
Approximating Stacked and Bidirectional Recurrent Architectures with the
Delayed Recurrent Neural Network

Javier S. Turek 1 Shailee Jain 2 Vy A. Vo 1 Mihai Capotă 1 Alexander G. Huth 2 3 Theodore L. Willke 1

Abstract

Recent work has shown that topological enhance-
ments to recurrent neural networks (RNNs) can
increase their expressiveness and representational
capacity. Two popular enhancements are stacked
RNNs, which increases the capacity for learn-
ing non-linear functions, and bidirectional pro-
cessing, which exploits acausal information in a
sequence. In this work, we explore the delayed-
RNN, which is a single-layer RNN that has a
delay between the input and output. We prove
that a weight-constrained version of the delayed-
RNN is equivalent to a stacked-RNN. We also
show that the delay gives rise to partial acausality,
much like bidirectional networks. Synthetic exper-
iments confirm that the delayed-RNN can mimic
bidirectional networks, solving some acausal
tasks similarly, and outperforming them in oth-
ers. Moreover, we show similar performance
to bidirectional networks in a real-world natural
language processing task. These results suggest
that delayed-RNNs can approximate topologies
including stacked RNNs, bidirectional RNNs, and
stacked bidirectional RNNs – but with equivalent
or faster runtimes for the delayed-RNNs.

1. Introduction
Recurrent neural networks (RNN) have successfully been
used for sequential tasks like language modeling (Sutskever
et al., 2011), machine translation (Sutskever et al., 2014),
and speech recognition (Amodei et al., 2016). They ap-
proximate complex, non-linear temporal relationships by
maintaining and updating an internal state for every input

1Intel Labs, Hillsboro, Oregon, USA 2Department of Com-
puter Science, The University of Texas at Austin, Austin, Texas,
USA 3Department of Neuroscience, The University of Texas at
Austin, Austin, Texas, USA. Correspondence to: Javier S. Turek
<javier.turek@intel.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

element. However, they face several challenges while mod-
eling long-term dependencies, motivating work on variant
architectures.

Firstly, due to the long credit assignment paths in RNNs,
the gradients might vanish or explode (Bengio et al., 1994).
This has led to gated variants like the Long Short-term
Memory (LSTM) (Hochreiter & Schmidhuber, 1997) that
can retain information over long timescales. Secondly, it
is well known that deeper networks can more efficiently
approximate a broader range of functions (Bengio et al.,
2007; Bianchini & Scarselli, 2014). While RNNs are deep
in time, they are limited in the number of non-linearities
applied to recent inputs.

To increase depth, there has been extensive work on stack-
ing RNNs into multiple layers (Schmidhuber, 1992; Bengio,
2009). In vanilla stacked RNNs, each layer applies a non-
linearity and passes information to the next layer, while
also maintaining a recurrent connection to itself. To ef-
fectively propagate gradients across the hierarchy, skip or
shortcut connections can be used (Raiko et al., 2012; Graves,
2013; Campos et al., 2018). Alternatives like recurrent high-
way networks (Zilly et al., 2017) introduce non-linearities
between timesteps through “micro-ticks" (Graves, 2016).
Pascanu et al. (2014) increase depth by adding feedforward
layers between state-to-state transitions. Gated feedback
networks (Chung et al., 2015) allow for layer-to-layer in-
teractions between adjacent timesteps. All these variants
thus introduce topological modifications to retain informa-
tion over longer timescales and model hierarchical temporal
dependencies.

Another development is the bidirectional RNN (Bi-RNN)
(Schuster & Paliwal, 1997; Graves & Schmidhuber, 2005).
While RNNs are inherently causal, Bi-RNNs model acausal
interactions by processing sequences in both forward and
backward directions. They achieve state-of-the-art perfor-
mance on parts-of-speech tagging (Plank et al., 2016) and
sentiment analysis (Baziotis et al., 2017), demonstrating
that some natural language processing (NLP) tasks benefit
greatly from combining past and future inputs.

The successes of these RNN architectural variants seem to
derive from two common properties: depth and acausality.

Approximating Stacked and Bidirectional Recurrent Architectures with the Delayed Recurrent Neural Network

In this paper we investigate the delayed-recurrent neural
network (d-RNN), an extremely simple variant that adds
both depth and acausality to the RNN. The d-RNN is a
single-layer RNN that imposes depth in time by delaying
the output of the model. We analyze the d-RNN and prove
that when it is constrained with sparse weights, the model is
equivalent to a stacked RNN. Further, noting that the delay
introduces acausal processing, we use a d-RNN to approxi-
mate bidirectional recurrent networks. We show empirically
that a d-RNN has the capability to solve some tasks similarly
to stacked and bidirectional RNNs, and outperform them
in others. Additionally, we show that even if the d-RNN
approximation carries some error, this model can provide
much faster runtimes than alternatives.

2. Background
Given a sequential input {xt}t=1...T ,xt ∈ Rq, a single-
layer RNN is defined by:

ĥt = f
(
Ŵxxt + Ŵhĥt−1 + b̂h

)
, (1)

ŷt = g
(
Ŵoĥt + b̂o

)
, (2)

where f (·) and g (·) are element-wise activation function
such as tanh and softmax, ĥt ∈ Rn is the hidden state at
timestep t with n units, and ŷt ∈ Rm is the network output.
Learned parameters include input weights Ŵx, recurrent
weights Ŵh, bias term b̂h, output weights Ŵo, and bias
term b̂o. The initial hidden state is denoted ĥ0.

Stacked recurrent units are typically used to provide depth
in RNNs (Schmidhuber, 1992; Bengio, 2009). Based on Eq.
(1) and (2), a stacked RNN with k layers is given by:

h
(1)
t = f

(
W(1)

x xt + W
(1)
h h

(1)
t−1 + b

(1)
h

)
, i = 1 (3)

h
(i)
t = f

(
W(i)

x h
(i−1)
t + W

(i)
h h

(i)
t−1 + b

(i)
h

)
, i = 2 . . . k

(4)

yt = g
(
Woh

(k)
t + bo

)
, (5)

where the activation function and parameterization follow
the single-layer RNN. Separate weights and bias terms for
each layer i are given by W

(i)
x , W(i)

h , and b
(i)
h . The hidden

state for this layer at timestep t is h(i)
t . The stacked RNN

has initial hidden state vectors h(1)
0 . . .h

(k)
0 corresponding

to the k layers. The hat operator is used for vectors and
matrices in the single-layer RNN, while those without are
for the stacked RNN.

