .

This can be strengthened to the following theorem, which is
proven in Section B.2 of the supplementary materials.
Theorem 1. πξ,µ = N (−µr, In) is a consistent smoothing
forR1 as µ→∞. Formally, ∀θ except zero measure ∃ δ >
0 ∀ ε > 0 ∃µ > 0 ∃σ0 > 0 such that ∀σ ∈ (0, σ0) and
∀θ′ : ‖θ−θ′‖ < δ holds |Lπξ (fξ(θ

′), σ)−L(fξ(θ
′), ξ)| < ε.

By similar arguments, one can show that N (0, In) is a
consistent smoothing forRsoft1 . Note that in both cases the
consistent smoothing is universal for the entire class (R1 of
Rsoft1 ), i.e., it is independent from the choice of fξ.

Thus, LTR problems require non-trivial smoothing to pre-
serve consistency. However, under some restrictive assump-
tions on the loss and on the model, any smoothing π is
consistent.

Recall that LN (θ) = 1
N

∑N
i=1 L(Φξiθ, ξi) and assume that

L(z, ξ) ∈ R0. The following theorem is proven in Sec-
tion B.3 of the supplementary materials.
Theorem 2. Consider open and convex subsets U ′ij :=

Uij ∩ im Φξi . If ∀i ∃j s.t. U ′ij 6= ∅ and ∪jU ′ij = im Φξi ,
then any smoothing π is consistent for LN (θ).

In early literature on LTR, all authors used such conditions
implicitly by assuming that scores for all items are differ-
ent. In contrast, we do not use this assumption as it never
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holds in practice (e.g., when two documents have equal fea-
tures). As a result, all existing LTR approaches suffer from
a smoothing bias. In contrast, for the LSO problem, any
smoothing is consistent, as we discuss in Section B.4 of the
supplementary materials.

4.4. Scale-Free Acceleration

It is intuitively clear that for a scale-free function it is better
to have a scalar-free approximation. However, for each λ >
0 we have Lπξ (λz, σ) = Lπξ (z, λ−1σ), i.e., the smoothed
function is no longer scale-free. To enforce scale-freeness,
we take a vector z′ with ‖z′‖2 > 0 and define

Lπξ (z, σ|z′) := Lπξ

(
z,
‖z‖2
‖z′‖2

σ

)
.

We refer to such smoothing as Scale-Free Accelera-
tion (SFA). The obtained function is indeed scale-free:
Lπξ (λz, σ|z′) ≡ Lπξ (z, σ|z′) for any λ > 0.

Let σ̂(z) := ‖z‖2
‖z′‖2σ. In our optimization, we will be inter-

ested only in the case when z′ = zt is the vector of scores
obtained on t-th iteration of the optimization algorithm. So,
we have σ̂(zt) = σ and SFA does not change the scale σ.

One can imagine a sphere of radius R = ‖z′‖2, where we
restrict Lπξ (z, σ) and homogenize it along the rays from the
origin to infinity to obtain a scalar-free function.

4.5. Smoothing Properties

Finally, let us discuss regularity assumptions for smoothing
on which our optimization method relies. Consider a family
of distributions with p.d.f. πξ(z) with ξ ∈ Ξn for some
n > 0, z ∈ Rn. We require the following properties:

• Continuous differentiability: πξ(z) is C(1)(Rn), i.e.,
is differentiable with a continuous derivative.

• Uniformly bounded derivative: ∀n ∈ N, ∀ξ ∈ Ξn
we have ‖∇zπξ‖2 = O(1) uniformly in z ∈ Rn.

• Derivative decay: ∀n ∈ N we have ‖∇zπξ‖2 =
O(‖z‖−n−22 ) as ‖z‖2 →∞.

• Tractable conditional expectations: conditional den-
sities πjξ(zj) := πξ(zj |z\j) are easy to compute.5

Clearly, N (−µr, IN ) satisfies these assumptions ∀µ ≥ 0.

5We do not use the log-derivative trick, so we do not care about
the ability to compute d

dzj
πjξ(zj) and d

dzj
log πjξ(zj), our gradient

estimates require only computation of πjξ(zj).

