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Table 2. Table of Notations
πe, πb Evaluation policy, Behavior policy
{(si, ai, ri, s′i)}ni=1 Finite sample of data
(S,A, P,R, γ, d0),X MDP, X = S ×A
dπb Data distribution over (s, a, r, s′) or its marginals
dπe,γ Normalized discounted occupancy induced by πe
(s, a) ∼ d0 × πe s ∼ d0, a ∼ πe(s)
βπe/πb(a, s) Importance weight on action: πe(a|s)/πb(a|s)
wπe/πb(s, a) dπe,γ(s, a)/dπb(s, a)
Cw Bound on ‖wπe/πb‖∞
V πe Value function
Qπe Q-value function
Rπe Expected discounted return of πe
Rw[·] OPE estimator using (·) as the weighting function (population version)
Rw,n[·] OPE estimator using (·) as the weighting function (sample-based version)
Rq[·] OPE estimator using (·) as the approximate Q-function
En Empirical approximation
W , F Function classes for MWL
Q, G Function classes for MQL
〈·, ·〉HK Inner product of RKHS with a kernel K
conv(·) convex hull
ν Uniform measure over the compact space X
L2(X , ν) L2-space on X with respect to measure ν
Rn(·) Rademacher complexity
� Inequality without constant

A. Proofs and Additional Results of Section 4 (MWL)
We first give the formal version of Lemma 1, which is Lemmas 11 and 12 below, and then provide their proofs.

Lemma 11. For any function g(s, a), define the map; g → δ(g, s′, a′);

δ(g, s′, a′) = γ

∫
P (s′|s, a)πe(a

′|s′)g(s, a)dν(s, a)− g(s′, a′) + (1− γ)d0(s′)πe(a
′|s′).

Then, δ(dπe,γ , s
′, a′) = 0∀(s′, a′).

Proof. We have

dπe,γ(s′, a′) = (1− γ)

∞∑
t=0

γtdπe,t(s
′, a′)

= (1− γ)

{
d0(s′)πe(a

′|s′) +

∞∑
t=1

γtdπe,t(s
′, a′)

}

= (1− γ)

{
d0(s′)πe(a

′|s′) +

∞∑
t=0

γt+1dπe,t+1(s′, a′)

}

= (1− γ)

{
d0(s′)πe(a

′|s′) + γ

∞∑
t=0

∫
P (s′|s, a)πe(a

′|s′)γtdπe,t(s, a)dν(s, a)

}

= (1− γ)d0(s′)πe(a
′|s′) + γ

∫
P (s′|s, a)πe(a

′|s′)dπe,γ(s, a)dν(s, a).

This concludes δ(dπe,γ , s
′, a′) = 0∀(s′, a′).
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Lemma 12. Lw(wπe/πb , f) = 0 ∀f ∈ L2(X , ν) := {f :
∫
f(s, a)2dν < ∞}. Moreover, if we further assume that (a)

dπb(s, a) > 0 ∀(s, a), (b) g(s, a) = dπe,γ(s, a) if and only if δ(g, s′, a′) = 0∀(s′, a′), then wπe/πb is the only function that
satisfies such a property.

Proof. Here, we denote βπe/πb(s, a) = πe(a|s)/πb(a|s). Then, we have

Lw(w, f)

= Edπb [γw(s, a)f(s′, πe)− w(s, a)f(s, a)] + (1− γ)Ed0×πe [f(s, a)]

= Edπb [γw(s, a)βπe/πb(a
′, s′)f(s′, a′)]− Edπb [w(s, a)f(s, a)] + (1− γ)Ed0×πe [f(s, a)]

= γ

∫
f(s′, a′)P (s′|s, a)πe(a

′|s′)dπb(s, a)w(s, a)dν(s, a, s′, a′)+

−
∫
w(s′, a′)f(s′, a′)dπb(s

′, a′)dν(s′, a′) +

∫
(1− γ)d0(s′)πe(a

′|s′)f(s′, a′)dν(a′, s′)

=

∫
δ(g̃, s′, a′)f(s′, a′)dν(s′, a′),

where g̃(s, a) = dπb(s, a)w(s, a). Note that Edπb [·] means the expectation with respect to dπb(s, a)P (s′|s, a)πb(a
′|s′).

First statement

We prove that Lw(wπe/πb , f) = 0∀f ∈ L2(X , ν). This follows because

Lw(wπe/πb , f) =

∫
δ(dπe,γ , s

′, a′)f(s′, a′)dν(s′, a′) = 0.

Here, we have used Lemma 11: δ(dπe,γ , s
′, a′) = 0∀(s′, a′).

Second statement

We prove the uniqueness part. Assume Lw(w, f) = 0 ∀f ∈ L2(X , ν) holds. Noting the

Lw(w, f) = 〈δ(g̃, s′, a′), f(s′, a′)〉,

where the inner product is for Hilbert space L2(X , ν), the Riesz representative of the functional f → Lw(w, f) is δ(g̃, s′, a′).
From the Riesz representation theorem and the assumption Lw(w, f) = 0∀f ∈ L2(X , ν), the Riesz representative is
uniquely determined as 0, that is, δ(g̃, s′, a′) = 0.

From the assumption (b), this implies g̃ = dπe,γ . From the assumption (a) and the definition of g̃, this implies w = wπe/πb .
This concludes the proof.

Proof of Theorem 2. We prove two helper lemmas first.

Lemma 13.

Lw(w, f) = Edπb [{wπe/πb(s, a)− w(s, a)}
∏

f(s, a)],

where
∏
f(s, a) = f(s, a)− γEs′∼P (s,a),a′∼πe(s′)[f(s′, a′)].

Proof of Lemma 13.

Lw(w, f) = Lw(w, f)− Lw(wπe/πb , f)

= Edπb [{γ{w(s, a)− wπe/πb(s, a)}βπe/πb(a
′, s′)f(a′, s′)]

− Edπb [{w(s, a)− wπe/πb(s, a)}f(s, a)]

= Edπb [{wπe/πb(s, a)− w(s, a)}
∏

f(s, a)].
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Lemma 14. Define

fg(s, a) = Eπe

[ ∞∑
t=0

γtg(st, at)|s0 = s, a0 = a

]
.

Here, the expectation is taken with respect to the density P (s1|s0, a0)πe(a1|s1)P (s2|s1, a1) · · · . Then, f = fg is a solution
to g =

∏
f .

Proof of Lemma 14.∏
fg(s, a)

= fg(s, a)− γEs′∼P (s,a),a′∼πe(s′)[fg(s
′, a′)]

= Eπe

[ ∞∑
t=0

γtg(st, at)|s0 = s, a0 = a

]
− Eπe

[ ∞∑
t=0

γt+1g(st+1, at+1)|s0 = s, a0 = a

]
= Eπe [g(s0, a0)|s0 = s, a0 = a] = g(s, a).

We continue with the main proof of Theorem 2. Here, we have Lw(w,Qπe) = Rπe −Rw[w] since

Lw(w,Qπe) = Edπb [{wπe/πb(s, a)− w(s, a)}
∏

Qπe(s, a)]

= Edπb [{wπe/πb(s, a)− w(s, a)}E[r|s, a]]

= Edπb [{wπe/πb(s, a)− w(s, a)}r] = Rπe −Rw[w].

In the first line, we have used Lemma 13. From the first line to the second line, we have used Lemma 14.

Therefore, if Qπe ∈ conv(F), for any w,

|Rπe −Rw[w]| = |Lw(w,Qπe)| ≤ max
f∈conv(F)

|Lw(w, f)| = max
f∈F
|Lw(w, f)|.

Here, we have used a fact that maxf∈conv(F) |Lw(w, f)| = maxf∈F |Lw(w, f)|. This is proved as follows.
First, maxf∈conv(F) |Lw(w, f)| is equal to |Lw(w, f̃)| where f̃ =

∑
λifi and

∑
λi = 1. Since |Lw(w, f̃)| ≤∑

λi|Lw(w, fi)| ≤ maxf∈F |Lw(w, f)|, we have

max
f∈conv(F)

|Lw(w, f)| ≤ max
f∈F
|Lw(w, f)|.