3. Delayed-Recurrent Neural Network
One way to increase depth in RNNs is to stack recurrent lay-
ers, as suggested above. An alternative is to consider time

as a means to increase depth within a single-layer RNN.
However, single-layer RNNs are limited in the number of
non-linearities applied to recent inputs: there is a single non-
linearity between the most recent input xt and its respective
output ŷt. Previous efforts (Pascanu et al., 2014; Graves,
2016; Zilly et al., 2017) overcame this limitation by incorpo-
rating intermediate non-linearities between input elements.
These solutions add computational steps between elements
in the sequence, greatly increasing runtime complexity. In
this work, we explore the delayed-recurrent neural network
(d-RNN), in which effective depth is increased by introduc-
ing a “delay” between the input and output.

Formally, we define a d-RNN to be a single-layer recurrent
neural network as in Equations (1) and (2), such that for any
input xt the respective output is obtained in ŷt+d, i.e., d
timesteps later (Figure 1). We refer to d as the “delay” of
the network. The initial hidden state, ĥ0, for a d-RNN is
initialized in the same manner as an RNN.

Delaying the output requires special considerations on the
data that differ slightly from an RNN. Input sequences need
to have T + d elements instead of T . Depending on the task
being solved, this can be achieved by adding a “null” input
element (e.g., the zero vector), or including d additional
elements in the input sequence. When doing a forward pass
over the d-RNN for inference, outputs from t = 1 to d
are discarded as we expect the output for x1 to be at ŷ1+d.
The output sequence goes from ŷ1+d to ŷT+d, and has T
elements.

Training loss is computed by comparing zt, the expected
output for input xt, with ŷt+d. Thus, gradients are back-
propagated only from delayed outputs ŷ1+d, . . . , ŷT+d. In
this way, any modified recurrent cell, such as an LSTM or
GRU, can be trained with delayed output to obtain a delayed
version of the architecture, e.g., d-LSTM or d-GRU.

3.1. Complexity

Consider an RNN with n units, where input elements have
dimension q, and output elements have dimension m. Com-
puting one timestep of this RNN requires three matrix-
vector multiplications with complexity O

(
nq + nm+ n2

)
.

Applying the non-linear functions f (·) and g (·) re-
quires O (m+ n). Hence, each step of this RNN has
runtime complexity of O

(
nq + nm+ n2

)
. For a se-

quence of length T , the overall computational effort is
O
(
T (nq + nm+ n2)

)
. For a d-RNN, the number of

timesteps is increased by the delay d, giving total runtime
complexity of O

(
(T + d)(nq + nm+ n2)

)
.

While the d-RNN incurs some cost, it is cheaper than alterna-
tive methods such as micro-steps (Graves, 2016; Zilly et al.,
2017), where additional timesteps are inserted between each
pair of elements in both the input and output sequences.

Approximating Stacked and Bidirectional Recurrent Architectures with the Delayed Recurrent Neural Network

Delay d = 3

h0
RNN

x4

h4

y4

z1

hT-1
RNN

xT

hT

yT

zT-3

RNN

xT+1

[NULL]

yT+1

zT-2

RNN

xT+3

[NULL]

yT+3

zT

hT+2hT+1
RNN

xT+2

[NULL]

yT+2

zT-1

RNN

x3

h3

y3

RNN

x2

h2

y2

RNN

x1

h1

y1

Figure 1. A delayed-recurrent neural network (d-RNN) processing a sequence of T elements. The output is delayed by d = 3 timesteps.
The first output element is in ŷ3 and the last in ŷT+3. The input sequence has d = 3 additional elements, such as ‘[NULL]’ symbols.
During training, the outputs are compared with the T elements of the labeled sequence {zj}Tj=1.

The runtime complexity for each micro-step is similar to
an RNN step, leading the micro-step model complexity to
grow with the number of micro-steps d proportionally to
O (dT). In contrast, the d-RNN model complexity only
grows proportionally to O (d+ T).

3.2. Stacked RNNs are d-RNNs

The mathematical structure of a stacked RNN is similar
to a single-layer RNN with the addition of between-layer
connections that add depth. Here we show that any stacked
RNN can be flattened into a single-layer d-RNN that pro-
duces the exact sequence of hidden states and outputs. We
exchange the depth from the between-layer connections
with temporal depth applied through a delay in the output.
To illustrate this, we rewrite the parameters of a single-layer
RNN using the weights and bias terms of a k-layer stacked
RNN from Equations (3)-(5):

Ŵh =



W
(1)
h 0 · · · 0

W
(2)
x W

(2)
h

0
.

...
...

. . . W
(i)
x W

(i)
h

. . .
. 0

0 · · · 0 W
(k)
x W

(k)
h


, (6)

b̂h =


b
(1)
h
...

b
(k)
h

 , Ŵx =


W

(1)
x

0
...
0

 , (7)

Ŵo =
[
0 · · · 0 Wo

]
, b̂o = bo, (8)

where Ŵx ∈ Rkn×q are the input weights, Ŵh ∈ Rkn×kn

the recurrent weights, b̂h ∈ Rkn the biases, Ŵo ∈ Rm×kn

the output weights, and b̂o ∈ Rm the output biases.

One can see from Eq. (6)-(8) that each layer in the stacked
RNN is converted into a group of units in the single-layer
RNN. The block bidiagonal structure of the recurrent weight
matrix Ŵh makes the hidden state act as a buffer, where
each group of units only receives input from itself and the
previous group. Information processed through this buffer-
ing mechanism eventually arrives at the output after k − 1
timesteps. In fact, the obtained model is a d-RNN with
delay d = k−1 and sparsely constrained weights. Note that
the d-RNN performs the same computations as the stacked
version by trading depth in layers for depth in time.