5. Coordinate Conditional Sampling
5.1. Gradient Estimate

In the previous section, we required the ability to easily com-
pute πjξ(zj) = πξ(zj |z\j). This property allows us to do

the following trick: we decompose πξ(z) = πjξ(zj)π
\j
ξ (z\j)

with π\jξ (z\j) being the marginal distribution for z\j . Then,

we can represent Lπξ (z, σ) = Lπξ ∗ π
j
ξ ∗ π

\j
ξ . Note that the

convolution is an associative operation that commutes with
differentiation and, henceforth,

∂

∂zj
Lπξ (z, σ) =

(
∂

∂zj
Lπξ ∗ π

j
ξ

)
∗ π\jξ .

Note that we differentiate by zj the convolution by the same
zj . So, if we want to estimate the gradient unbiasedly,
we need to sample ε\j ∼ π

\j
ξ and then compute exactly(

∂
∂zj

Lπξ ∗ π
j
ξ

)(
(zj , z\j + σε\j)

)
. The resulting estimate

would be unbiased by construction. The following lemma
suggests how to deal with ∂

∂zj
Lπξ ∗ π

j
ξ .

Lemma 1. The function lj(zj) := L((zj , z\j), ξ) : R→ R
for all z except zero measure has at most k′ ≤ k(n,Rn)−
1 (k is from the Discreteness on subspaces assumption)
breaking points b1, . . . , bk′ (possibly depending on z\j and
ξ) and can be represented as:

lj(zj) =

k′∑
s=1

∆lj(bs)1{zj≤bs} + const(z\j , ξ),

∆lj(bs) := lim
ε→0+

lj(bs + ε)− lj(bs − ε).

All results of this section are proven in Section C of the
supplementary materials.

Based on the above lemma, we prove the following theorem.

Theorem 3. The derivative ∂
∂zj

Lπξ (z, σ) is equal to:

−σ−1 · E
ε\j∼π

\j
ξ

k′∑
s=1

∆lj(bs)π
j
ξ(σ
−1(bs − zj)),

where k′ and bs = bs(z\j + σε\j) are from Lemma 1.

Corollary 1. For LTR losses, the above formula becomes:

∂

∂zj
Lπξ (z, σ) = −σ−1·

· E
ε\j∼π

\j
ξ

n∑
s=1

∆lj(zs + σεs)π
j
ξ(σ
−1(zs − zj) + εs).

Uniform boundedness of ∆lj and π implies the following.

Statement 2. The estimate is uniformly bounded by
O(σ−1).
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Proceeding analogously with each coordinate j ∈
{1, . . . , n}, we obtain an unbiased estimate of∇zLπξ (z, σ)
that is uniformly bounded, in contrast to the classic estimate
σ−1(L(z + σε)−L(z))ε (Nesterov & Spokoiny, 2017) ob-
tained by the log-derivative trick for the normal distribution
that is also known as REINFORCE (Williams, 1992). Uni-
form boundedness is crucial since without it we would not
be able to claim global convergence. We call such estimate
Conditional Coordinate Sampling (CCS) and denote it by
∇̂CCLπξ (z, σ).

Note that for each coordinate when estimating
∇̂CCLπξ (z, σ) we use the shared noise vector ε ∼ πξ, i.e.,
the components of the gradient can have non-trivial covaria-
tion, but due to the uniform boundness the covariation is
also uniformly bounded by O(σ−1).

Finally, let us discuss the complexity of computing
∇̂CCLπξ (z, σ). The following result follows from Section D
of the supplementary materials.

Statement 3. The estimate ∇̂CCLπξ (z, σ) can be computed
in:

• O((k+log n)n) operations andO(n) additional mem-
ory for (N)DCG@k and ERR@k.

• O(n log n) operations and O(1) memory for MRR.

5.2. SFA Gradient Estimate

It is not hard to generalize CCS to SFA. The following
theorem holds.

Theorem 4. For σ̂(z) =
(
‖z‖2
‖z′‖2

)
σ at z′ = z we have:

∇zLπ(z, σ̂(z)) = ∇zLπξ −
〈
∇zLπξ ,

z

‖z‖2

〉
2

z

‖z‖2
.

Corollary 2. Unbiased CCS estimate for SFA can be ob-
tained by orthogonalizing ∇̂CCLπξ (z, σ) and z.

Since orthogonalization reduces the norm of the estimate, it
necessarily reduces the variance, so we obtain the following
corollary.