The reverse direction is obvious.

Finally, from the definition of ŵ,

|Rπe −Rw[ŵ]| ≤ min
w∈W

max
f∈F
|Lw(w, f)|.

Remark 2. When Qπe ∈ conv(F) is only approximately satisfied, it is straightforward to incorporate the approximation
errors into Theorem 2, where the theorem statement becomes:

|Rπe −Rw[ŵ]| ≤ max
f∈F
|Lw(w, f)|+ max

w†∈W
min
q†∈F

|Lw(w†, Qπe − q†)|.

For completeness we include the proof below:

Proof. For any w and for any q† ∈ F ,

|Rπe −Rw[w]| = |Lw(w,Qπe)| ≤ |Lw(w, q†)|+ |Lw(w,Qπe − q†)|
≤ max

f∈F
|Lw(w, f)|+ |Lw(w,Qπe − q†)|.
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Therefore, for any w,

|Rπe −Rw[w]| ≤ max
f∈F
|Lw(w, f)|+ min

q†∈F
|Lw(w,Qπe − q†)|.

Then, for any w,

|Rπe −Rw[w]| ≤ max
f∈F
|Lw(w, f)|+ max

w†∈W
min
q†∈F

|Lw(w†, Qπe − q†)|.

Thus,

|Rπe −Rw[ŵ]| ≤ min
w∈W

max
f∈F
|Lw(w, f)|+ max

w†∈W
min
q†∈F

|Lw(w†, Qπe − q†)|.

where ŵ = arg minw∈W maxf∈F |Lw(w, f)|. Notice that the additional term maxw†∈W minq†∈F |Lw(w†, Qπe − q†)|
becomes 0 when Qπe ∈ conv(F), in which case we recover Theorem 2.

Proof of Lemma 17. We have

Lw(w, f)2

=
{

Edπb [γw(s, a)Ea′∼πe(s′)[f(s′, a′)]− w(s, a)f(s, a)] + (1− γ)Ed0×πe [f(s, a)]
}2

(15)

= {Edπb [γw(s, a)Ea′∼πe(s′)[〈f,K((s′, a′), ·)〉HK ]− w(s, a)〈f,K((s, a), ·)〉HK ] (16)

+ (1− γ)Ed0×πe [〈f,K((s, a), ·)〉HK ]}2

= 〈f, f∗〉2HK , (17)

where

f∗(·) = Edπb [γw(s, a)Ea′∼πe(s′)[K((s′, a′), ·)]− w(s, a)K((s, a), ·)] + (1− γ)Ed0×πe [K((s, a), ·)].

Here, from (15) to (16), we have used a reproducing property of RKHS; f(s, a) = 〈f(·),K((s, a), ·)〉. From (16) to (17),
we have used a linear property of the inner product.

Therefore,

max
f∈F

Lw(w, f)2 = max
f∈F
〈f, f∗〉2HH = 〈f∗, f∗〉2HH .

from Cauchy—Schwarz inequality. This is equal to

max
f∈F

Lw(w, f)2 = Edπb [γ2w(s, a)w(s̃, ã)Ea′∼πe(s′),ã′∼πe(s̃′)[K((s′, a′), (s̃′, ã′))]]+

+ Edπb [w(s, a)w(s̃, ã)K((s, a), (s̃, ã))]

+ (1− γ)2Ed0×πe [K((s, a), (s̃, ã))]

− 2Edπb [γw(s, a)w(s̃, ã)Ea′∼πe(s′)[K((s′, a′), (s̃, ã))]]

+ 2γ(1− γ)E(s,a)∼dπb ,(s̃,ã)∼d0×πe [γw(s, a)Ea′∼πe(s′)[K((s′, a′), (s̃, ã))]]

− 2(1− γ)E(s,a)∼dπb ,(s̃,ã)∼d0×πe [w(s, a)w(s̃, ã)K((s, a), (s̃, ã))],

where the first expectation is taken with respect to the density dπb(s, a, s
′)dπb(s̃, ã, s̃

′).

For example, the term (1− γ)2Ed0×πe [K((s, a), (s̃, ã))] is derived by

〈(1− γ)Ed0×πe [K((s, a), ·)], (1− γ)Ed0×πe [K((s, a), ·)]〉HK

= (1− γ)2
〈∫

K((s, a), ·)d0(s)π(a|s)ν(a, s),

∫
K((s̃, ã), ·)d0(s̃)π(ã|s̃)ν(ã, s̃)

〉
HK

= (1− γ)2
∫
〈K((s, a), ·),K((s̃, ã), ·)〉HKd0(s)π(a|s)d0(s̃)π(ã|s̃)dν(ã, s̃, ã′, s̃′)

= (1− γ)2
∫
K((s, a), (s̃, ã))d0(s)π(a|s)d0(s̃)π(ã|s̃)dν(ã, s̃, ã′, s̃′).
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Other term are derived in a similar manner. Here, we have used a kernel property

〈K((s, a), ·),K((s̃, ã), ·)〉HK = K((s, a), (s̃, ã)).

Next we show the result mentioned in the main text, that the minimizer of maxf∈F Lw(w, f) is unique when F corresponds
to an ISPD kernel.

Theorem 15. AssumeW is realizable, i.e., wπe/πb ∈ W and conditions (a), (b) in Lemma 12. Then for F = L2(X , ν),
ŵ(s, a) = wπe/πb(s, a) is the unique minimizer of maxf∈F Lw(w, f). The same result holds when F is a RKHS associated
with a integrally strictly positive definite (ISPD) kernel K(·, ·) (Sriperumbudur et al., 2010).

Proof. The first statement is obvious from Lemma 12 and the proof is omitted, and here we prove the second statement on
the ISPD kernel case. If we can prove Lemma 12 when replacing L2(X , ν) with RKHS associated with an ISPD kernel
K(·, ·), the statement is concluded. More specifically, what we have to prove is

Lemma 16. Assume conditions in Theorem 15. Then, Lw(w; f) = 0, ∀f ∈ F holds if and only if w(s, a) = wπe/πb(s, a).

This is proved by Mercer’s theorem (Mohri et al., 2012). From Mercer’s theorem, there exist an orthnormal basis (φj)
∞
j=1 of

L2(X , ν) such that RKHS is represented as

F =

f =

∞∑
j=1

bjφj ; (bj)
∞
j=1 ∈ l2(N) with

∞∑
j=1

β2
j

µj
<∞

 ,

where each µj is a positive value since kernel is ISPD. Suppose there exists w(s, a) 6= wπe/πb(s, a) in w(s, a) ∈ W
satisfying Lw(w, f) = 0, ∀f ∈ F . Then, by taking bj = 1 (j = j′), bj = 1 (j 6= j′), for any j′ ∈ N, we have
Lw(w, φj′) = 0. This implies Lw(w, f) = 0, ∀f ∈ L2(X , ν) = 0. This contradicts the original Lemma 12. Then, Lemma
16 is concluded.

A.1. Proof for Example 1

Suppose w0(s, a) = C ∀(s, a). Then, for f = Qπe we have

Lw(w0, f) = CEdπb [{γV πe(s′)−Qπe(s, a)}] + (1− γ)Ed0×πe [Q
πe(s, a)]

= CRπb −Rπe .

HenceC = Rπe/Rπb satisfies thatLw(w0, f) = 0, ∀f ∈ F . From Theorem 2, |Rπe−Rw[ŵ]| ≤ minw maxf |Lw(w, f)| ≤
maxf |Lw(w0, f)| = 0.