Next, we define the following notation: for a vector v ∈
Rkn with k blocks, the subvector v{i} ∈ Rn refers to its
ith block following the partition from Equations (6)-(8).
For example, the subvector ĥ{i}t+i−1 is the hidden state at
timestep t + i − 1 for the block i. Namely, this is the
recurrent input to the block i when processing timestep t+ i.
We now prove that a d-RNN parameterized by Eq. (6)-(8) is
exactly equivalent to the stacked RNN in Eqs. (3)-(5). The
proof can be extended to more complex recurrent cells. We
include a proof for LSTMs in the supplementary material.
Theorem 1. Given an input sequence {xt}t=1...T and a
stacked RNN with k layers defined by Equations (3)-(5)
with activation functions f (·) and g (·), and initial states
{h(i)

0 }i=1...k, the d-RNN with delay d = k − 1, defined by
Equations (6)-(8) and initialized with ĥ0 such that ĥ{i}i−1 =

h
(i)
0 , ∀i = 1 . . . k, produces the same output sequence

but delayed by k − 1 timesteps, i.e., ŷt+k−1 = yt for all
t = 1 . . . T . Further, the sequence of hidden states at each
layer i are equivalent with delay i− 1, i.e., ĥ{i}t+i−1 = h

(i)
t

for all 1 ≤ i ≤ k and t ≥ 1.

Proof. See Section 1 of the supplementary material. �

Theorem 1 makes an assumption that ĥ0 in the d-RNN can

Approximating Stacked and Bidirectional Recurrent Architectures with the Delayed Recurrent Neural Network

be initialized such that it achieves ĥ{i}i−1 = h
(i)
0 for all blocks.

In practice, this initialization is done by assigning the initial
value, h(i)

0 , to the block i of the previous hidden state ĥ
{i}
i−1

for timestep t = i.

From this theorem we see that k-layer stacked RNNs can
be perfectly expressed as a single-layer d-RNN. In this case,
the d-RNN has a specific sparsity structure in its weight ma-
trices that is not present in the generic RNN or d-RNN. As
the stacked RNN and the d-RNN with sparsely constrained
weights models are equivalent, there is no difference in favor
of which one is used in practice, and their runtime complexi-
ties are the same1. Moreover, they are interchangeable using
the weight matrix definitions in Equations (6)-(8).

3.2.1. RELATION TO OTHER TOPOLOGIES

Suppose one takes a weight constrained d-RNN and adds
non-zero elements to regions not populated by weights in
Eq. (6). These non-zero weights do not correspond to ex-
isting connections in the stacked RNN. So what do they
correspond to?

To explore this question we illustrate a 4-layer stacked RNN
in Figure 2 (a). Here, solid arrows show the standard stacked
RNN connections. The d-RNN weight matrices Ŵh, Ŵx,
and Ŵo are shown in Figure 2 (b), where the color of
each block matches the corresponding arrow in Figure 2 (a).
Blocks on the main diagonal of Ŵh connect groups of units
to themselves recurrently, while blocks on the subdiagonal
correspond to connections between layers in the stacked
RNN. More generally, block (i, j) in Ŵh corresponds to
a connection from h

(j)
t to h

(i)
t+j−i+1 in the stacked RNN.

Thus, blocks in the lower triangle (i.e. i > j+1) correspond
to connections that point backwards in time, and from a
lower layer to a higher layer. For example, the orange
block (3, 1) in Figure 2 (b) (and the dashed orange lines in
Figure 2 (a)) connects layer 1 at time t to layer 3 at time
t− 1. Conversely, blocks in the upper triangle (i.e. j > i)
point forward in time and from a higher layer to a lower
layer. For example, the red block (3, 4) in Figure 2 (b) (and
the dashed red lines in Figure 2 (a)) connects layer 4 at time
t to layer 3 at time t+ 2.

Thus we see that adding weights to empty regions in the
weight constrained d-RNN can mimic the behavior of
many stacked recurrent architectures that have previously
been proposed. Among others, it can approximate the
IndRNN (Li et al., 2018), td-RNN (Zhang et al., 2016),
skip-connections (Graves, 2013), all-to-all layer networks
(Chung et al., 2015), clockwork RNN (Koutnik et al., 2014),
and hierarchical models (Chung et al., 2017; Ke et al., 2018).

1Their runtime complexities are the same as we can always
obtain a version with reduced computational effort for one model
by executing the other and translating the result.

Simply removing the constraints on Ŵh during training will
enable a d-RNN to learn the necessary stacked architecture.
However, unlike an ordinary RNN, this requires the output
to be delayed based on the desired stacking depth. Further,
while the single-layer network has the same total number
of units as the corresponding stacked RNN, relaxing con-
straints on Ŵh would mean that the single-layer would
have many more parameters.

We can also see that when the delay d → T , the se-
quence length, the d-RNN becomes similar to a sequence-
to-sequence RNN (Sutskever et al., 2014), as it reads the
entire input sequence before outputting the first element of
the output sequence. Yet these two architectures are not
exactly equivalent, as the d-RNN would receive null token
inputs during the output phase instead of the previous pre-
dicted output as in sequence-to-sequence models. Still, this
suggests that the d-RNN can interpolate between a normal
RNN (with d = 0) and a sequence-to-sequence RNN (with
d = T).

3.3. Approximating Bidirectional RNNs

We previously showed how a d-RNN can be made equiva-
lent to a stacked RNN by constraining its weight matrices.
Without these constraints, the d-RNN has the ability to peek
at “future” inputs: it computes the delayed output for time
t at ŷt+d using also the inputs xt+1, . . . ,xt+d that are be-
yond timestep t. A similar idea was used in the past as
a baseline for bidirectional recurrent neural networks (Bi-
RNNs) (Schuster & Paliwal, 1997; Graves & Schmidhuber,
2005). These papers showed that Bi-RNNs were superior
to d-RNNs for relatively simple problems, but it is not clear
that this comparison holds true for problems that require
more non-linear solutions. If a recurrent network can com-
pute the output for time t by exploiting future input elements,
what conditions are necessary to approximate its Bi-RNN
counterpart? Moreover, can the d-RNN obtain the same
results? And, given these conditions, is there a benefit to
using the d-RNN instead of the Bi-RNN?

