Approximating Stacked and Bidirectional Recurrent Architectures with the
Delayed Recurrent Neural Network: Supplementary Material

A. Theorem 1 Proof

Let us recall the notation introduced in the main paper. We

use superscript (i) to refer to a weight matrix or vector
)

related to layer ¢ in a stacked network, e.g., Wl(f ), or hgi .

For a single-layer d-RNN, we refer to weight matrices and
related vectors with "hat", e.g., Wy, or h;. Additionally, we

define the block notation as subvector \‘/,;{i} refers to the -th
block of vector ¥, composed of k& blocks. The blocks follow
the definition in Equations (3)-(5).

Proof of Theorem 1. We prove Theorem 1 by induction on
the sequence length ¢t. First, we show that for ¢ = 1 the
stacked RNN and the d-RNN with the constrained weights
are equivalent. Namely, for ¢ = 1 we show that the outputs

and the hidden states are the same, i.e. ¥ = y; and ﬁlh} =

hgi), respectively. Without loss of generality, we have for
any ¢ in 1. ..k the following:
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where we used the initialization assumption fl;-{i}l = h(()i)
forall7 = 1...k, and the definition of the hidden state in
Equations (3)-(4) for j — 1 blocks, in the previous steps. In

particular, we have for j = k,
HOJRC)
Plugging this result and the definition of the output weights

and biases in Equation (8) into Equation (2) for computing
the output, we obtain

Je=g (Woﬁk + Bo)

g (Woﬁ,{f} + bo)

g (Woh(lk) + bo)
Y1 (A1)

‘Which concludes the basis of the induction.

Next, we assume that ﬁt{i}i_l = hii) forall1 < <k and

t < T —1, and prove that it holds for the hidden states for all
layers whent = T fl%_]"_i_l = h(jf), V1 <4 < k. Without
loss of generality, we have for the hidden state f1¥ i1 in
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constrained weights single-layer d-RNN that,

hi{m}rz = (WxXT+i—1 + Wyhriio + Bh)
=f (W;{ci}XTﬂ'—l + W(l)h{Tl+zl}2
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From the inductive assumption we have fl{Tj}r’ joo = h(Tj)_1

forall 1 < j < k, then it follows
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where we used the definition of the hidden states in Equa-

tions (3)-(4). In particular, we have for i = £k that
hiF —h®
T+k—1 T -

Now, we show that ¥, ,_1 = yr. By the definition of the
output weights and biases in Equation (8). and by the fact

that hl}kjk 1= hg,f€ ), we obtain
Vrik-1 —9<W hrix_1+bo )
=9 ( h{k}k  +b )
(w h{" + bo)
= (A2)
which completes the proof. |

B. Extension to d-LSTMs

A Long Short-Term Memory recurrent cell (Hochreiter &
Schmidhuber, 1997) is given by the introduction of a cell
state and a series of gates that control the updates of the
states. The cell state together with the gates aim to solve the
vanishing gradients problems in the RNN. The LSTM cell
is highly popular and we refer to the following implementa-
tion:

& =0 (Wi + Whehy 1 +be ) , (B.3)
f=0 (foxt + Whehyy + Bf) , (B.4)
o =0 (onxt + Whohy_1 + 60) , (B.5)
&, — tanh (chxt + Whiohy 1 + Bc) . (B6)
g =foe 1+8 08, (B.7)
h; = 6, © tanh (&), (B.8)

where &, is the input gate, f, the forget gate, 6, the output
gate, g, the cell gate, ¢, the cell state, and ht the hidden state.
The weight matrices are symbolized W xa and Wha as well
as the bias by, with a € {e, c,f, 0} being the respective
gate. The symbol © represents an element-wise product and
o (+) is the sigmoid function.