A.2. The RKHS Result

Lemma 17 (Formal version of Lemma 3). Let 〈·, ·〉HK be the inner product ofHK , which satisfies the reproducing property
f(x) = 〈f,K(·, x)〉HK . When F = {f ∈ (X → R) : 〈f, f〉HK ≤ 1}, the term maxf∈F Lw(w, f)2 has a closed form
expression:

max
f∈F

Lw(w, f)2

= Edπb [γ2w(s, a)w(s̃, ã)Ea′∼πe(s′),ã′∼πe(s̃′)[K((s′, a′), (s̃′, ã′))]]+

+ Edπb [w(s, a)w(s̃, ã)K((s, a), (s̃, ã))] + (1− γ)2Ed0×πe [K((s, a), (s̃, ã))]+

− 2Edπb [γw(s, a)w(s̃, ã)Ea′∼πe(s′)[K((s′, a′), (s̃, ã))]]

+ 2γ(1− γ)E(s,a)∼dπb ,(s̃,ã)∼d0×πe [γw(s, a)Ea′∼πe(s′)[K((s′, a′), (s̃, ã))]]

− 2(1− γ)E(s,a)∼dπb ,(s̃,ã)∼d0×πe [w(s, a)w(s̃, ã)K((s, a), (s̃, ã))].

In the above expression, (s, a) ∼ d0 × πe means s ∼ d0, a ∼ πe(s). All a′ and ã′ terms are marginalized out in the inner
expectations, and when they appear together they are always independent. Similarly, in the first 3 lines when (s, a, s′) and
(s, a, s̃′) appear together in the outer expectation, they are i.i.d. following the distribution specified in the subscript.
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A.3. Details of Example 2 (LSTDQ)

Here we provide the detailed derivation of Eq.(11), that is, the closed-form solution of MWL when bothW and F are set to
the same linear class. We assume that the matrix being inverted in Eq.(11) is non-singular.

We show that Eq.(11) is a solution to the objective function of MWL by showing that Lw,n(w(·; α̂), f) = 0 for any f in
the linear class. This suffices because for any w, the loss Lw,n(w(·; α̂), f)2 is non-negative and at least 0, so any w that
achieves 0 for all f ∈ F is an argmin of the loss.

Consider w ∈ W whose parameter is α and f ∈ F whose parameter is β. Then

Lw,n(w, f) = En[γα>φ(s, a)φ(s′, πe)
>β − α>φ(s, a)φ(s, a)>β] + (1− γ)Ed0 [φ(s, πe)

>β]

=
(
α>En[γφ(s, a)φ(s′, πe)

> − φ(s, a)φ(s, a)>] + (1− γ)Ed0×πe [φ(s, a)>]
)
β.

Since Lw,n(w, f) is linear in β, to achieve maxf Lw,n(w, f)2 = 0 it suffices to satisfy

α>En[γφ(s, a)φ(s′, πe)
> − φ(s, a)φ(s, a)>] + (1− γ)Ed0 [φ(s, πe)

>] = 0. (18)

Note that this is just a set of linear equations where the number of unknowns is the same as the number of equations, and the
α̂ in Eq.(11) is precisely the solution to Eq.(18) when the matrix multiplied by α> is non-singular.

A.4. Connection to Dual DICE (Nachum et al., 2019a)

Nachum et al. (2019a) proposes an extension of Liu et al. (2018) without the knowledge of the behavior policy, which shares
the same goal with our MWL in Section 4. In fact, there is an interesting connection between our work and theirs, as our key
lemma (12) can be obtained if we take the functional gradient of their loss function. (Ideal) DualDICE with the chi-squared
divergence f(x) = 0.5x2 is described as follows;

• Estimate ν(s, a);

min
ν

0.5Edπb [{ν(s, a)− (Bν)(s, a)}2]− (1− γ)Ed0×πe [ν(s, a)], (19)

where (Bν)(s, a) = γEs′∼P (s,a),a′∼πe(s′)[ν(s′, a′)].

• Estimate the ratio as ν(s, a)− (Bν)(s, a).

Because this objective function includes an integral in (Bν)(s, a), the Monte-Carlo approximation is required. However,
even if we take an Monte-Carlo sample for the approximation, it is biased. Therefore, they further modify this objective
function into a more complex minimax form. See (11) in (Nachum et al., 2019a).

Here, we take a functional derivative of (19)(Gateaux derivative) with respect to ν. The functional derivative at ν(s, a) is

f(s, a)→ Edπb [{ν(s, a)− (Bν)(s, a)}{f(s, a)− (Bf)(s, a)}]− (1− γ)Ed0×πe [f(s, a)].

The first order condition exactly corresponds to our Lemma 12:

−Lw(w, f) = Edπb [w(s, a){f(s, a)− γEs′∼P (s,a),a′∼πe(s′)[f(s′, a′)]}] + (1− γ)Ed0×πe [f(s, a)] = 0

⇐⇒ Edπb [w(s, a){f(s, a)− γEa′∼πe(s′)[f(s′, a′)]}] + (1− γ)Ed0×πe [f(s, a)] = 0.

where w(s, a) = ν(s, a)− (Bν)(s, a). Our proposed method with RKHS enables us to directly estimate w(s, a) in one step,
and in contrast their approach requires two additional steps: estimating (Bν)(s, a) in the loss function, estimating ν(s, a) by
minimizing the loss function, and taking the difference ν(s, a)− (Bν)(s, a).

A.5. Connection between MSWL (Liu et al., 2018) and Off-policy LSTD

Just as our methods become LSTDQ using linear function classes (Examples 2 and 7), here we show that the method of Liu
et al. (2018) (which we call MSWL for easy reference) corresponds to off-policy LSTD. Under our notations, their method
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is15

arg min
w∈WS

max
f∈FS

{
Edπb

[(
γw(s)f(s′)

πe(a|s)
πb(a|s)

− w(s)f(s)

)]
+ (1− γ)Ed0 [f(s)]

}2

. (20)

We call this method MSWL (minimax state weight learning) for easy reference. A slightly different but closely related
estimator is

arg min
w∈WS

max
f∈FS

{
Edπb

[
πe(a|s)
πb(a|s)

(γw(s)f(s′)− w(s)f(s))

]
+ (1− γ)Ed0 [f(s)]

}2

. (21)

Although the two objectives are equal in expectation, under empirical approximations the two estimators are different. In
fact, Eq.(21) corresponds to the most common form of off-policy LSTD (Bertsekas and Yu, 2009) when bothWS and
FS are linear (similar to Example 2). In the same linear setting, Eq.(20) corresponds to another type of off-policy LSTD
discussed by Dann et al. (2014). In the tabular setting, we show that cannot achieve the semiparametric lower bound in
Appendix D.

B. Proofs and Additional Results of Section 5 (MQL)
Proof for Lemma 4. First statement

We prove Lq(Qπe , g) = 0 ∀g ∈ L2(X , ν). The function Qπe satisfies the following Bellman equation;

Er∼R(s,a), s′∼P (s,a)[r + γQπe(s′, πe)−Qπe(s, a)] = 0. (22)

Then, ∀g ∈ L2(X , ν),

0 =

∫ {
Er∼R(s,a), s′∼P (s,a)[r + γQπe(s′, πe)−Qπe(s, a)]

}
g(s, a)dπb(s, a)dν(s, a)

= Lq(Qπe , g).