Figure 3 shows the number of non-linear transformations
that each network can apply to any input element before
computing the output at timestep t0. The generic RNN
processes only past inputs (t ≤ t0), and the number of
non-linearities decreases for inputs closer to timestep t0.
The Bi-RNN has identical behavior for causal inputs but is
augmented symmetrically for acausal inputs. In contrast, the
d-RNN has similar behavior for the causal inputs but with a
higher number of non-linearities. This trend continues for
the first d acausal inputs with a decreasing number of non-
linearities until the number reaches zero at t = t0 + d+ 1.
In order for a d-RNN to have at least as many non-linearities
as a Bi-RNN for every element in a sequence, it would need
a delay that is twice the sequence length. However, a d-

Approximating Stacked and Bidirectional Recurrent Architectures with the Delayed Recurrent Neural Network

(a) (b)

Figure 2. A stacked RNN is equivalent to a single-layer d-RNN under the given sparse weight constraints. The d-RNN produces the same
representations as the stacked network. (a) Stacked RNN with k = 4 layers where connections show the different weight parameters. (b)
Weights of the d-RNN that are equivalent to connections in the stacked RNN.

1

d+1

Number of

non-linearities

Timestep relative to

current input (Δt)

max(1-Δt, 1+Δt)
RNN

d-RNN (d+1 layer

stacked RNN)

Bi-RNN

d+1-Δt

d-RNN has more

non-linearities

Bi-RNN has more

non-linearities

Figure 3. Number of non-linearities that can be applied to past and
future sequence elements with respect to current input (∆t=0).
The d-RNN only sees d steps into the future.

RNN could beat a Bi-RNN when the non-linear influence
of nearby acausal inputs on the learned function is larger
than elements farther in the future. In these cases, stacking
Bi-RNNs would be needed to achieve the same objective.

Using a d-RNN to approximate a Bi-RNN can also de-
crease computational cost. For a sequence of length T , a
stacked Bi-RNN needs to compute both forward and back-
ward RNNs for each layer before it can compute the next
one. This synchronization requirement hinders paralleliza-
tion and increases runtime. In contrast, the forward-pass for
the d-RNN takes T + d steps, but does not suffer from syn-
chronization. Thus in highly parallel hardware such as CPUs
and GPUs, the runtime of a k-layer stacked Bi-RNN should
be at least k times slower than an RNN or d-RNN. Beyond
computational costs, d-RNNs can also be used where it is

critical to output values in (near) realtime applications (Guo
et al., 2016; Arik et al., 2017). A d-RNN requires only the
last d elements and a hidden state to compute a new value,
whereas bidirectional architectures need to process an entire
backward pass of the sequence.

4. Experiments
We test the capabilities of the d-RNN in four experiments
designed to shed more light on the relationships between
d-RNNs, RNNs, Bi-RNNs, and stacked networks. For this
purpose, the RNN implementation we use is a LSTM net-
work, which avoids vanishing gradients and retains more
information over long periods. The delayed LSTM networks
are denoted as d-LSTMs. To train each d-LSTM, the in-
put sequences are padded at the end with zero-vectors and
loss is computed by ignoring the first “delay” timesteps, as
explained in Section 3. All models are trained using the
Adam optimization algorithm (Kingma & Ba, 2015) with
learning rate 0.001, β1 = 0.9, and β2 = 0.999. During
training, the gradients are clipped (Pascanu et al., 2013) at
1.0 to avoid explosions. Experiments were implemented
using PyTorch 1.1.0 (Paszke et al., 2017), and code can be
found at https://github.com/TuKo/dRNN.

4.1. Sequence Reversal

First, we propose a simple test to illustrate how the d-LSTM
can interpolate between a regular LSTM and Bi-LSTM. In
this test we require the recurrent architectures to output a
sequence in reverse order while reading it, i.e. yt = xT−t+1

for t = 1, .., T . Solving this task perfectly is only possible

https://github.com/TuKo/dRNN

Approximating Stacked and Bidirectional Recurrent Architectures with the Delayed Recurrent Neural Network

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Delay d

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy d-LSTM val

d-LSTM test

Max Perform ance

LSTM

BiLSTM

Figure 4. Comparison of different delay values for a d-LSTM net-
work for reversing a sequence. LSTM and Bi-LSTM networks
are shown for reference. The network is capable of achieving the
expected statistical bound. The d-LSTM with highest delay is
capable of solving the task as well as the Bi-LSTM.

when a network has acausal access to the sequence. More-
over, depending on how many acausal elements a network
can access, it is possible to analytically calculate the ex-
pected maximum performance that the network can achieve.
Given a sequence of length T with elements from a vocabu-
lary {1, ..., V }, a causal network such as the regular LSTM
can output the second half of the elements correctly and
guess those in the first half with probability 1/V . When
a network has access to d acausal elements it can start
outputting correct elements before reaching the halfway
point, and can achieve an expected true positive rate (TPR)
of 1

2

(
1 + 1

V

)
+
⌊
d+1
2

⌋
1
T

(
1− 1

V

)
. We generate data se-

quences of length T = 20 by uniformly sampling integer
values between 1 and V = 4. The training set consists
of 10,000 sequences, the validation set 2,000, and test set
2,000. Output sequences are the input sequences reversed.
Values in the input sequences are fed as one-hot vector rep-
resentations. All networks output via a linear layer with a
softmax function that converts to a vector of V probabilities
to which cross-entropy loss is applied. The LSTM and d-
LSTM networks have 100 hidden units, while the Bi-LSTM
has 70 in each direction in order to keep the total number of
parameters constant. We use batches of 100 sequences and
train for 1,000 epochs with early stopping after 10 epochs
and ∆ =1e-3.

Figure 4 shows accuracy on this task as a function of the
applied delay. The LSTM does not use acausal information
and is unable to reverse more than half of the input sequence.
Conversely, the Bi-LSTM has full access to every element
in the sequence, and can perfectly solve the task. For the
d-LSTM network, performance increases as we increase
the delay in the output, reaching the same level as the Bi-
LSTM once the network has access to the entire sequence
before being required to produce any output (delay 19). This
experiment demonstrates that the d-LSTM can “interpolate”
between LSTM and Bi-LSTM by choosing a delay that
ranges between zero and the length of the input sequence.

4.2. Evaluating Network Capabilities

The first experiment showed how a d-LSTM with sufficient
delay can mimic a Bi-LSTM. In the next experiment we
aim at comparing how well d-LSTM, LSTM, and Bi-LSTM
networks approximate functions with varying degrees of
non-linearity and acausality.

Drawing inspiration from (Schuster & Paliwal, 1997), we
require each recurrent network to learn the function yt =
sin(γ

∑a
j=−c+1 wj+cxt+j), where w is a linear filter. The

parameter γ scales the argument of the sine function and
thus controls the degree of non-linearity in the function: for
small γ the function is roughly linear, while for large γ the
function is highly non-linear. Integers a ≥ 0 (acausal) and
c ≥ 0 (causal) control the length of the causal and acausal
portions of the linear filter w that is applied to the input x.