First, we note that the set of Equations (B.3)-(B.8) can be
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expanded into the following two equations:
¢ =0 (foxt + Whehe 1 + Bf) © €1
+o <erxt + Whefltfl + Be)

© tanh (chxt + Whehy o + Bc) . (B9

flt =0 (onxt + Whoflt—l + Bo) ® tanh (ét) .
(B.10)

Rewriting the LSTM Equations (B.3)-(B.8) in this form,
allows to remain with the recurrent equations where both h,
and ¢; depend on the previous hidden and cell states, b,
and ¢;_; , and the current input x;.

Next, we describe the weight matrices for the single-layer
d-LSTM that matches a stacked-LSTM with £ layers. The
matrices and biases follow the exact same pattern as the
RNN proof, being the same for all gates.

w0 0
wil w2
W 0
ha — . X
Wi Wi
.. 0
k) k)
) o w& w
(B.11)
- 1)
b Wil
bra=| : |, Wia=| . |, (B.I2)
k) :
_bﬁla 0

where Wy, € RF"X4 are the input weights, Wha €
RF7Xkn the recurrent weights, bpa € R*™ the biases, for
gate a € {e,c,0,f}. We follow the same notation for
blocks and layers introduced with Theorem 1. We omit the
equations for the output element ¥, as they are exactly the
same as the RNN in Theorem 1, and thus require the same
steps for proving that outputs are equal, i.e., y741x—1 = Y7
Therefore, for the LSTM theorem we will focus on the
hidden and cell states.

Theorem 2. Given an input sequence {X.},_, r and
a stacked LSTM with k layers, and initial states
(", c$"Y i1, k. the d-LSTM with delay d = k — 1, de-
fined by Equations (B.11)-(B.12) and initialized with hy
such that fl;-{i}l = h(()i), Vi = 1...k and &y such that
él{i}l = c(()i), Vi = 1...k, produces the same output se-
quence but delayed by k — 1 timesteps, i.e., ¥i1k—1 = ¥t
forallt =1...T. Further, the sequence of hidden and cell

states at each layer i are equivalent with delay i — 1, i.e.,

ﬁfi}i_l = hgi) and ét{i}i—l = cgi) foralll < i < k and
t>1.

Proof. We prove Theorem 2 by induction on the sequence
length ¢. First, we show that for ¢ = 1 the stacked LSTM
and the d-LSTM with the constrained weights are equivalent.
Namely, for ¢ = 1 we show that the outputs, hidden states
and cell states are the same, i.e. ¥ = y1, ﬁ;{i} = hgi), and
él{i} = cgi), respectively. Without loss of generality, we
have for any j in 1. .. k the following:
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where we used the initialization assumptions flz{i}l = héi)

and é;.{i}l = cg) foralli = 1...k, and the definition of the
hidden and cell state in Equations (B.9) and (B.10) for j — 1
blocks, in the previous steps. In particular, we have for layer
k that fl;-{k} = hgk), and using the same transformations as
in (A.1) with RNNs, we obtain ¥ = y;. Furthermore, we
obtained that:

e = o (Wihx + Wik +B{T) o el

o (Wi Wilh s+ BY)
© tanh (Widxi + W{hi, + (")

= o (WERLS + WRL, + b)) o off
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:Cl

Which concludes the basis of the induction.

Next, we assume that ﬁfjr}Fl = h{" and é&}iq = ¢V
forall1 < i < kandt < T — 1, and prove that it holds
for the hidden and cell states for all layers when t = T
B{Tﬁi_l = hgf), V1 < ¢ < k. Without loss of generality,

we have for the hidden state B{Ti Lil1 in constrained weights
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single-layer d-LSTM that, follows that
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where we use the recurrent definition of the hidden and
cell states in Equations (B.9) and (B.10). In particular, we
obtained for ¢« = k that fl;kjkfl = hgC ), Applying the
same steps as in the d-RNN proof in Eq. (A.2), we obtain
Yr+k—1 = yr. Last, we obtain for the cell state that
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1 i
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© tanh (WEORGE + Wil |+ b))
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_CT

Which completes the proof. |

C. Weight Constraints and Connections in
d-RNN

Figure 6 shows the weight constraints imposed to achieve
equivalence between the stacked RNN and single-layer d-
RNN, and a visualization of the d-RNN as connections in
the stacked RNN. Figure 6(b) depicts the delay (or “shift”)
of all the hidden states as they would be computed in the
stacked RNN. Each layer is equivalent to a shift by one
timestep.