Second statement

We prove the uniqueness part. Recall that Qπe is uniquely characterized as (Bertsekas, 2012): ∀(s, a),

Er∼R(s,a), s′∼P (s,a)[r + γq(s′, πe)− q(s, a)] = 0. (23)

Assume

E(s,a,r,s′)∼dπb [{r + γq(s′, πe)− q(s, a)}g(s, a)] = 0,∀g(s, a) ∈ L2(X , ν) (24)

Note that the left hand side term is seen as

Lq(q, g) = 〈{Er∼R(s,a)[r] + Es′∼P (s,a)[γq(s
′, πe)]− q(s, a)}dπ(s, b), g(s, a)〉

where the inner product 〈·, ·〉 is for Hilbert space L2(X , ν) and the representator of the functional g → Lq(q, g) is
{E[r|s, a] + γq(s′, πe)− q(s, a)}dπb(s, a). From Riesz representation theorem and the assumption (24), the representator
of the linear bounded functional g → Lq(q, g) is uniquely determined as 0. Since we also assume dπb(s, a) > 0 ∀(s, a), we
have ∀(s, a),

Er∼R(s,a), s′∼P (s,a)[r + γq(s′, πe)− q(s, a)] = 0. (25)

From (23), such q is Qπe .
15Here we have simplified their loss for the discounted case (i.e., their Eq.(15)) with an identity Edπb [w(s)f(s)] = γEdπb [w(s

′)f(s′)]+

(1− γ)Ed0 [w(s)f(s)] that holds when dπb is the discounted occupancy of the behavior policy (which Liu et al. (2018) assume but we do
not). Replacing Edπb [w(s)f(s)] in Eq.(20) with the RHS of this identity will recover Liu et al. (2018)’s original loss. Also, because of
this reason, their original loss only applies when dπb is the discounted occupancy of the behavior policy, whereas this simplified loss (as
well as the losses of MWL and MQL) applies even if dπb is not a valid occupancy but an arbitrary exploratory distribution.
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Proof of Theorem 5. We prove the first statement. For fixed any q, we have

|Rπe −Rq[q]| = |(1− γ)Ed0×πe [q(s, a)]−Rπe |
= |Edπb [−γwπe/πb(s, a)q(s′, πe) + wπe/πb(s, a)q(s, a)]− Edπb [wπe/πb(s, a)r]|
= |Edπb [wπe/πb(s, a){r + γq(s′, πe)− q(s, a)}]|
≤ max
g∈conv(G)

|Lq(q, g)| = max
g∈G
|Lq(q, g)|.

From the first line to the second line, we use Lemma 12 choosing f(s, a) as q(s, a). From second line to the third line, we
use wπe/πb ∈ conv(G).

Then, the second statement follows immediately based on the definition of q̂.

Remark 3. Similar to Remark 2 for Theorem 2, it is also straightforward to incorporate the approximation errors of
wπe/πb ∈ conv(G) into Theorem 5, and the more general bound is

|Rπe −Rq[q̂]| ≤ min
q∈Q

max
g∈G
|Lq(q, g)|+ max

q†∈Q
min
w†∈G

|Lq(q†, wπe/πb − w
†)|.

The proof is omitted due to similarity to the MWL case.

Proof of Lemma 6. We have

max
g∈G

Lq(q, g)2 = max
g∈G

Edπb [g(s, a)(r + γq(s′, πe)− q(s, a))]2

= max
g∈G

Edπb [〈g,K((s, a), ·)〉HK (r + γq(s′, πe)− q(s, a))]2

= max
g∈G
〈g,Edπb [K((s, a), ·)(r + γq(s′, πe)− q(s, a))]〉2HK

= max
g∈G
〈g, g∗〉2HK = 〈g∗, g∗〉HK

where
g∗(·) = Edπb [K((s, a), ·)(r + γq(s′, πe)− q(s, a))].

From the first line to the second line, we use a reproducing property of RKHS; g(s, a) = 〈g(·),K((s, a), ·〉HK . From the
second line to the third line, we use a linear property of the inner product. From third line to the fourth line, we use a
Cauchy–schwarz inequality since G = {g; 〈g, g〉HK ≤ 1}.

Then, the last expression 〈g∗, g∗〉HK is equal to

〈Edπb [K((s, a), ·)(r + γq(s′, πe)− q(s, a))],Edπb [K((s, a), ·)(r + γq(s′, πe)− q(s, a))]〉HK
= 〈Edπb [K((s, a), ·)(Er∼R(s,a)[r] + Es′∼P (s,a)[γq(s

′, πe)]− q(s, a))],

Edπb [K((s̃, ã), ·)(Er̃∼R(s̃,ã)[r̃] + Es̃′∼P (s̃,ã)[γv(s̃′)]− q(s̃, ã))]〉
= Edπb [∆q(q; s, a, r, s′)∆q(q; s̃, ã, r̃, s̃′)K((s, a), (s̃, ã))]

where ∆q(q; s, a, r, s′) = r + γq(s′, πe) − q(s, a) and the expectation is taken with respect to the density
dπb(s, a, r, s

′)dπb(s̃, ã, r̃, s̃
′). Here, we have used a kernel property

〈K((s, a), ·),K((s̃, ã), ·)〉HK = K((s, a), (s̃, ã)).

Theorem 18. Assume Qπe is included in Q and dπb(s, a) > 0∀(s, a). Then, if G is L2(X , ν), q̂ = Qπe . Also if G is a
RKHS associated with an ISPD kernel, q̂ = Qπe

Proof of Theorem 18. The first statement is obvious from Lemma 4. The second statement is proved similarly as Theorem
15.
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B.1. Proof for Example 3

Suppose q0(s, a) = C. Then, for g = wπe/πb , we have

Lq(q, g) = Edπb [wπe/πb(s, a)(r + γC − C)]

= Edπb [wπe/πb(s, a)r]− (1− γ)C = Rπe − (1− γ)C.

Therefore C = Rπe/(1− γ) satisfies Lq(q, g) = 0 ∀g ∈ G. From Theorem 5 we further have Rq[q̂] = Rπe .

B.2. Minimax Value Learning (MVL)

We can extend the loss function in Eq.(13) to the off-policy setting as follows: for state-value function v : S → R, define
the following two losses:

max
g∈GS

Eπb

[
πe(a|s)
πb(a|s)

{r + γv(s′)− v(s)}g(s)

]2
, (26)

max
g∈GS

Eπb

[(
πe(a|s)
πb(a|s)

{r + γv(s′)} − v(s)

)
g(s)

]2
. (27)

Again, similar to the situation of MSWL as we discussed in Appendix A.5, these two losses are equal in expectation but
exhibit different finite sample behaviors. When we use linear classes for both value functions and importance weights, these
two estimators become two variants of off-policy LSTD (Dann et al., 2014; Bertsekas and Yu, 2009) and coincide with
MSWL and its variant.

C. Proofs and Additional Results of Section 6 (DR and Sample Complexity)
Proof of Lemma 7. We have

R[w, q]−Rπe
=R[w, q]−R[wπe/πb(s, a), Qπe(s, a)] (28)
=Edπb [{w(s, a)− wπe/πb(s, a)}{r −Qπe(s, a) + γV πe(s′)}]+ (29)

Edπb [wπe/πb(s, a){Qπe(s, a)− q(s, a) + γq(s′, πe)− γV πe(s′)}] + (1− γ)Ed0 [q(s, πe)− V πe(s)]+
Edπb [{w(s, a)− wπe/πb(s, a)}{Qπe(s, a)− q(s, a) + γq(s′, πe)− γV πe(s′)}]+

=Edπb [{w(s, a)− wπe/πb(s, a)}{Qπe(s, a)− q(s, a) + γq(s′, πe)− γV πe(s′)}]. (30)

From (28) to (29), this is just by algebra following the definition of R[·, ·]. From (29) to (30), we use the following
lemma.

Lemma 19.

0 = Edπb [wπe/πb(s, a){Qπe(s, a)− q(s, a) + γq(s′, πe)− γV πe(s′)}] + (1− γ)Ed0 [q(s, πe)− V πe(s)],
0 = Edπb [{w(s, a)− wπe/πb(s, a)}{r −Qπe(s, a) + γV πe(s′)}].

Proof. The first equation comes form Lemma 12 with f(s, a) = q(s, a) − Qπ(s, a). The second equation comes from
Lemma 4 with g(s, a) = w(s, a)− wπe/πb(s, a).

Proof of Theorem 8. We begin with the second statement, which is easier to prove from Lemma 7:

R[w′, q]−Rπe = Edπb [{w′(s, a)− wπe/πb(s, a)}{−γV πe(s′)− γq(s′, πe) + γq(s′, πe) +Qπe(s, a)}]
= Lq(q, w′ − wπe/πb)− Lq(Qπe , w′ − wπe/πb)
= −Lq(q, wπe/πb − w

′)− 0. (Lemma 4)
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Thus, if (wπe/πb − w′) ∈ conv(G)

|R[w′, q]−Rπe | ≤ max
g∈conv(G)

|Lq(q, g)| = max
g∈G
|Lq(q, g)|.