We generate datasets with different combinations of γ ∈
[0.1, . . . , 5.0] and a ∈ [0, . . . , 10], choosing c such that a+
c = 20. For each combination, we generate a filter w with
20 elements drawn uniformly in [0.0, 1.0), and random input
sequences with T = 50 elements drawn from a uniform
distribution [0.0, 1.0). In total, there are 10,000 generated
sequences for training, 2,000 for validation, and 2,000 for
testing with each set of parameter values. The output is
computed following the previous formula and with zero
padding for the borders. We generate 5 repetitions of each
dataset with different filters w and inputs x.

We train LSTM, d-LSTM with delays 5 and 10, and Bi-
LSTM networks to minimize mean squared error (MSE).
The LSTM and d-LSTM have 100 hidden units and the
Bi-LSTM has 70 per network, matching the numbers of
parameters. A linear layer after the recurrent layer outputs a
single value per timestep. Models are trained in batches of
100 sequences for 1,000 epochs. Training is stopped if the
validation MSE falls below 1e-5. Training is repeated five
times for each (γ, a) value.

Figure 5 shows the average test MSE for each model as a
function of γ (degree of input non-linearity) and a (acausal-
ity). LSTM performance (Fig. 5 (a)) is poor everywhere
except where the filter is purely causal. Surprisingly, the
network performs quite well even when the amount of non-
linearity (γ) is quite high. The reason for this seems to be
that temporal depth enables the LSTM to approximate this
function well. Bi-LSTM performance (Fig. 5 (b)) follows
a similar trend for the causal case (a = 0) as the forward
LSTM, but also has good performance for acausal filters
(a > 0) when the function is nearly linear (γ is small).
As the non-linearity of the function increases, however,
Bi-LSTM performance suffers. This occurs because the
Bi-LSTM needs to approximate a highly non-linear func-
tion with a linear combination of its forward and backward
outputs, which cannot be done with small error. Improving

Approximating Stacked and Bidirectional Recurrent Architectures with the Delayed Recurrent Neural Network

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

0

2

4

6

8

10

F
ilt

e
r

A
ca

u
sa

lit
y

 a

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

5
.0

− 4.0

− 3.2

− 2.4

− 1.6

− 0.8

0.0
lo

g
1

0
M

S
E

Scale γ

(a) LSTM (b) Bi-LSTM (c) d-LSTM (d=5) (d) d-LSTM (d=10)

Figure 5. Error maps for the sine function experiment with different degrees of non-linearity (horizontal axis) and amounts of acausality
of the filter (vertical axis). Tested architectures: (a) LSTM, (b) Bi-LSTM, (c) d-LSTM with delay=5, and (d) d-LSTM with delay=10.
Dark blue regions depict perfect filtering (low error), transitioning to yellow regions with high error.

performance would require stacked Bi-LSTM layers.

In contrast, d-LSTM networks have excellent performance
for both non-linear and acausal functions. The d-LSTM with
delay 5 (Fig. 5 (c)) shows a clear switch in performance
from acausality a = 5 to 6. This perfectly matches the limit
of acausal elements that the network has access to. For the
d-LSTM with delay 10 (Fig. 5 (d)), the network performs
well for acausality values a up to 10.

An interesting outcome of this experiment is the better per-
formance observed for the d-LSTM over the Bi-LSTM. This
shows that the d-LSTM can be a better fit than a Bi-LSTM
for the right task. Furthermore, the d-LSTM network seems
to approximate the functionality of a stacked Bi-LSTM by
approximating highly non-linear functions. In practice, this
could be a great benefit for applications where there is no
need to treat the whole sequence. Moreover, this could be
impossible in other cases, such as streamed data. In such
cases, the d-LSTM would shine over bidirectional archi-
tectures. On the other hand, we expect the Bi-LSTM to
perform better when the acausality needs for the task are
longer than the delay, i.e., a > d.

4.3. Masked Character-Level Language Modeling

Next we examined a language task which should benefit
from acausal information, masked character-level language
modeling. This task is adapted from previous work in train-
ing bidirectional language models (Devlin et al., 2019). To
generate masked sequences, we randomly replace each char-
acter with a mask token (‘[MASK]’) with 20% probability.
The task of the network is to predict the correct character
when it encounters a mask token. Because each sequence
contains multiple mask tokens, the network will need to
fill in some mask tokens conditioned on an input sequence
that already contains one or more mask tokens. This can be
thought of as a signal reconstruction task: when sequential
inputs are randomly degraded, how well can the network

recover the true signal? Acausal information clearly helps
with this reconstruction. For example, the missing letter in
the sequence “hik[MASK]ng” is easier to predict than the
sequence “hik[MASK]”.

We used text8, a clean 100MB sample of English
Wikipedia text (Mahoney, 2006) which consists of 27 char-
acters (the English alphabet and spaces). The input data
contained an extra 28th mask character. These 28 characters
were mapped to an input embedding layer of dimension 10.
The output layer was independent of the input embedding,
and only consisted of the 27 non-mask characters. Follow-
ing previous work (Mikolov et al., 2012), the first 90M
characters formed the training set, the next 5M the valida-
tion set, and the last 5M the test set. All models were trained
with a sequence length of 180 characters, in mini-batches of
128 sequences for a total of 20 epochs. Success on the task
is measured by calculating bits-per-character (BPC) for the
mask tokens only. We measured forward-pass runtimes on
a Nvidia Titan V GPU and report average time to process a
mini-batch.

The results are summarized in Table 1. As expected, the
stacked Bi-LSTMs achieve the lowest BPC. However, as
the number of layers increases, the inference runtime also
increases because of the synchronization needed between
layers. Notably, d-LSTMs with intermediate delays achieve
a BPC that is within 5% of the Bi-LSTM with at least 4×
faster runtime. Since all of the d-LSTMs have a single layer,
inference runtime remains constant as the delay and the
capacity of these networks increases. We find similar results
for other network capacities (see supplementary material).

4.4. Real-World Part-of-Speech Tagging

In the previous experiments, we show that d-LSTM is capa-
ble of approximating and even outperforming a Bi-LSTM
in some cases. In practice, however, the elements in a se-
quence may have different forward and backward relations.

