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StochasticRank: Global Optimization of Scale-Free Discrete Functions
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Table 1. Notation.
Variable Description

z ∈ Rn Vector of scores
ξ ∈ Ξn Vector of contexts
r ∈ Rn Vector of relevance labels
θ ∈ Rm Vector of parameters
L(z, ξ) Loss function
Lπξ (z, σ) Smoothed loss function
Lπξ (z, σ|z′) SFA smoothing of the loss
L(θ) Expected loss
LN (θ) Empirical loss
LπN (θ, σ) Smoothed empirical loss
LπN (θ, σ, γ) Regularized and consistently smoothed loss
R0 Scale-free discrete loss functions
R1 Ranking loss functions
Rsoft1 Soft ranking loss functions
πξ(z) Distribution density for smoothing
pβ(θ) Invariant measure of parameters
pβ(F ) Invariant measure of predictions
σ > 0 Smoothing standart deviation
β > 0 Diffusion temperature
γ > 0 Regularization parameter
µ ≥ 0 Relevance shifting parameter
ν > 0 Scale-Free Acceleration parameter

A. Proof of Statement 1
Let us prove that the set arg minθ∈Rm LN (θ) is not empty.

Consider Uij being open and convex sets for Vi = imΦξi
(see Discreteness on subspaces in Definition 1 in the main
text). Then, U ′ij = Φ−1ξi Uij ⊂ Rm are also open and convex.
Henceforth, the function LN can be written as (ignoring the
sets of zero measure):

LN (θ) = N−1
k1∑
j1=1

. . .

kN∑
jN=1

cj1,...jN1θ∈∩Ni=1U
′
iji

. (1)

Henceforth, the function LN is also discrete with open con-
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vex sets Us := ∩Ni=1U
′
iji

on the whole space Rm. Hence, its
arg min is one of these sets or their union.

B. Stochastic smoothing
B.1. Mollification

A natural approach for smoothing is mollification (Ermoliev
et al., 1995; Dolecki et al., 1983): choose a smooth enough
distribution with p.d.f. π(θ), consider the family of dis-
tributions πδ(θ) = δ−mπ(δ−1θ), and let LN (θ, δ) :=
LN ∗ πδ ≡ Eε∼πLN (θ + δε). Then, the minimizers of
LN (θ, δ) convergence to the minimizer of LN (θ). Unfor-
tunately, despite theoretical soundness, it is hard to de-
rive efficient gradient estimates even in the linear case
fξi(θ) = Φξiθ. Moreover, in the gradient boosting setting,
we do not have access to all possible coordinates of θ at
each iteration. Henceforth, we cannot use the mollification
approach directly.

Thus, instead of acting on the level of parameters θ, we act
on the level of scores z: Lπξ (z, σ) := EL(z + σε, ξ), where
ε has p.d.f. π(z). We multiply the noise by σ to preserve
Scalar-freeness in a sense that Lπξ (λz, λσ) = Lπξ (z, σ) for
any λ > 0.

In the linear case f(θ) = Φθ, if rkΦ = n, it is not hard
to show the convergence of minimizers. Indeed, we can
obtain mollification by “bypassing” the noise from scores
to parameters by multiplying on Φ−1. However, in general,
we cannot assume rkΦ = n.

B.2. Proof of Theorem 1

The trick is to proceed with L(fξi(θ), ξi) and to show that
there exists an open and dense set Uξi ⊂ Rm such that
the convergence is locally uniform as σ → 0+, µ → ∞,
σµ→ 0+.

Let us proceed with proving the existence of such Uξi∀i.
Let us define

Uξi :=
{
θ ∈ Rm : ∀j 6= j′

(
fξi(θ)j = fξi(θ)j′

)
⇒

∀θ′ ∈ Rm
(
fξi(θ

′)j = fξi(θ
′)j′
)}
.
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Clearly, the set is not empty, open, and dense. Now, take
an arbitrary θ ∈ Uξi . Consider z = fξi(θ) and divide the
set {1, . . . , ni} into disjoint subsets J1, . . . , Jk such that all
components zj corresponding to one group are equal and all
components zj corresponding to different J’s are different.
Clearly, we need to “resolve” only those which are equal:
for small enough σ ≈ 0, σµ ≈ 0 we obtain that even after
adding the noise fξi(θ

′) − σµr + σε the order of J’s is
preserved with high probability uniformly in some vicinity
of θ, whilst for large enough µ� 1 we obtain the worst case
permutation of zj corresponding to the one group with high
probability uniformly on the whole Uξi . Thus, we obtain
locally uniform convergence EL(fξi(θ)− σµr+ σε, ξi)→
L(fξi(θ), ξi).