Next, we prove the first statement. From Lemma 7,

R[w, q′]−Rπe = Edπb [{w(s, a)− wπe/πb(s, a)}{−γV πe(s′)− γq′(s′, πe) + γq(s′, πe) +Qπe(s, a)}]
= Lw(w, q′ −Qπe)− Lw(wπe/πb , q

′ −Qπe)
= −Lw(w,Qπe − q′)− 0. (Lemma 12)

Then, if (Qπe − q′) ∈ conv(F),

|R[w, q′]−Rπe | ≤ max
f∈conv(F)

|Lw(w, f)| = max
f∈F
|Lw(w, f)|.

Finally, from the definition of ŵ and q̂, we also have

|R[ŵ, q′]−Rπe | ≤ min
w∈W

max
f∈F
|Lw(w, f)|, |R[w′, q̂]−Rπe | ≤ min

q∈Q
max
g∈G
|Lq(q, g)|.

Proof of Theorem 9. We prove the first statement. The second statement is proved in the same way. We have

|R[ŵn, q
′]−Rπe |

≤ max
f∈F
|Lw(ŵn, f)|

= max
f∈F
|Lw(ŵn, f)| −max

f∈F
|Lw,n(ŵn, f)|+ max

f∈F
|Lw,n(ŵn, f)| −max

f∈F
|Lw(ŵ, f)|+ max

f∈F
|Lw(ŵ, f)|

≤ max
f∈F
|Lw(ŵn, f)| −max

f∈F
|Lw,n(ŵn, f) + max

f∈F
|Lw,n(ŵ, f)−max

f∈F
|Lw(ŵ, f)|+ max

f∈F
|Lw(ŵ, f)|

≤ 2 max
f∈F,w∈W

||Lw,n(w, f)| − |Lw(w, f)||+ min
w∈W

max
f∈F
|Lw(w, f)|. (31)

The remaining task is to bound term maxf∈F,w∈W ||Lw,n(w, f)| − |Lw(w, f)||. This is bounded as follows;

max
f∈F,w∈W

||Lw,n(w, f)| − |Lw(w, f)|| � R′n(F ,W) + CfCw
√

log(1/δ)/n. (32)

where R′n(F ,W) is the Rademacher complexity of the function class

{(s, a, s′) 7→ |w(s, a)(γf(s′, πe)− f(s, a))| : w ∈ W, f ∈ F}.

Here, we just used an uniform law of large number based on the Rademacher complexity noting
| (w(s, a)(γf(s′, πe)− f(s, a))) | is uniformly bounded by CfCw up to some constant (Bartlett and Mendelson, 2003,
Theorem 8). From the contraction property of the Rademacher complexity (Bartlett and Mendelson, 2003, Theorem 12),

R′n(F ,W) ≤ 2Rn(F ,W)

where Rn(F ,W) is the Rademacher complexity of the function class

{(s, a, s′) 7→ w(s, a)(γf(s′, πe)− f(s, a)) : w ∈ W, f ∈ F}. (33)

Finally, Combining (31), (32) and (33), the proof is concluded.

C.1. Relaxing the i.i.d. data assumption

Although the sample complexity results in Section 6 are established under i.i.d. data, we show that under standard assumptions
we can also handle dependent data and obtain almost the same results. For simplicity, we only include the result for ŵn.
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In particular, we consider the setting mentioned in Section 2, that our data is a single long trajectory generated by policy πb:

s0, a0, r0, s1, a1, r1, . . . , sT−1, aT−1, rT−1, sT .

We assume that the Markov chain induced by πb is ergodic, and s0 is sampled from its stationary distribution so that the
chain is stationary. In this case, dπb corresponds to such a stationary distribution, which is also the marginal distribution of
any st. We convert this trajectory into a set of transition tuples {(si, ai, ri, s′i)}

n−1
i=0 with n = T and s′i = si+1, and then

apply our estimator on this data. Under the standard β-mixing condition16 (see e.g., Antos et al., 2008), we can prove a
similar sample complexity result:

Corollary 20. Assume {si, ai, ri, s′i}ni=1 follows a stationary β–mixing distribution with β–mixing coefficient β(k) for
k = 0, 1, · · · . For any a1, a2 > 0 with 2a1a2 = n and δ > 4(a1 − 1)β(a2), with probability at least 1− δ, we have (all
other assumptions are the same as in Theorem 9(1))

|R[ŵn, q]−Rπe | � min
w∈W

max
f∈F
|Lw(w, f)|+ R̂a1(F ,W) + CfCw

√
log(1/δ′)

a1

where R̂a1(F ,W) is the empirical Rademacher complexity of the function class {(s, a, s′) 7→ {w(s, a)(γf(s′, πe) −
f(s, a)) : w ∈ W, f ∈ F} based on a selected subsample of size a1 from the original data (see Mohri and Rostamizadeh
(2009, Section 3.1) for details), and δ′ = δ − 4(a1 − 1)β(a2).

Proof Sketch of Corollary 20. We can prove in the same way as for Theorem 9. The only difference is we use Theorem 2
(Mohri and Rostamizadeh, 2009) to bound the term supf∈F,w∈W ||Lw,n(w, f)| − |Lw(w, f)||.

D. Statistical Efficiency in the Tabular Setting
D.1. Statistical efficiency of MWL and MQL

As we already have seen in Example 7, whenW,F ,Q,G are the same linear class, MWL, MQL, and LSTDQ give the same
OPE estimator. These methods are also equivalent in the tabular setting—as tabular is a special case of linear representation
(with indicator features)—which also coincides with the model-based (or certainty-equivalent) solution. Below we prove
that this tabular estimator can achieve the semiparametric lower bound for infinite horizon OPE (Kallus and Uehara, 2019a).
17 Though there are many estimators for OPE, many of the existing OPE methods do not satisfy this property.

Here, we have the following theorem; the proof is deferred to Appendix D.4.

Theorem 21 (Restatement of Theorem 10). Assume the whole data set {(s, a, r, s′)} is geometrically Ergodic 18. Then, in
the tabular setting,

√
n(Rw,n[ŵn]−Rπe) and

√
n(Rq[q̂n]−Rπe) weakly converge to the normal distribution with mean 0

and variance
Edπb [w2

πe/πb
(s, a)(r + γV πe(s′)−Qπe(s, a))2].

This variance matches the semiparametric lower bound for OPE given by Kallus and Uehara (2019a, Theorem 5).

Two remarks are in order:

1. Theorem 21 could be also extended to the continuous sample space case in a nonparametric manner, i.e., replacing
φ(s, a) with some basis functions for L2–space and assuming that its dimension grows with some rate related to n and
the data–generating process has some smoothness condition (Newey and Mcfadden, 1994). The proof is not obvious
and we leave it to future work.

2. In the contextual bandit setting, it is widely known that the importance sampling estimator with plug-in weight from the
empirical distribution and the model-based approach can achieve the semiparametric lower bound (Hahn, 1998; Hirano
et al., 2003). Our findings are consistent with this fact and is novel in the MDP setting to the best of our knowledge.

16Refer to (Meyn and Tweedie, 2009) regarding the definition.
17Semiparametric lower bound is the non–parametric extension of Cramer–Rao lower bound (Bickel et al., 1998). It is the lower bound

of asymptotic MSE among regular estimators (van der Vaart, 1998).
18Regarding the definition, refer to (Meyn and Tweedie, 2009)
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Table 3. Summary of the connections between several OPE methods and LSTD, and their optimality in the tabular setting.
MWL MQL MSWL MVL

Definition Sec 4 Sec 5 Appendix A.5 Appendix B.2
Linear case LSTDQ Off-policy LSTD
Optimality
in tabular Yes No

D.2. Statistical inefficiency of MSWL and MVL for OPE

Here, we compare the statistical efficiency of MWL, MQL with MSWL, MVL in the tabular setting. First, we show that
MSWL, MVL positing the linear class is the same as the off-policy LSTD (Bertsekas and Yu, 2009; Dann et al., 2014).
Then, we calculate the asymptotic MSE of these estimators in the tabular case and show that this is larger than the ones of
MWL and MQL.