Approximating Stacked and Bidirectional Recurrent Architectures with the Delayed Recurrent Neural Network

Table 1. Performance of different networks on the masked character-level language modeling task in bits per character (BPC); lower is
better. Mean and standard deviation values are computed over 5 repetitions of training and inference runtime on the test set.

MODEL LAYERS DELAY UNITS / LAYER PARAMS. VAL. BPC TEST BPC RUNTIME

LSTM 1 - 1024 4271411 2.003± 0.003 2.075± 0.002 3.44ms± 0.09
LSTM 2 - 594 4283641 2.015± 0.005 2.087± 0.005 4.93ms± 0.13
LSTM 5 - 343 4272372 2.091± 0.016 2.155± 0.014 17.22ms± 0.62

BI-LSTM 1 - 722 4278879 0.977± 0.004 1.037± 0.004 4.97ms± 0.07
BI-LSTM 2 - 363 4277173 0.633± 0.003 0.677± 0.002 13.72ms± 0.31
BI-LSTM 5 - 202 4287151 0.637± 0.003 0.677± 0.004 29.18ms± 0.23

D-LSTM 1 1 1024 4271411 1.332± 0.001 1.390± 0.001 3.29ms± 0.22
D-LSTM 1 5 1024 4271411 0.708± 0.005 0.755± 0.004 3.39ms± 0.08
D-LSTM 1 8 1024 4271411 0.662± 0.002 0.706± 0.003 3.36ms± 0.08
D-LSTM 1 10 1024 4271411 0.666± 0.004 0.709± 0.004 3.56ms± 0.10

Table 2. Parts-of-Speech performance for German, English, and French languages. The models are composed of two subnetworks at
character-level and word-level. Best bidirectional network and best forward-only network are marked in bold for each language.

LANGUAGE CHAR-LEVEL NETWORK WORD-LEVEL NETWORK VALIDATION ACCURACY TEST ACCURACY

LSTM LSTM 92.05± 0.16 91.58± 0.11
GERMAN D-LSTM DELAY=1 D-LSTM DELAY=1 93.48± 0.31 92.87± 0.24

D-LSTM DELAY=1 BI-LSTM 93.93± 0.06 93.39± 0.18
BI-LSTM BI-LSTM 93.88± 0.13 93.15± 0.08

LSTM LSTM 92.05± 0.13 92.14± 0.10
ENGLISH D-LSTM DELAY=1 D-LSTM DELAY=1 94.57± 0.08 94.57± 0.14

D-LSTM DELAY=1 BI-LSTM 94.94± 0.07 94.95± 0.06
BI-LSTM BI-LSTM 94.85± 0.05 94.84± 0.08

LSTM LSTM 96.67± 0.07 96.10± 0.11
FRENCH D-LSTM WITH DELAY=1 D-LSTM WITH DELAY=1 97.49± 0.04 97.04± 0.13

D-LSTM WITH DELAY=1 BI-LSTM 97.67± 0.07 97.23± 0.12
BI-LSTM BI-LSTM 97.63± 0.06 97.22± 0.11

This poses a challenge for delayed networks that are con-
strained to a specific delay. If the delay is too low, it may not
be enough for some long dependencies between elements.
If it is too high, the network may forget information and
require higher capacity (and maybe training data). This is
prevalent in several NLP tasks. Therefore we compare the
performance of the d-LSTM with a Bi-LSTM on an NLP
task where Bi-LSTMs achieve state-of-the-art performance,
the Part-of-Speech (POS) tagging task (Ling et al., 2015;
Ballesteros et al., 2015; Plank et al., 2016). The task in-
volves processing a variable length sequence to predict a
POS tag (e.g. Noun, Verb) per word, using the Universal De-
pendencies (UD) (Nivre et al., 2016) dataset. More details
can be found in the supplementary material.

The dual Bi-LSTM architecture proposed by Plank et al.
(2016) is followed to test the approximation capacity of the
d-LSTMs. In this model, a word is encoded using a com-
bination of word embeddings and character-level encoding.
The encoded word is fed to a Bi-LSTM followed by a linear
layer with softmax to produce POS tags. The character-level
encoding is produced by first computing the embedding of

each character and then feeding it to a Bi-LSTM. The last
hidden state in each direction is concatenated with the word
embedding to form the character-level encoding.

The character-level Bi-LSTM has 100 units in each direction
and the LSTM/d-LSTMs have 200 units to generate encod-
ings of the same size. For the word-level subnetwork, the
hidden state is of size 188 for the Bi-LSTM, and 300 units
for the LSTM/d-LSTM to match the number of parameters.
The networks are trained for 20 epochs with cross-entropy
loss. We train combinations of networks with delays 0
(LSTM), 1, 3, and 5 for the character-level subnetwork, and
delays 0 through 4 for the word-level. Each network has 5
repeats with random initialization.

Results are presented in Table 2. For brevity, we include a
subset of the combinations for each language (the complete
table can be found in the supplementary material). For the
character-level model, LSTMs without delay yield reduced
performance. However, replacing only the character-level
Bi-LSTM with a LSTM does not affect the performance
(supplementary material). This suggests that only the word-
level subnetwork benefits from acausal elements in the sen-

Approximating Stacked and Bidirectional Recurrent Architectures with the Delayed Recurrent Neural Network

tence. Interestingly, using a d-LSTM with delay 1 for the
character-level network achieves a small improvement over
the double-bidirectional model in English and German. Re-
placing the word-level Bi-LSTM with an LSTM decreases
performance significantly. However, using even a d-LSTM
with delay 1 improves performance to within 0.3% of the
original Bi-LSTM model.

5. Conclusions
In this paper we analyze the d-RNN, a single layer RNN
where the output is delayed relative to the input. We show
that this simple modification to the classical RNN adds both
depth in time and acausal processing. We prove that a d-
RNN is a superset of stacked RNNs, which are frequently
used for sequence problems: a d-RNN with output delay d
and specific constraints on its weights is exactly equivalent
to a stacked RNN with d+ 1 layers. We also show that the
d-RNN can approximate bidirectional RNNs and stacked
bidirectional RNNs because the delay allows the model to
look at future as well as past inputs. In sum, we found that
d-RNNs are a simple, elegant, and computationally efficient
alternative that captures many of the best features of differ-
ent RNN architectures while avoiding many downsides.