B.3. Proof of Theorem 2

Clearly, the conditions of the theorem imply that for general
θ w.l.o.g. we can assume that Φξiθ ∈ Uiji for some indexes
ji. Henceforth, after adding the noise with σ → 0+ we must
obtain locally uniform approximation since the functions
L(z, ξi) are locally constant in a vicinity of z = Φξiθ ∀i.

B.4. Consistent smoothing for LSO

Theorem 1. In gradient boosting, if L(·, ·) ∈ R0 is coming
from the LSO problem, then any smoothing is consistent.

Proof. Conditions from Theorem 2 of the main text translate
into a condition that

(
Φξθ

)
j
6= 0 for all j and for all θ almost

surely. This can be enforced by adding a free constant to
the linear model, but in the gradient boosting setting this
condition is essentially satisfied: consider θ = 1m, then(
Φξ1m

)
j
≥ 1 ∀j since the matrix Φξ is 0-1 matrix and

have at least one “1” in each row (every item fells to at least
one leaf of each tree). Henceforth, for any general θ we
can assume another general θ̃ = θ + ν1m, where ν is any
random variable with absolute continuous p.d.f. This in turn
implies

(
Φξ θ̃

)
j
6= 0 almost surely. Henceforth, Theorem 2

holds ensuring the consistency of smoothing.

C. Coordinate Conditional Sampling
C.1. Proof of Lemma 1

Consider a line H = {(zj , z\j) : ∀zj ∈ R} and sub-
sets U1, · · · , Uk for k = k(n,Rn) from the Discretness
on subspaces assumption for V = Rn. Then Ui ∩ H =
(ai, bi) × {z\j} due to opennes and convexity of Ui for
ai, bi ∈ R ∪ {±∞}. Moreover, (Ui ∩H) ∩ (Ui′ ∩H) =
∅ ∀i 6= i′ and, by ignoring sets of zero measure, we can
assume that ∪i(ai, bi)× {z\j} = H . After that, we can
take all finite {b1, . . . , bk} ∩ R as breaking points.

C.2. Proof of Theorem 3

Observe that L ∗ πjξ tautologically equals lj ∗ πjξ and the
convolution is distributive with respect to summation, so we
can write:

L ∗ πj =

k′∑
s=1

∆lj(bs)1{zj≤bs} ∗ π
j
ξ + const(z\j).

The convolution 1{zj≤bs} ∗ π
j
ξ is equal to Pξ(zj + σεj <

bs|ε\j) := σ−1
∫

R 1{zj+σεj≤bs}π
j
ξ(σ
−1εj)dεj , allowing

us to rewrite:

L ∗ πjξ

=

k′∑
s=1

∆lj(bs)Pξ(εj < σ−1(bs−zj)|ε\j)+const(z\j) .

The above formula is ready for differentiation since each
term is actually a C(2)(R) function by the variable zj :

∂

∂zj
L ∗ πjξ = −σ−1

k′∑
s=1

∆lj(bs)π
j(σ−1(bs − zj)).

After the convolution with π\jξ , we finally get the required
formula.

C.3. Proof of Corollary 1

For LTR (R1 and Rsoft1 ), all these bs actually lay in
{z1, . . . , zn} ⊂ R due to Pairwise decision boundary as-
sumption and, henceforth, we do not need to compute them,
we just need to take coordinates of z ∈ Rn as breaking
points and note that if some of zs is not a breaking point for
L(z, ξ), then essentially ∆lj(zs) = 0. Then, we can write

∂

∂zj
L ∗ πjξ = −σ−1

n∑
s=1

∆lj(zs)π
j
ξ(σ
−1(zs − zj)).