Equivalence of MSWL, MVL with linear models and off-policy LSTD By slightly modifying Liu et al. (2018, Theorem
4), MSWL is introduced based on the following relation;

Edπb

[
πe(a|s)
πb(a|s)

(
γ
dπe,γ(s)

dπb(s)
f(s′)− dπe,γ(s)

dπb(s)
f(s)

)]
+ (1− γ)Ed0 [f(s)] = 0∀f ∈ L2(S, ν).

Then, the estimator for dπe (s)dπb (s)
is given as

min
wS

max
f∈FS

{
Edπb

[
πe(a|s)
πb(a|s)

(γw(s)f(s′)− w(s)f(s))

]
+ (1− γ)Ed0 [f(s)]

}2

. (34)

As in Example 2, in the linear model case, let z(s) = φ(s)>α where φ(s) ∈ Rd is some basis function and α is the
parameters. Then, the resulting estimator for dπe,γ(s)/dπb(s) is

α̂ = (1− γ)En

[
πe(a|s)
πb(a|s)

{−γφ(s′) + φ(s)}φ>(s)

]−1
Ed0 [φ(s)]

Then, the final estimator for Rπe is

(Dv1)>D−1v2 Dv3 ,

where

Dv1 = (1− γ)Ed0 [φ(s)],

Dv2 = En

[
πe(a|s)
πb(a|s)

φ(s)
{
−γφ>(s′) + φ>(s)

}]
,

Dv3 = En

[
r
πe(a|s)
πb(a|s)

φ(s)

]
.

In MVL, the estimator for V πe(s) is constructed based on the relation;

Edπb

[
πe(a|s)
πb(a|s)

{r + γV πe(s′)− V πe(s)} g(s)

]
= 0∀g ∈ L2(S, ν).

Then, the estimator for V πe(s) is given by

min
v∈V

max
g∈GS

Edπb

[
πe(a|s)
πb(a|s)

{r + γv(s′)− v(s)}g(s)

]2
.
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As in Example 7, in the linear model case, let v(s) = φ(s)>β where φ(s) ∈ Rd is some basis function and β is the
parameters. Then, the resulting estimator for V πe(s) is

β̂ = En

[
πe(a|s)
πb(a|s)

φ(s)
{
−γφ>(s′) + φ>(s)

}]−1
En

[
r
πe(a|s)
πb(a|s)

φ(s)

]
.

Then, the final estimator for Rπe is still (Dv1)>D−1v2 Dv3 . This is exactly the same as the estimator obtained by off-policy
LSTD (Bertsekas and Yu, 2009).

Another formulation of MSWL and MVL According to Liu et al. (2018, Theorem 4), we have

Edπb

[(
γ
dπe,γ(s)

dπb(s)

πe(a|s)
πb(a|s)

− dπe,γ(s′)

dπb(s
′)

)
f(s′)

]
+ (1− γ)Ed0 [f(s)] = 0∀f ∈ L2(S, ν).

They construct an estimator for dπe,γ(s)dπb (s)
as;

min
w∈WS

max
f∈FS

{
Edπb

[(
γw(s)f(s′)

πe(a|s)
πb(a|s)

− w(s)f(s)

)]
+ (1− γ)Ed0 [f(s)]

}2

.

Note that compared with the previous case (34), the position of the importance weight πe/πb is different. In the same way,
MVL is constructed base on the relation;

Edπb

[{
πe(a|s)
πb(a|s)

(r + γV πe(s′))− V πe(s)
}
g(s)

]
= 0∀g ∈ L2(S, ν).

The estimator for V πe(s) is given by

min
v∈V

max
g∈GS

Eπb

[(
πe(a|s)
πb(a|s)

{r + γv(s′)} − v(s)

)
g(s)

]2
.

When positing linear models, in both cases, the final estimator for Rπe is

D>v1{Dv4}−1Dv3 ,

where

Dv4 = En

[
φ(s)

{
−γ πe(a|s)

πb(a|s)
φ>(s′) + φ>(s)

}]
.

This is exactly the same as the another type of off-policy LSTD (Dann et al., 2014).

Statistical inefficiency of MSWL, MVL and off-policy LSTD Next, we calculate the asymptotic variance of
Dv1D

−1
v2 Dv3 and Dv1D

−1
v4 Dv3 in the tabular setting. It is shown that these methods cannot achieve the semiparametric

lower bound (Kallus and Uehara, 2019a). These results show that these methods are statistically inefficient. Note that this
implication is also brought to the general continuous sample space case since the the asymptotic MSE is generally the same
even in the continuous sample space case with some smoothness conditions.
Theorem 22. Assume the whole data is geometrically Ergodic. In the tabular setting,

√
n(Dv1D

−1
v2 Dv3 − Rπe) weakly

converges to the normal distribution with mean 0 and variance;

Edπb

[{
dπe,γ(s)

dπb(s)

}2

vardπb

[
πe(a|s)
πb(a|s)

{r + V πe(s′)− V πe(s)}|s
]]
.

This is larger than the semiparametric lower bound.
Theorem 23. Assume the whole data is geometrically Ergodic. In the tabular setting,

√
n(Dv1D

−1
v4 Dv3 − Rπe) weakly

converges to the normal distribution with mean 0 and variance;

Edπb

[{
dπe,γ(s)

dπb(s)

}2

vardπb

[
πe(a|s)
πb(a|s)

{r + V πe(s′)}|s
]]
.

This is larger than the semiparametric lower bound.
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(a) α = 0.2 (b) α = 0.4

Figure 2. MSE as a function of sample size. α controls the difference between πb and πe; see Appendix D.3 for details.

D.3. Experiments

We show some empirical results that back up the theoretical discussions in this section. We conduct experiments in the Taxi
environment (Dietterich, 2000), which has 20000 states and 6 actions; see Liu et al. (2018, Section 5) for more details. We
compare three methods, all using the tabular representation: MSWL with exact πe, MSWL with estimated πe (“plug-in”),
and MWL (same as MQL). As we have mentioned earlier, this comparison is essentially among off-policy LSTD, plug-in
off-policy LSTD, and LSTDQ.

We choose the target policy πe to be the one obtained after running Q-learning for 1000 iterations, and choose another
policy π+ after 150 iterations. The behavior policy is πb = απe + (1 − α)π+. We report the results for α ∈ {0.2, 0.4}.
The discount factor is γ = 0.98.

We use a single trajectory and vary the truncation size T as [5, 10, 20, 40]× 104. For each case, by making 200 replications,
we report the Monte Carlo MSE of each estimator with their 95% interval in Figure 2.

It is observed that MWL is significantly better than MSWL and MWL is slightly better than plug-in MSWL. This is because
MWL is statisitcally efficient and MSWL is statistically inefficient as we have shown earlier in this section. The reason
why plug-in MSWL is superior to the original MSWL is that the plug-in based on MLE with a well specified model can be
viewed as a form of control variates (Henmi and Eguchi, 2004; Hanna et al., 2019). Whether the plug-in MSWL can achieve
the semiparametric lower bound remains as future work.

D.4. Proofs of Theorems 21, 22, and 23

Proof of Theorem 21. Recall that the estimator is written as D>q1D
−1
q2 Dq3, where

Dq1 = (1− γ)Ed0×πe [φ(s, a)]

Dq2 = En[−γφ(s, a)φ>(s′, πe) + φ(s, a)φ(s, a)>]

Dq3 = En[rφ(s, a)].

Recall that D−1q2 Dq3 = β̂ is seen as Z–estimator with a parametric model q(s, a;β) = β>φ(s, a). More specifically, the
estimator β̂ is given as a solution to

En[{r + γq(s′, πe;β)− q(s, a;β)}φ(s, a)] = 0.