Acknowledgements
We would like to thank Mariano Tepper for sharing his
thoughts and useful comments. In addition, we would like
to show our appreciation to the reviewers who invested their
time in reviewing this work and made useful and construc-
tive observations in these difficult times.

References
Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J.,

Battenberg, E., Case, C., Casper, J., Catanzaro, B., Cheng,
Q., Chen, G., et al. Deep speech 2: End-to-end speech
recognition in english and mandarin. In International
conference on machine learning, pp. 173–182, 2016.

Arik, S. O., Chrzanowski, M., Coates, A., Diamos, G.,
Gibiansky, A., Kang, Y., Li, X., Miller, J., Ng, A.,
Raiman, J., Sengupta, S., and Shoeybi, M. Deep voice:
Real-time neural text-to-speech. In Proceedings of
the 34th International Conference on Machine Learn-
ing - Volume 70, ICML’17, pp. 195–204. JMLR.org,
2017. URL http://dl.acm.org/citation.
cfm?id=3305381.3305402.

Ballesteros, M., Dyer, C., and Smith, N. A. Improved
transition-based parsing by modeling characters instead
of words with LSTMs. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language
Processing, pp. 349–359, Lisbon, Portugal, Septem-

ber 2015. Association for Computational Linguistics.
doi: 10.18653/v1/D15-1041. URL https://www.
aclweb.org/anthology/D15-1041.

Baziotis, C., Pelekis, N., and Doulkeridis, C. Datastories
at semeval-2017 task 4: Deep lstm with attention for
message-level and topic-based sentiment analysis. In Pro-
ceedings of the 11th international workshop on semantic
evaluation (SemEval-2017), pp. 747–754, 2017.

Bengio, Y. Learning deep architectures for ai. Foundations
and Trends in Machine Learning, 2(1):1–127, 2009. ISSN
1935-8237. doi: 10.1561/2200000006. URL http:
//dx.doi.org/10.1561/2200000006.

Bengio, Y., Simard, P., and Frasconi, P. Learning long-term
dependencies with gradient descent is difficult. IEEE
Transactions on Neural Networks, 5(2):157–166, March
1994. ISSN 1045-9227. doi: 10.1109/72.279181.

Bengio, Y., LeCun, Y., et al. Scaling learning algorithms
towards ai. Large-scale kernel machines, 34(5):1–41,
2007.

Bianchini, M. and Scarselli, F. On the complexity of neu-
ral network classifiers: A comparison between shallow
and deep architectures. IEEE Transactions on Neural
Networks and Learning Systems, 25(8):1553–1565, Aug
2014. ISSN 2162-237X. doi: 10.1109/TNNLS.2013.
2293637.

Campos, V., Jou, B., i Nieto, X. G., Torres, J., and Chang,
S.-F. Skip RNN: Learning to skip state updates in re-
current neural networks. In International Conference
on Learning Representations, 2018. URL https://
openreview.net/forum?id=HkwVAXyCW.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. Gated
feedback recurrent neural networks. In Proceedings of
the 32Nd International Conference on International Con-
ference on Machine Learning - Volume 37, ICML’15, pp.
2067–2075. JMLR.org, 2015. URL http://dl.acm.
org/citation.cfm?id=3045118.3045338.

Chung, J., Ahn, S., and Bengio, Y. Hierarchical multiscale
recurrent neural networks. In International Conference
on Learning Representations, 2017. URL https://
openreview.net/forum?id=S1di0sfgl.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. arXiv:1810.04805 [cs], May 2019.
URL http://arxiv.org/abs/1810.04805.

Graves, A. Generating sequences with recurrent neural
networks. CoRR, abs/1308.0850, 2013.

http://dl.acm.org/citation.cfm?id=3305381.3305402
http://dl.acm.org/citation.cfm?id=3305381.3305402
https://www.aclweb.org/anthology/D15-1041
https://www.aclweb.org/anthology/D15-1041
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1561/2200000006
https://openreview.net/forum?id=HkwVAXyCW
https://openreview.net/forum?id=HkwVAXyCW
http://dl.acm.org/citation.cfm?id=3045118.3045338
http://dl.acm.org/citation.cfm?id=3045118.3045338
https://openreview.net/forum?id=S1di0sfgl
https://openreview.net/forum?id=S1di0sfgl
http://arxiv.org/abs/1810.04805

Approximating Stacked and Bidirectional Recurrent Architectures with the Delayed Recurrent Neural Network

Graves, A. Adaptive computation time for recurrent neural
networks. arXiv preprint arXiv:1603.08983, 2016.

Graves, A. and Schmidhuber, J. Framewise phoneme
classification with bidirectional lstm and other
neural network architectures. Neural Networks,
18(5):602 – 610, 2005. ISSN 0893-6080. doi:
https://doi.org/10.1016/j.neunet.2005.06.042. URL
http://www.sciencedirect.com/science/
article/pii/S0893608005001206. IJCNN
2005.

Guo, T., Xu, Z., Yao, X., Chen, H., Aberer, K., and Funaya,
K. Robust online time series prediction with recurrent
neural networks. In 2016 IEEE International Conference
on Data Science and Advanced Analytics (DSAA), pp.
816–825, Oct 2016. doi: 10.1109/DSAA.2016.92.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997. doi: 10.
1162/neco.1997.9.8.1735. URL https://doi.org/
10.1162/neco.1997.9.8.1735.

Ke, N. R., Żołna, K., Sordoni, A., Lin, Z., Trischler, A.,
Bengio, Y., Pineau, J., Charlin, L., and Pal, C. Focused
hierarchical RNNs for conditional sequence processing.
In Dy, J. and Krause, A. (eds.), Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 2554–
2563, Stockholmsmässan, Stockholm Sweden, 10–15
Jul 2018. PMLR. URL http://proceedings.mlr.
press/v80/ke18a.html.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

Koutnik, J., Greff, K., Gomez, F., and Schmidhuber, J. A
clockwork rnn. In Xing, E. P. and Jebara, T. (eds.), Pro-
ceedings of the 31st International Conference on Ma-
chine Learning, volume 32 of Proceedings of Machine
Learning Research, pp. 1863–1871, Bejing, China, June
2014. PMLR. URL http://proceedings.mlr.
press/v32/koutnik14.html.