D. Additional Plots for Error Maps

Figure 7 present the standard deviation diagrams for the
error maps in Figure 5.

E. Masked Character-Level Language
Modeling: Additional Results

In Table 3, we include additional results for smaller net-
works of the masked language model task. We sampled
more delay values for d-LSTMs, but the general conclu-
sions remain the same: intermediate values of delay achieve
the lowest BPC. Forward-pass runtimes across delay values
show a small increase with larger delays, but the increment
is relatively flat compared to stacked LSTMs or (stacked)
Bi-LSTMs as they increase in depth. For these experiments,
we also used a batch of 128 sequences, and an embedding
of dimension 10.

F. Part-of-Speech Tagging: Additional Details
and Results

In this section, we include more details about the dataset and
the results of all the combinations for the Parts-Of-Speech
experiment. We used treebanks from Universal Dependen-
cies (UD) (Nivre et al., 2016) version 2.3. We selected
the English EWT treebank' (Silveira et al., 2014) (254,854
words), French GSD treebank? (411,465 words), and Ger-
man GSD treebank® (297,836 words) based on the quality
assigned by the UD authors. We follow the partitioning onto
training, validation and test datasets as pre-defined in UD.
All treebanks use the same POS tag set containing 17 tags.
We use the Polyglot project (Al-Rfou’ et al., 2013) word
embeddings (64 dimensions). We build our own alphabets

'https://github.com/
UniversalDependencies/UD_English-EWT/tree/
r2.3

https://github.com/
UniversalDependencies/UD_French-GSD/tree/
r2.3

*https://github.com/
UniversalDependencies/UD_German—-GSD/tree/
r2.3


https://github.com/UniversalDependencies/UD_English-EWT/tree/r2.3
https://github.com/UniversalDependencies/UD_English-EWT/tree/r2.3
https://github.com/UniversalDependencies/UD_English-EWT/tree/r2.3
https://github.com/UniversalDependencies/UD_French-GSD/tree/r2.3
https://github.com/UniversalDependencies/UD_French-GSD/tree/r2.3
https://github.com/UniversalDependencies/UD_French-GSD/tree/r2.3
https://github.com/UniversalDependencies/UD_German-GSD/tree/r2.3
https://github.com/UniversalDependencies/UD_German-GSD/tree/r2.3
https://github.com/UniversalDependencies/UD_German-GSD/tree/r2.3
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Figure 6. (a) Weights of the single-layer and weight constrained d-RNN that are equivalent to connections in the stacked RNN from Figure
2. (b) Connections in the d-RNN based on the weight matrix in (a). The d-RNN is depicted as it would be the stacked RNN. The hidden
states are delayed in time with respect to the stacked network.

Table 3. Performance for smaller networks on the masked character-level language modeling task. Mean and standard deviation values are
computed over 5 repetitions of training and inference runtime on the test set.