Corollary 3. SFA CCS estimate has a lower variance than
the original CCS.

The intuition for the orthogonalization is based on Scalar-
freenees: the function L(z, ξ) does not change along z
direction, so this direction in the gradient ∇zLπξ does not
contribute to L(z, ξ) optimization.

As we need to deal with possibility of z = z′ = 0n, we
introduce a parameter ν > 0 and replace ‖z‖2 by ‖z‖2 + ν:

∇̂CCLπξ (z, σ|z′, ν)
∣∣
z′=z

:= ∇̂CCLπξ (z, σ)

−
〈
∇̂CCLπξ (z, σ),

z

‖z‖2 + ν

〉
2

z

‖z‖2 + ν
.

Lemma 2. Bias of SFA CCS estimate is uniformly bounded:∣∣E∇̂CCLπξ (z, σ0|z′, ν)−∇zLπξ (z, σ̂)
∣∣ = O

( 1

‖z‖+ ν

)
.

As a consequence, if ν →∞ or ‖z‖ → ∞, then the estimate
is asymptotically unbiased.

Thus, for the convergence analysis we consider only
∇̂CCLπ(z, σ) since the estimate ∇̂CCLπ(z, σ0|z′, ν) can
be made unbiased by varying the parameter ν > 0. In prac-
tice, we consider ∇̂CCLπξ (z, σ0|z′, ν) with fixed ν = 10−2

as we observed that this parameter performs well enough.
Moreover, SFA can be seen as a bias–variance tradeoff con-
trolled by ν > 0 for CCS estimate of∇zLπξ (z, σ). For prac-
tical comparison of ∇̂CCLπξ (z, σ) and ∇̂CCLπξ (z, σ0|z′, ν)
we refer to Section 7, where we show that SFA gives a
significant improvement.

6. Global Optimization by Diffusion
6.1. SGLB

Previously, we discussed the importance of global optimiza-
tion of LN (θ). As we show in this section, this can be
achieved by global optimization of smoothed LπN (θ, σ) with
σ = 1 (if smoothing is consistent) using the recently pro-
posed Stochastic Gradient Langevin Boosting (SGLB) (Us-
timenko & Prokhorenkova, 2020). SGLB is easy to apply:
essentially, each iteration of standard SGB is modified via
model shrinkage and adding Gaussian noise to the gradients.
However, the obtained algorithm is backed by strong theo-
retical results, see (Ustimenko & Prokhorenkova, 2020) for
the details and the supplementary materials (Section E.1) for
a brief sketch. The global convergence is implied by the fact
that as the number of iterations grows, the stationary distri-
bution pβ(F ) of the predictions F = (fξ1(θ), . . . , fξN (θ))
concentrates around the global optima of the implicitly reg-
ularized loss

LπN (F, σ, γ) = LπN (F, σ) +
γ

2
‖ΓF‖22,

where Γ is an implicitly defined regularization matrix. More
formally, pβ(F ) ∝ exp(−βLπN (F, σ, γ)).

Global convergence of SGLB requires Lipschitz smoothness
and continuity (Ustimenko & Prokhorenkova, 2020). We
can ensure this for the entireR0, which allows us to claim
the following theorem (see Section E.2 for the proof).

Theorem 5. SGLB method applied to LπN (F, σ) converges
globally to optima of LN (F ) ≡ LN (θ) when used with
CCS estimate.

The following statement ensures that we can safely fix σ =
1 and fit only γ parameter without loosing any possible
solution.
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Statement 4. EF∼pβLN (F ) = EF ′∼p′βLN (F ′), where pβ
corresponds to (σ, γ) and p′β to (1, σ2γ).

Proof. Due to Scalar-freeness, we can write LπN (F, σ) ≡
LπN (σ−1F, 1) and γ

2 ‖ΓF‖2 ≡
σ2γ
2 ‖Γ

(
σ−1F

)
‖22. Finally,

due to Scalar-freeness, the change F ′ = σ−1F does not
change the value of LN (F ) ≡ LN (F ′) and thus the expec-
tation does not change.