Let us note that for LSO, we can actually take k′ = 1 and
b1 = 0 and simplify the formula to:

lj(zj) = ∆lj1{zj≤0} + const(z\j).

C.4. Proof of Theorem 4

Lemma 1. The function Lπξ (z, σ) satisfies the following
linear first order Partial Differential Equation (PDE):

∂

∂σ
Lπξ (z, σ) = −σ−1〈∇zLπξ (z, σ), z〉2.

Proof. The proof is a direct consequence of Scalar-Freenees:
we just need to differentiate the equality Lπξ (αz, ασ) ≡
Lπξ (z, σ) (holding for α > 0) by α and set α = 1.
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Lemma 2. ∂
∂σL

π
ξ (z, σ) is uniformly bounded by O(σ−1).

Proof. Consider writing Lπξ (z, σ) in the integral form:

Lπξ (z, σ) = σ−n
∫

Rn
L(z + ε, ξ)π(σ−1ε)dε.

By Fubini’s theorem, we can pass the differentiation ∂
∂σ to

inside the integral and obtain:

∂

∂σ
Lπξ (z, σ) = −nσ−n−1

∫
Rn
L(z + ε, ξ)π(σ−1ε)dε

− σ−n−2
∫

Rn
L(z + ε, ξ)〈∇π(σ−1ε), ε〉dε.

Consider the variable ε′ = σ−1ε, then we arrive at

∂

∂σ
Lπξ (z, σ) = −nσ−1

∫
Rn
L(z + σε, ξ)π(ε)dε

− σ−1
∫

Rn
L(z + σε, ξ)〈∇π(ε), ε〉dε.

Taking the absolute value of both sides and using the triangle
inequality, we derive

∣∣∣ ∂
∂σ

Lπξ

∣∣∣ ≤ nlσ−1 + lσ−1
∫

Rn
‖∇π(ε)‖2‖ε‖2dε,

where l = supz |L(z, ξ)| < ∞ by the Uniform bounded-
ness assumption and the last integral is well defined by the
Derivative decay assumption.

Corollary 1. supz

∣∣∣〈∇zLπξ , z〉2∣∣∣ = O(1) independently
from σ.

Proof. Immediate consequence of the previous lem-
mas.

Now, assume that σ = σ(z) is differentiable and non-zero at
z. The following lemma describes ∇zLπξ (z, σ(z)) in terms
of ∇zLπξ := ∇zLπξ (z, σ)

∣∣
σ=σ(z)

.

Lemma 3. The following formula holds:

∇zLπξ (z, σ(z)) = ∇zLπξ −
〈
∇zLπξ , z

〉
2
∇z log σ(z).

Proof. Consider writing

∇zLπξ (z, σ(z)) = ∇zLπξ +
∂

∂σ
Lπξ (z, σ(z))∇zσ(z).

Then, by Lemma 1 we obtain the formula.

D. Fast ranking metrics computation
We need to be able to compute L(z′, z\si + σε\si , ξ) for an
arbitrary z′ ∈ R and a position i, where s ∈ Sn represents
s := argsort(z + σε) for the CCS estimate (note that there
is no ambiguity in computing argsort since with probability
one zj1 + σεj1 6= zj2 + σεj2 for j1 6= j2). Moreover,
argsort requires O(n log n) operations.

Typically, the evaluation of L(· · · ) costs O(n), e.g., for
ERR. Fortunately, for many losses it is possible to ex-
ploit the structure of the loss that allows evaluating L in
O(1) operations using some precomputed shared cumula-
tive statistics related to the loss which can be computed in
O(n) operations and O(n) memory.