MODEL LAYERS DELAY UNITS PARAMS. VaL. BPC TEST BPC RUNTIME
LSTM 1 - 512 1087283  2.139+£0.005 2.195 + 0.002 2.85ms £0.14
LSTM 2 - 298 1090689  2.156 £ 0.003  2.215 4 0.002 6.69ms = 0.27
LSTM 5 - 172 1083735 2.199+0.016 2.255+0.015  11.32ms £ 0.05
B1-LSTM 1 - 360 1091107 1.130 £0.003  1.187 £ 0.004 5.82ms £ 0.18
BI-LSTM 2 - 182 1090487 0.800+£0.004  0.846 £0.005  11.08ms £ 0.59
B1-LSTM 5 - 102 1104151 0.796 = 0.007 0.841 +0.006 23.94ms £ 0.17
D-LSTM 1 1 512 1087283 1.470+£0.002  1.518 +£0.003 2.80ms £ 0.02
D-LSTM 1 2 512 1087283 1.162+0.004  1.208 £ 0.003 2.81ms £ 0.01
D-LSTM 1 3 512 1087283  0.995+0.002  1.039 £+ 0.002 3.02ms £ 0.23
D-LSTM 1 5 512 1087283  0.877 £0.001  0.920 £ 0.003 3.01ms +0.22
D-LSTM 1 8 512 1087283  0.859 £0.002 0.905 £+ 0.003 3.04ms £ 0.19
D-LSTM 1 10 512 1087283  0.889 +0.004  0.935 4 0.005 3.22ms +£0.18
D-LSTM 1 15 512 1087283 0.971+£0.004  1.014 £ 0.002 3.17ms £ 0.05

based on the most frequent 100 characters in the vocabular-
ies. All the networks have a 100-dimensional character-level
embedding, which is trained with the network. We use a
batch size of 32 sentences.

Results for German, English, and French can be found in
Tables 4, 5, and 6, respectively. The best result that does
not use a bidirectional network is marked in bold for each
language.
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Table 4. Parts-of-Speech results for German. The table shows all possible combinations of delays or bidirectional LSTM networks. The
best forward-only network is marked in bold.

CHARACTER-LEVEL NETWORK

WORD-LEVEL NETWORK

VALIDATION ACCURACY

TEST ACCURACY

BI-LSTM BI-LSTM 93.88 £ 0.13 93.15 + 0.08
BI-LSTM LSTM 92.00 + 0.16 91.50 £ 0.05
BI-LSTM D-LSTM WITH DELAY=1 93.32 +0.23 92.81 +£0.14
BI-LSTM D-LSTM WITH DELAY=2 93.15 + 0.06 92.67 + 0.08
BI-LSTM D-LSTM WITH DELAY=3 92.82 +0.14 92.25 + 0.16
BI-LSTM D-LSTM WITH DELAY=4 92.41 +0.12 91.95 +0.17
BI-LSTM D-LSTM WITH DELAY=5 91.86 = 0.11 91.57 £ 0.20