6.2. Generalization

Ustimenko & Prokhorenkova (2020) related the generaliza-
tion gap with the uniform spectral gap parameter λ∗ ≥ 0 for
the distribution pβ(θ) := exp(−βLN (θ,σ,γ))∫

Rm exp(−βLN (θ,σ,γ))dθ
(see Ra-

ginsky et al. (2017) for the definition of a uniform spectral
gap). Here pβ(θ) represents the limiting (as the learning rate
goes to zero) distribution of the vector of parameters θ and
is induced by the distribution pβ(F ) ∝ exp(−βL(F, σ, γ))
using the relation F = Φθ. The following theorem is proven
in the supplementary materials (Section E.3).

Theorem 6. The generalization gap
∣∣Eθ∼pβ(θ)Lπ(θ, σ)−

Eθ∼pβ(θ)LπN (θ, σ)
∣∣ can be bounded by:

O

((
β + 2d+

d2

β

)
exp(O( β

γσ2 ))

γN

)
.

7. Experiments
As baseline approaches, we consider the well-known
LambdaMART framework optimized for NDCG@k (Wu
et al., 2010), NDCG-Loss2++ from the LambdaLoss frame-
work (Wang et al., 2018), and SoftRank (Taylor et al.,
2008). We also apply the technique proposed by Bruch
et al. (2020) to the baselines, the corresponding methods
are called Eλ-MART and Eλ-Loss. Similarly to Wang et al.
(2018), we set the parameter µ for NDCG-Loss2++ to be
equal to 5. According to our experiments, NDCG-Loss2++
performed significantly better than NDCG-Loss2, which
agrees with Wang et al. (2018).

7.1. Synthetic Data

Unfortunately, in practice, we cannot verify if we have
reached the global optimum as we cannot evaluate all pos-
sible ensembles of trees. But having theoretical guarantees
is important as it implies the stability of the algorithm and
good generalization. In this section, we describe a simple
synthetic test to verify whether StochasticRank can reach
the global optimum.

The following dataset is multimodal (has several local op-
tima) for NDCG@3: the number of queries is N = 2,
first relevance vector is r1 = (3, 2, 1) and the second is
r2 = (3, 2). We consider the following features for the first

Table 1. Experimental results on synthetic data.

Method NDCG@3

λ-MART 0.903
λ-Loss 0.903
Eλ-MART 0.903
Eλ-Loss 0.903
SoftRank 0.903
StochasticRank 0.917

query: x1 = (1, 0, 0), x2 = (0, 1, 0), x3 = (0, 0, 1) and for
the second x3 and x1 (in the given order).

We consider this simple synthetic dataset for two reasons:
first, it clearly shows that ranking losses are likely to be
multimodal; second, it allows us to demonstrate how mul-
timodality prevents existing approaches from reaching the
global optimum.

We limited the tree depth parameter to 3, so one tree can
separate all documents with different features. We set the
number of iterations to 1000, learning rate to 0.1, diffusion
temperature to 103, and model-shrink-rate to 10−3.

The results are shown in Table 1. We note that the maximum
achievable NDCG@3 for this dataset is 0.917, i.e., Stochas-
ticRank successfully recovers the global optimum while all
other approaches converge to a local optimum 0.903.

7.2. Real Data

Datasets For our experiments, we use the following pub-
licly available datasets. First, we use the data from YAHOO!
Learning to Rank Challenge (Chapelle & Chang, 2011):
there are two datasets, each is pre-divided into training, val-
idation, and testing parts. The other datasets are WEB10K
and WEB30K released by Microsoft (Qin & Liu, 2013).
Following Wang et al. (2018), we use Fold 1 for these two
datasets.

Quality metrics The first metric we use is NDCG@5,
which is very common in LTR research. The second one is
MRR, which is a well-known click-based metric. Recall
that MRR requires binary labels, so we binarize each label
by ỹi := 1{yi>0}. Notably, while MRR is frequently used
in online evaluations, it is much less studied compared to
NDCG@k and there are no effective approaches designed
for it. Fortunately, our method can be easily adapted to any
ranking metric via a combination of SGLB with Coordinate
Conditional Sampling smoothed by Gaussian noise.

Framework We implemented all approaches in CatBoost,
which is an open-source gradient boosting library outper-
forming the most popular alternatives like XGBoost (Chen
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Table 2. Experimental results.