For all L ∈ R1 in the worst case we needO(n2) evaluations
of L to compute the CCS (for each of n coordinates to
sum up at most n evaluations). Thus, the overall worst
case asymptotic of the algorithm would be O(n log n+ n+
n2) = O(n2) if the evaluation costs O(1). For the sake
of simplicity, we generalize both NDCG@k and ERR into
one class of losses:

L(z, ξ) = −
n∑
i=1

wig(rsi)

i−1∏
j=1

dsj , (2)

where W = {wi}ni=1 are some predefined posi-
tions’ weights typically picked as 1{i≤k}

maxz DCG@k log(i+1) for
NDCG@k and 1

i for ERR); D = {di}ni=1 is typically
picked as di = 1∀i for −NDCG@k and di = 1 − ri ∀i
for ERR; and finally we define g(r) = r for r ∈ [0, 1] and
g(r) = 2r−1

24 for r ∈ {0, 1, 2, 3, 4}.

First, we need to define and compute the following cumula-
tive product:

pm = dsm−1
pm−1 =

m−1∏
j=1

dsj if m > 1,

where p1 = 1. Denote P := {pi}ni=1. Next, we use them
we define the following cumulative sums:

Sup
m = Sup

m−1 + wm+1g(rsm)pm if m > 1,

Smid
m = Smid

m−1 + wmg(rsm)pm if m > 0,

Slow
m = Slow

m−1 + wm−1g(rsm)pm if m > 0,

where Sup
0 = Sup

1 = Smid
0 = Slow

0 = 0.

All these cumulative statistics can be computed at the same
time while we compute L(z + σε, ξ). Note that we need
additional O(n) memory to store these statistics.

Now fix a position i and score z′. Express L(z′, z\si +
σε\si , ξ) as (L(z′, z\si +σε\si , ξ)−L(z+σε, ξ))+L(z+
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σε, ξ). Thus, we need to compute L(z′, z\si + σε\si , ξ)−
L(z + σε, ξ).

If z′ > zsi + σεsi , we define i′ := i; otherwise, define
i′ := i − 1 — this variable represents the new position of
the si-th document in z + σε. Also, if z′ > zsi + σεsi , we
define:

T low = Smid
i′ − Smid

i ,

T up = d−1si (Sup
i′ − S

up
i ),

w = wipi,

w′ = wi′d
−1
si pi′ .

Otherwise, define:

T low = dsi(S
low
i′ − Slow

i−1),

T up = Smid
i′ − Smid

i−1 ,

w = wipi,

w′ = wi′−1pi′ .

Then, we calculate L(z′, z\si + σε\si , ξ) − L(z + σε, ξ)

as g(rsi)(w − w′) − (T up − T low). The meaning of the
formula is simple: we measure the change of gain of the
si-th document if we change its score to z′ from zsi + σεsi
minus the difference of gains of all documents on positions
from i′ up to i− 1, if i′ < i, and from i+ 1 up to i′ − 1, if
i′ > i.

The above formulas can be verified directly by evaluating the
cases when z′ > zsi+σεsi or z′ < zsi+σεsi and expanding
S∗m as

∑
i wi±1g(rsi)pi. Note that all differences S∗i − S∗j

take into account all documents on positions from j + 1 up
to i inclusively.

Note that Smid
n ≡ L(z + σε, ξ). Indeed,

n∑
i=1

wig(rsi)pi =

n∑
i=1

wig(rsi)

i−1∏
j=1

dsj = L(z + σε, ξ).

Therefore, we obtain:

L(z′, z\si + σε\si , ξ) = g(rsi)(w − w′)
− (T up − T low) + Smid

k . (3)

E. Global Optimization by Diffusion
E.1. Overview of SGLB idea

Global convergence of SGLB is guaranteed by a so-called
Predictions’ Space Langevin Dynamics Stochastic Differen-
tial Equation

dF (t) = −γF (t)dt− P∇FLπN (F (t), σ)dt

+
√

2β−1PdW (t),

where F (t) := Φθ(t) = (Φξ1θ(t), . . . ,ΦξN θ(t)) =

(fξ1(θ), . . . , fξN (θ)) ∈ RN
′

denotes the predictions
Markov Process on the train set DN , W (t) is a stan-
dard Wiener process with values in RN

′
, N ′ :=

∑N
i=1 ni,

P = PT is an implicit preconditioner matrix of the boost-
ing algorithm, and β > 0 is a temperature parameter that
controls exploration/exploitation trade-off. Note that here
we override the notation LN (F ) ≡ LN (θ) since F = Φθ.
Further by Γ =

√
P−1 we denote an implicitly defined

regularization matrix.