Following the standard theory of Z–estimator (van der Vaart, 1998), the asymptotic MSE of β is calculated as a sandwich
estimator;

√
n(β̂ − β0)

d→ N (0, D−11 D2D
−1
1

>
)
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where β>0 φ(s, a) = Qπe(s, a) and

D1 = Edπb [φ(s, a){−γφ(s′, πe) + φ(s, a)}>]|β0 ,

D2 = vardπb [{r + γq(s′, πe;β)− q(s, a;β)}φ(s, a)]|β0 (35)

= Edπb [vardπb [r + γV πe(s′)−Qπe(s, a)|s, a]φ(s, a)φ>(s, a)] (36)

+ vardπb [Edπb [r + γV πe(s′)−Qπe(s, a)|s, a]φ(s, a)φ>(s, a)]

= Edπb [vardπb [r + γV πe(s′)−Qπe(s, a)|s, a]φ(s, a)φ>(s, a)]. (37)

Here, we use a variance decomposition to simplify D2 from (35) to (36). We use a relation Edπb [r + γV πe(s′) −
Qπe(s, a)|s, a] = 0 from (36) to (37). Then, by delta method,

√
n(D>q1D

−1
q2 Dq3 −Rπe)

d→ N (0, D>q1D
−1
1 D2D

−1
1

>
Dq1).

From now on, we simplify the expression D>q1D
−1
1 D2D

−1
1

>
Dq1. First, we observe

[Dq1]|S|i1+i2 = (1− γ)d0(Si1)πe(Ai2 |Si1),

where [Dq1]|S|i1+i2 is a element corresponding (Si1 , Ai2) of Dq1. In addition,

D−11 = Edπb [φ(s, a){−γφ(s′, πe) + φ(s, a)}>]−1

= Edπb [φ(s, a)φ>(s, a)(−γPπe + I)>]−1

= {(−γPπe + I)−1}>Edπb [φ(s, a)φ>(s, a)]−1.

where Pπe is a transition matrix between (s, a) and (s′, a′), and I is an identity matrix.

Therefore, by defining g(s, a) = vardπb [r + γV πe(s′) − Qπe(s, a)|s, a] and (I − γPπe)−1Dq1 = D3 the asymptotic
variance is

D>3 Edπb [φ(s, a)φ>(s, a)]−1Edπb [g(s, a)φ(s, a)φ(s, a)>]Edπb [φ(s, a)φ>(s, a)]−1D3

=
∑

s̃∈S,ã∈A
{dπb(s̃, ã)}−1g(s̃, ã){D>3 Is̃,ã}2

where Is̃,ã is a |S||A|–dimensional vector, which the element corresponding (s̃, ã) is 1 and other elements are 0. Noting
D>3 Is̃,ã = dπe,γ(s̃, ã), the asymptotic variance is∑

s̃∈S,ã∈A
{dπb(s̃, ã)}−1g(s̃, ã)d2πe,γ(s̃, ã)

= Edπb [w2
πe/πb

(s, a)vardπb [r + γV πe(s′)−Qπe(s, a)|s, a]]

= Edπb [w2
πe/πb

(s, a)(r + γV πe(s′)−Qπe(s, a))2].

This concludes the proof.

Proof of Theorem 22. Recall that D−1v2 Dv3 = β̂ is seen as Z–estimator with a parametric model v(s;β) = β>φ(s). More
specifically, the estimator β̂ is given as a solution to

En

[
πe(a|s)
πb(a|s)

{r + v(s′;β)− v(s;β)}φ(s)

]
= 0.

Following the standard theory of Z–estimator (van der Vaart, 1998), the asymptotic variance of β is calculated as a sandwich
estimator;

√
n(β̂ − β0)

d→ N (0, D−11 D2(D−11 )>),
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where β>0 φ(s) = V πe(s) and

D1 = Edπb [φ(s){−γφ(s′) + φ(s)}>]

D2 = vardπb

[
πe(a|s)
πb(a|s)

{r + v(s′;β)− v(s;β)}φ(s)

]
|β0

= Edπb

[
vardπb

[
πe(a|s)
πb(a|s)

{r + γV πe(s′;β)− V πe(s)}|s
]
φ(s)φ>(s)

]
.

Then, by delta method,

√
n(D>v1D

−1
v2 Dv3 −Rπe)

d→ N (0, D>v1D
−1
1 D2(D−11 )>Dv1).

From now on, we simplify the expression D>v1S
−1
1 S2(S−11 )>Dv1. First, we observe

[Dv1]i = (1− γ)d0(Si),

where [Dv1]i is i–th element. In addition,

D−11 = Edπb [φ(s){−γφ(s′) + φ(s)}>]−1

= Edπb [φ(s)φ>(s){−γPπe + I}>]−1

= ({−γPπe + I}>)−1Edπb [φ(s)φ>(s)]−1,

where Pπe is a transition matrix from the current state to the next state.

Therefore, by defining g(s) = vardπb

[
πe(a|s)
πb(a|s){r + V πe(s′)− V πe(s)}|s

]
and {−γPπe + I}−1Dv1 = D3, the asymptotic

variance is

D>3 Edπb (s)[φ(s)φ>(s)]−1Edπb (s)[g(s)φ(s)φ>(s)]Edπb (s)[φ(s)φ>(s)]−1D3

=
∑
s̃∈S

d−1πb(s̃)g(s̃){D>3 Is̃}2,

where Is̃ is |S|–dimensional vector, which the element corresponding s̃ is 1 and other elements are 0. Noting D>3 Is̃ =
dπe,γ(s̃), the asymptotic variance is

∑
s̃∈S

d−1πb(s̃)g(s̃)d2πe(s̃) = Edπb

[{
dπe,γ(s)

dπb(s)

}2

vardπb

[
πe(a|s)
πb(a|s)

{r + γV πe(s′)− V πe(s)}|s
]]
.

Finally, we show this is larger than the semiparametric lower bound. This is seen as

Edπb

[{
dπe,γ(s)

dπb(s)

}2

vardπb

[
πe(a|s)
πb(a|s)

{r + γV πe(s′)− V πe(s)}|s
]]

≥ Edπb

[{
dπe,γ(s)

dπb(s)

}2

Edπb

[
vardπb

[
πe(a|s)
πb(a|s)

{r + γV πe(s′;β)− V πe(s)}|s, a
]]]

= Edπb

[
w2
πe/πb

(s, a)var[r + γV πe(s′)−Qπe(s, a)|s, a]
]
.

Here, from the first line to the second line, we use a general inequality var[x] = var[E[x|y]]+E[var[x|y]] ≥ E[var[x|y]].

Proof of Theorem 23. By refining g(s) = var
[
πe(a|s)
πb(a|s){r + V πe(s)}|s

]
in the proof of Theorem 22, the asymptotic variance

is ∑
s̃∈S

d−1πb(s̃)g(s̃)d2πe,γ(s̃) = Edπb

[{
dπe,γ(s)

dπb(s)

}2

vardπb

[
πe(a|s)
πb(a|s)

{r + γV πe(s′)}|s
]]
.
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Then, we show this is larger than the semiparamatric lower bound. This is seen as∑
s̃∈S

d−1πb(s̃)g(s̃)d2πe,γ(s̃) = Edπb

[{
dπe,γ(s)

dπb(s)

}2

vardπb

[
πe(a|s)
πb(a|s)

{r + γV πe(s′)}|s
]]

≥ Edπb

[{
dπe,γ(s)

dπb(s)

}2

Eπb

[
vardπb

[
πe(a|s)
πb(a|s)

{r + γV πe(s′)}|s, a
]]]

= Edπb

[
w2
πe/πb

(s, a)var[r + γV πe(s′)−Qπe(s, a)|s, a]
]
.

E. Experiments in the Function Approximation Setting
In this section, we empirically evaluate our new algorithms MWL and MQL, and make comparison with MSWL (Liu et al.,
2018) and DualDICE (Nachum et al., 2019b) in the function approximation setting.

E.1. Setup

We consider infinite-horizon discounted setting with γ = 0.999, and test all the algorithms on CartPole, a control task with
continuous state space and discrete action space. Based on the implementation of OpenAI Gym (Brockman et al., 2016),
we define a new state-action-dependent reward function and add small Gaussian noise with zero mean on the transition
dynamics.