Method Dataset NDCG@5 MRR

λ-MART Yahoo Set 1 74.53 90.21
λ-Loss Yahoo Set 1 74.73 -
Eλ-MART Yahoo Set 1 74.57 90.30
Eλ-Loss Yahoo Set 1 74.75 -
SoftRank Yahoo Set 1 71.98 90.17

SR-Rsoft1 Yahoo Set 1 74.68 91.07
SR-R1 Yahoo Set 1 74.92 90.97

λ-MART Yahoo Set 2 73.87 91.48
λ-Loss Yahoo Set 2 73.89 -
Eλ-MART Yahoo Set 2 73.87 91.48
Eλ-Loss Yahoo Set 2 73.91 -
SoftRank Yahoo Set 2 73.91 92.16

SR-Rsoft1 Yahoo Set 2 73.95 93.16
SR-R1 Yahoo Set 2 74.15 93.56

λ-MART WEB10K 48.22 81.85
λ-Loss WEB10K 48.33 -
Eλ-MART WEB10K 48.29 81.72.
Eλ-Loss WEB10K 48.47 -
SoftRank WEB10K 42.82 81.38

SR-Rsoft1 WEB10K 48.19 83.08
SR-R1 WEB10K 48.53 83.30

λ-MART WEB30K 49.55 83.79
λ-Loss WEB30K 49.45 -
Eλ-MART WEB30K 49.49 83.79
Eλ-Loss WEB30K 49.52 -
SoftRank WEB30K 43.46 82.73

SR-Rsoft1 WEB30K 49.67 85.19
SR-R1 WEB30K 49.59 85.01

& Guestrin, 2016) and LightGBM (Ke et al., 2017) for sev-
eral tasks (Prokhorenkova et al., 2018). LambdaMART can
be easily adapted for optimizing MRR, so we implemented
both versions. In contrast, LambdaLoss is specifically de-
signed for NDCG and cannot be easily modified for MRR.
For SoftRank we used CCS to estimate gradients, since the
original approach is computation and memory demanding,
so it is infeasible in gradient boosting which requires all
gradients to be estimated at each iteration.

Parameter tuning For all algorithms, we set the maxi-
mum number of trees to 1000. We tune the hyperparameters
using 500 iterations of random search and select the best
combination using the validation set, the details are given in
the supplementary materials (Section F).

Table 3. Comparison of the algorithm’s features on Yahoo Set 1,
where πµ means using unbiased smoothing.

Features NDCG@5

REINFORCE 70.74
CCS 71.89
CCS+SFA 74.55
CCS+SFA+SGLB (SR-Rsoft1 ) 74.68
CCS+SFA+SGLB+πµ (SR-R1) 74.92

Results The results are shown in Table 2. One can see
that StochasticRank (SR-R1) outperforms the baseline ap-
proaches on all datasets. In all cases, the difference with
the closest baseline is statistically significant with a p-value
< 0.05 measured by the paired one-tailed t-test. Also, in
most cases, SR-R1 outperforms SR-Rsoft1 , which clearly
demonstrates the advantage of unbiased smoothing, which
takes into account the tie resolution policy.

The results in Table 2 are comparable to previously reported
numbers, although they cannot be compared directly, since
experimental setup (e.g., the maximum number of trees) is
not fully described in many cases (Wang et al., 2018). More
importantly, the previously reported results can be overval-
ued, since many openly available libraries compute ranking
metrics using neither worst (as in our case) nor “expected”
permutation, but some fixed arbitrary one depending on a
particular implementation of the sorting operation.

To further understand how different techniques proposed in
this paper affect the quality of the algorithm, we show the
improvement obtained from each feature using the Yahoo
dataset and the NDCG metrics (see Table 3). We see that
CCS is significantly better than REINFORCE, while SFA
gives an additional significant performance boost. SGLB
and consistent smoothing further improve NDCG. We note
that for both REINFORCE and CCS we use one sample
per gradient estimate since the most time-consuming op-
eration for both estimates is sorting (see Section D of the
supplementary materials).

8. Conclusion
In this paper, we proposed the first truly direct LTR algo-
rithm. We formally proved that this algorithm converges
globally to the minimizer of the target loss function. This
is possible due to the combination of three techniques: un-
biased smoothing for consistency between the original and
smoothed losses; SGLB for global optimization via gra-
dient boosting; and CCS gradient estimate with uniformly
bounded error and low variance, which is required for SGLB
to be applied. Our experiments clearly illustrate that the
new algorithm outperforms state-of-the-art LTR methods.
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