The global convergence is implied by the fact that as t →
∞, the stationary distribution pβ(F ) of F (t) concentrates
around the global optima of the implicitly regularized loss

LπN (F, σ, γ) = LπN (F, σ) +
γ

2
‖ΓF‖22 .

More formally, the stationary distribution is pβ(F ) ∝
exp(−βLπN (F, σ, γ)). According to Ustimenko &
Prokhorenkova (2020), optimization is performed within
a linear space V := im Φ that encodes all possible pre-
dictions F of all possible ensembles formed by the weak
learners associated with the boosting algorithm. We refer
interested readers to (Ustimenko & Prokhorenkova, 2020)
for the details.

E.2. Proof of Theorem 5

Let us first prove the following lemma.
Lemma 4. The function LπN (F, σ) is uniformly bounded,
Lipschitz continuous with constant L0 = O(σ−1), and Lip-
schitz smooth with constant L1 = O(σ−2).

Proof. The proof of Lipschitz continuity is a direct conse-
quence of the uniform boundedness by O(σ−1) of CCS. If
we differentiate CCS estimate one more time, we obtain the
estimates for the Hessian that must be uniformly bounded
by O(σ−2) due to the uniform boundedness of ∇π, thus
giving Lipschitz smoothness.

In addition to Lipschitz smoothness, continuity, and bound-
edness from above, we also need ‖∇̂CCLπN (F, σ) −
∇LπN (F, σ)‖2 = O(1) (Ustimenko & Prokhorenkova,
2020), but that condition is satisfied since both terms are
uniformly bounded byO(σ−1). Thus, the algorithm has lim-
iting stationary measure pβ(F ) ∝ exp(−βLπN (F, σ, γ)).

Then, consistency of the smoothing ensures that as σ →
0+, pβ(F ) → p∗β(F ), where p∗β(F ) ∝ exp(−β(LN (F ) +
γ
2 ‖ΓF‖

2
2)) and thus for β � 1 the measures p∗β and pβ for

σ ≈ 0 concentrate around the global optima of LN (F ).

E.3. Proof of Theorem 6

Following Raginsky et al. (2017); Ustimenko &
Prokhorenkova (2020), we immediately obtain that



Supplementary Materials∣∣Eθ∼pβ(θ)Lπ(θ, σ) − Eθ∼pβ(θ)LπN (θ, σ)
∣∣ = O( (β+d)2

Nλ∗
)

with λ∗ > 0 and d = VB. In general non-convex case 1
λ∗

can be of order exp(O(d)) (Raginsky et al., 2017) but for
smoothed SF losses we can give a better estimate without
exponential dependence on the dimension.

Observe that our measure is the sum of uniformly bounded
Lipschitz smooth with constant O(σ−2) and a Gaus-
sian γ

2 ‖ΓΦθ‖22, then the more appropriate bound from
the logarithmic Sobolev inequality applies according to

Lemma 2.1 (Bardet et al., 2015) 1
λ∗

= O
(

exp(O( β

γσ2
))

γβ

)
being dimension-free. Note that Miclo’s trick in the proof
of the lemma should be skipped since LπN (θ, σ) is already
fine enough. Coupling the spectral gap bound with the
generalization gap, we obtain the theorem.

F. Parameter tuning
For tuning, we use the random search (500 samples) with
the following distributions:

• For learning-rate log-uniform distribution over
[10−3, 1].

• For l2-leaf-reg log-uniform distribution over
[10−1, 101] for baselines and l2-leaf-reg=0 for
StochasticRank.

• For noise strength (Bruch et al., 2020) uniform distri-
bution over [0, 1].

• For depth uniform distribution over {6, 7, 8, 9, 10}.

• For model-shrink-rate log-uniform distribution over
[10−5, 10−2] for StochasticRank.

• For diffusion-temperature log-uniform distribution
over [108, 1011] for StochasticRank.

• For mu log-uniform distribution over [10−2, 10] for
StochasticRank-R1.
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