Li, S., Li, W., Cook, C., Zhu, C., and Gao, Y. Independently
recurrent neural network (indrnn): Building a longer and
deeper rnn. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

Ling, W., Dyer, C., Black, A. W., Trancoso, I., Ferman-
dez, R., Amir, S., Marujo, L., and Luis, T. Finding
function in form: Compositional character models for
open vocabulary word representation. In Proceedings
of the 2015 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 1520–1530, Lisbon, Por-
tugal, September 2015. Association for Computational

Linguistics. doi: 10.18653/v1/D15-1176. URL https:
//www.aclweb.org/anthology/D15-1176.

Mahoney, M. Relationship of Wikipedia Text to Clean Text,
June 2006. URL http://mattmahoney.net/dc/
textdata.html.

Mikolov, T., Sutskever, I., Deoras, A., Le, H.-S., and
Kombrink, S. Subword language modeling with neu-
ral networks. Preprint, 2012. URL http://www.fit.
vutbr.cz/~imikolov/rnnlm/char.pdf.

Nivre, J., de Marneffe, M.-C., Ginter, F., Goldberg, Y., Hajič,
J., Manning, C. D., McDonald, R., Petrov, S., Pyysalo,
S., Silveira, N., Tsarfaty, R., and Zeman, D. Univer-
sal dependencies v1: A multilingual treebank collection.
In Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16), pp.
1659–1666, Portorož, Slovenia, May 2016. European
Language Resources Association (ELRA). URL https:
//www.aclweb.org/anthology/L16-1262.

Pascanu, R., Mikolov, T., and Bengio, Y. On the dif-
ficulty of training recurrent neural networks. In Pro-
ceedings of the 30th International Conference on In-
ternational Conference on Machine Learning - Vol-
ume 28, ICML’13, pp. III–1310–III–1318. JMLR.org,
2013. URL http://dl.acm.org/citation.
cfm?id=3042817.3043083.

Pascanu, R., Gulcehre, C., Cho, K., and Bengio, Y. How
to construct deep recurrent neural networks. In Proceed-
ings of the Second International Conference on Learning
Representations (ICLR 2014), 2014.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in PyTorch. In NIPS Work-
shop on the future of gradient-based machine learning
software & techniques, 2017.

Plank, B., Søgaard, A., and Goldberg, Y. Multilingual
part-of-speech tagging with bidirectional long short-
term memory models and auxiliary loss. In Proceed-
ings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pp. 412–418, Berlin, Germany, August 2016. Associ-
ation for Computational Linguistics. doi: 10.18653/
v1/P16-2067. URL https://www.aclweb.org/
anthology/P16-2067.

Raiko, T., Valpola, H., and Lecun, Y. Deep learn-
ing made easier by linear transformations in per-
ceptrons. In Lawrence, N. D. and Girolami, M.
(eds.), Proceedings of the Fifteenth International Con-
ference on Artificial Intelligence and Statistics, vol-
ume 22 of Proceedings of Machine Learning Research,

http://www.sciencedirect.com/science/article/pii/S0893608005001206
http://www.sciencedirect.com/science/article/pii/S0893608005001206
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://proceedings.mlr.press/v80/ke18a.html
http://proceedings.mlr.press/v80/ke18a.html
http://proceedings.mlr.press/v32/koutnik14.html
http://proceedings.mlr.press/v32/koutnik14.html
https://www.aclweb.org/anthology/D15-1176
https://www.aclweb.org/anthology/D15-1176
http://mattmahoney.net/dc/textdata.html
http://mattmahoney.net/dc/textdata.html
http://www.fit.vutbr.cz/~imikolov/rnnlm/char.pdf
http://www.fit.vutbr.cz/~imikolov/rnnlm/char.pdf
https://www.aclweb.org/anthology/L16-1262
https://www.aclweb.org/anthology/L16-1262
http://dl.acm.org/citation.cfm?id=3042817.3043083
http://dl.acm.org/citation.cfm?id=3042817.3043083
https://www.aclweb.org/anthology/P16-2067
https://www.aclweb.org/anthology/P16-2067

Approximating Stacked and Bidirectional Recurrent Architectures with the Delayed Recurrent Neural Network

pp. 924–932, La Palma, Canary Islands, 21–23 Apr
2012. PMLR. URL http://proceedings.mlr.
press/v22/raiko12.html.

Schmidhuber, J. Learning complex, extended sequences
using the principle of history compression. Neural Com-
putation, 4(2):234–242, 1992.

Schuster, M. and Paliwal, K. K. Bidirectional recurrent neu-
ral networks. IEEE Transactions on Signal Processing,
45(11):2673–2681, Nov 1997. ISSN 1053-587X. doi:
10.1109/78.650093.

Sutskever, I., Martens, J., and Hinton, G. E. Generating text
with recurrent neural networks. In Proceedings of the 28th
International Conference on Machine Learning (ICML-
11), pp. 1017–1024, 2011. URL https://icml.cc/
2011/papers/524_icmlpaper.pdf.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N. D., and Weinberger,
K. Q. (eds.), Advances in Neural Information Process-
ing Systems 27, pp. 3104–3112. Curran Associates, Inc.,
2014.

Zhang, S., Wu, Y., Che, T., Lin, Z., Memisevic, R., Salakhut-
dinov, R. R., and Bengio, Y. Architectural complexity
measures of recurrent neural networks. In Lee, D. D.,
Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R.
(eds.), Advances in Neural Information Processing Sys-
tems 29, pp. 1822–1830. Curran Associates, Inc., 2016.

Zilly, J. G., Srivastava, R. K., Koutník, J., and Schmidhu-
ber, J. Recurrent highway networks. In Precup, D. and
Teh, Y. W. (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Pro-
ceedings of Machine Learning Research, pp. 4189–4198,
International Convention Centre, Sydney, Australia, 06–
11 Aug 2017. PMLR. URL http://proceedings.
mlr.press/v70/zilly17a.html.

http://proceedings.mlr.press/v22/raiko12.html
http://proceedings.mlr.press/v22/raiko12.html
https://icml.cc/2011/papers/524_icmlpaper.pdf
https://icml.cc/2011/papers/524_icmlpaper.pdf
http://proceedings.mlr.press/v70/zilly17a.html
http://proceedings.mlr.press/v70/zilly17a.html