To obtain the behavior and the target policies, we first use the open source code19 of DQN to get a near-optimal Q function,
and then apply softmax on the Q value divided by an adjustable temperature τ :

π(a|s) ∝ exp(
Q(s, a)

τ
) (38)

We choose τ = 1.0 as the behavior policy and τ = 0.25, 0.5, 1.5, 2.0 as the target policies. The training datasets are
generated by collecting trajectories of the behavior policy with fixed horizon length 1000. If the agent visits the terminal
states within 1000 steps, the trajectory will be completed by repeating the last state and continuing to sample actions.

E.2. Algorithms Implementation

We use the loss functions and the OPE estimators derived in this paper and previous literature (Liu et al., 2018; Nachum
et al., 2019b), except for MWL, in which we find another equivalent loss function can work better in practice:

L = Edπ0 [γ
(
w(s, a)f(s′, π)− w(s′, a′)f(s′, a′)

)
]− (1− γ)Ed0×π0

[w(s, a)f(s, a)] + (1− γ)Ed0×π[f(s, a)] (39)

In all algorithms, we keep the structure of the neural networks the same, which have two hidden layers with 32 units in
each and ReLU as activation function. Besides, the observation is normalized to zero mean and unit variance, and the batch
size is fixed to 500. In MSWL, the normalized states are the only input, while in the others, the states and the actions are
concatenated and fed together into neural networks.

As for DualDICE, we conduct evaluation based on the open source implementation20. The learning rate of ν−network
and ζ−network are changed to be ην = 0.0005 and ηζ = 0.005, respectively, after a grid search in ην × ηζ ∈
{0.0001, 0.0005, 0.001, 0.0015, 0.002} × {0.001, 0.005, 0.01, 0.015, 0.02}.

In MSWL, we use estimated policy distribution instead of the true value to compute the policy ratio. To do this, we train a
64x64 MLP with cross-entropy loss until convergence to approximate the distribution of the behavior policy. The learning
rate is set to be 0.0005.

Besides, we implement MQL, MWL and MSWL with F corresponding to a RKHS associated with kernel K(·, ·). The new
loss function of MWL (39) can be written as:

L =γ2Es,a,s′,s̃,ã,s̃′∼dπ0 [w(s, a)w(s̃, ã)Ea′,ã′∼π[K((s′, a′), (s̃′, ã′))]]

19https://github.com/openai/baselines
20https://github.com/google-research/google-research/tree/master/dual dice
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+ γ2Es′,a′,s̃′,ã′∼dπ0 [w(s′, a′)w(s̃′, ã′)K((s′, a′), (s̃′, ã′))]

+ (1− γ)2Es,a,s̃,ã∼d0×π0
[w(s, a)w(s̃, ã)K((s, a), (s̃, ã))]

+ (1− γ)2Es,a,s̃,ã∼d0×π[K((s, a), (s̃, ã))]

− 2γ2Es,a,s′,s̃′,ã′∼dπ0 [w(s, a)w(s̃′, ã′)Ea′∼π[K((s′, a′), (s̃′, ã′))]]

− 2γ(1− γ)Es,a,s′∼dπ0 ,s̃,ã∼d0×π0 [w(s, a)w(s̃, ã)Ea′∼π[K((s′, a′), (s̃, ã))]]

+ 2γ(1− γ)Es,a,s′∼dπ0 ,s̃,ã∼d0×π[w(s, a)Ea′∼π[K((s′, a′), (s̃, ã))]]

+ 2γ(1− γ)Es′,a′∼dπ0 ,s̃,ã∼d0×π0
[w(s′, a′)w(s̃, ã)K((s′, a′), (s̃, ã))]

− 2γ(1− γ)Es′,a′∼dπ0 ,s̃,ã∼d0×π[w(s′, a′)K((s′, a′), (s̃, ã))]

− 2(1− γ)2Es,a∼d0×π0,s̃,ã∼d0×π[w(s, a)K((s, a), (s̃, ã))]. (40)

We choose the RBF kernel, defined as

K(xi,xj) = exp(−‖xi − xj‖22
2σ2

) (41)

where xi,xj corresponds to state vectors in MSWL, and corresponds to the vectors concatenated by state and action in
MWL and MQL. Denote h as the median of the pairwise distance between xi, we set σ equal to h, h3 and h

15 in MSWL,
MWL and MQL, respectively. The learning rates are fixed to 0.005 in these three methods.

In MSWL and MWL, to ensure that the predicted density ratio is non-negative, we apply log(1 + exp(·)) as the activation
function in the last layer of the neural networks. Moreover, we normalize the ratio to have unit mean value in each batch,
which works better.

E.3. Results

We generate N datasets with different random seeds. For each dataset, we run all these four algorithms from the beginning
until convergence, and consider it as one trial. Every 100 training iterations, the estimation of value function is logged, and
the average over the last five logged estimations will be recorded as the result in this trial. For each algorithm, we report the
normalized MSE, defined by

1

N

N∑
i=1

(R̂
(i)
πe −Rπe)2

(Rπb −Rπe)2
(42)

where R̂(i)
πe is the estimated return in the i-th trial; Rπe and Rπb are the true expected returns of the target and the behavior

policies, respectively, estimated by 500 on-policy Monte-Carlo trajectories (truncated at H = 10000 steps to make sure γH

is sufficiently small). This normalization is very informative, as a naı̈ve baseline that treats Rπe ≈ Rπb will get 0.0 (after
taking logarithm), so any method that beats this simple baseline should get a negative score. We conduct N = 25 trials and
plot the results in Figure 3.

E.4. Error bars

We denote xi =
(R̂(i)
πe
−Rπe )

2

(Rπb−Rπe )2
. As we can see, the result we plot (Eq.(42)) is just the average of N i.i.d. random variables

{xi}ni=1. We plot twice the standard error of the estimation—which corresponds to 95% confidence intervals—under
logarithmic transformation. That is, the upper bound of the error bar is

log(
1

N

N∑
i=1

xi +
2σ√
N

)

and the lower bound of the error bar is

log(
1

N

N∑
i=1

xi −
2σ√
N

)

where σ is the sample standard deviation of xi.



Minimax Weight and Q-Function Learning for Off-Policy Evaluation

Figure 3. A Comparison of four algorithms: MQL (red circle), MWL (blue square), DualDICE (green triangle) and MSWL (yellow
diamond). Left: We fix the number of trajectories to 200 and change the target policies. Right: We keep the target policy as τ = 1.5, and
vary the number of samples.

F. Step-wise IS as a Special Case of MWL
We show that step-wise IS (Precup et al., 2000) in discounted episodic problems can be viewed as a special case of MWL,
and sketch the proof as follows. In addition to the setup in Section 2, we also assume that the MDP always goes to the
absorbing state in H steps from any starting state drawn from d0. The data are trajectories generated by πb. We first
convert the MDP into an equivalent history-based MDP, i.e., a new MDP where the state is the history of the original MDP
(absorbing states are still treated specially). We use ht to denote a history of length t, i.e., ht = (s0, a0, r0, s1, . . . , st).
Since the history-based MDP still fits our framework, we can apply MWL as-is to the history-based MDP. In this case, each
data trajectory will be converted into H tuples in the form of (ht, at, rt, ht+1).

We choose the following F class for MWL, which is the space of all functions over histories (of various lengths up to H).
Assuming all histories have non-zero density under πe (this assumption can be removed), from Lemma 1 we know that the
only w that satisfies ∀f ∈ F , Lw(w, f) = 0 is

dπe,γ(ht, at)

dπb(ht, at)
=

(1− γ)γt

1/H

t∏
t′=0

πe(at′ |st′)
πb(at′ |st′)

. 21

Note that Rw[w] with such an w is precisely the step-wise IS estimator in discounted episodic problems. Furthermore, the
true marginalized importance weight in the original MDP dπe,γ(s,a)

dπb (s,a)
is not feasible under this “overly rich” history-dependent

discriminator class (see also related discussions in Jiang (2019)).

21Here the term (1−γ)γt
1/H

appears because a state at time step t is discounted in the evaluation objective but its empirical frequency in
the data is not. Other than that, the proof of this equation is precisely how one derives sequential IS, i.e., density ratio between histories is
equal to the cumulative product of importance weights on actions.