LSTM BI1-LSTM 93.96 +0.12 93.43 £ 0.07

LSTM LSTM 92.05 £ 0.16 91.58 £0.11

LSTM D-LSTM WITH DELAY=1 93.46 = 0.16 92.71 £ 0.11

LSTM D-LSTM WITH DELAY=2 93.13 £ 0.10 92.61 + 0.26

LSTM D-LSTM WITH DELAY=3 92.91 +0.13 92.38 = 0.15

LSTM D-LSTM WITH DELAY=4 92.56 + 0.17 92.06 + 0.19
D-LSTM WITH DELAY=1 BI-LSTM 93.93 + 0.06 93.39 £ 0.18
D-LSTM WITH DELAY=1 LSTM 92.04 +0.11 91.58 +0.14
D-LSTM WITH DELAY=1 D-LSTM WITH DELAY=1 93.48 +0.31 92.87 +£0.24
D-LSTM WITH DELAY=1 D-LSTM WITH DELAY=2 93.11 +0.18 92.54 4+ 0.08
D-LSTM WITH DELAY=1 D-LSTM WITH DELAY=3 92.85 +0.14 92.28 +0.19
D-LSTM WITH DELAY=1 D-LSTM WITH DELAY=4 92.50 +0.12 92.11 +0.19
D-LSTM WITH DELAY=3 BI-LSTM 94.00 £+ 0.17 93.32 +0.18
D-LSTM WITH DELAY=3 LSTM 92.10 +0.24 91.61 +0.18
D-LSTM WITH DELAY=3 D-LSTM WITH DELAY=1 93.29 + 0.09 92.68 £ 0.09
D-LSTM WITH DELAY=3 D-LSTM WITH DELAY=2 93.09 +0.21 92.59 +0.16
D-LSTM WITH DELAY=3 D-LSTM WITH DELAY=3 92.86 + 0.24 92.42 +0.16
D-LSTM WITH DELAY=3 D-LSTM WITH DELAY=4 92.53 £ 0.17 92.08 + 0.18
D-LSTM WITH DELAY=5 BI-LSTM 93.88 £ 0.17 93.27 + 0.06
D-LSTM WITH DELAY=5 LSTM 91.88 +0.18 91.54 +0.11
D-LSTM WITH DELAY=5 D-LSTM WITH DELAY=1 93.31 +£0.14 92.74 + 0.10
D-LSTM WITH DELAY=5 D-LSTM WITH DELAY=2 93.17 £ 0.13 92.57 £ 0.17
D-LSTM WITH DELAY=5 D-LSTM WITH DELAY=3 92.84 +0.19 92.25 +0.10
D-LSTM WITH DELAY=5 D-LSTM WITH DELAY=4 92.50 + 0.22 91.96 +0.19
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Table 5. Parts-of-Speech results for English. The table shows all possible combinations of delays or bidirectional LSTM networks. The
best forward-only network is marked in bold.

CHARACTER-LEVEL NETWORK

WORD-LEVEL NETWORK

VALIDATION ACCURACY

TEST ACCURACY

BI-LSTM BI-LSTM 94.85 £+ 0.05 94.84 + 0.08
BI-LSTM LSTM 91.90 £ 0.12 92.05 £ 0.09
BI1-LSTM D-LSTM WITH DELAY=1 94.47 + 0.06 94.41 4+ 0.05
BI1-LSTM D-LSTM WITH DELAY=2 94.17 £ 0.13 94.14 + 0.10
BI1-LSTM D-LSTM WITH DELAY=3 93.70 & 0.07 93.87 + 0.07
BI-LSTM D-LSTM WITH DELAY=4 93.11 +£0.14 93.26 + 0.08
BI-LSTM D-LSTM WITH DELAY=5 92.54 +0.16 92.70 & 0.10

LSTM BI-LSTM 95.03 £ 0.14 94.99 £ 0.15

LSTM LSTM 92.05 +0.13 92.14 + 0.10

LSTM D-LSTM WITH DELAY=1 94.53 + 0.08 94.58 +0.11

LSTM D-LSTM WITH DELAY=2 94.29 4+ 0.05 94.28 + 0.05

LSTM D-LSTM WITH DELAY=3 93.81 +0.11 93.85 +0.12

LSTM D-LSTM WITH DELAY=4 93.39 +0.12 93.55 + 0.10
D-LSTM WITH DELAY=1 BI-LSTM 94.94 + 0.07 94.95 + 0.06
D-LSTM WITH DELAY=1 LSTM 91.96 + 0.16 92.09 +0.10
D-LSTM WITH DELAY=1 D-LSTM WITH DELAY=1 94.57 + 0.08 94.57 £0.14
D-LSTM WITH DELAY=1 D-LSTM WITH DELAY=2 94.29 +0.12 94.37 + 0.08
D-LSTM WITH DELAY=1 D-LSTM WITH DELAY=3 93.86 + 0.05 93.84 + 0.10
D-LSTM WITH DELAY=1 D-LSTM WITH DELAY=4 93.35 +0.10 93.56 +0.13
D-LSTM WITH DELAY=3 BI-LSTM 94.98 + 0.09 94.91 +0.10
D-LSTM WITH DELAY=3 LSTM 91.96 + 0.08 92.08 £ 0.10
D-LSTM WITH DELAY=3 D-LSTM WITH DELAY=1 94.47 + 0.03 94.51 £ 0.10
D-LSTM WITH DELAY=3 D-LSTM WITH DELAY=2 94.21 + 0.05 94.18 + 0.03
D-LSTM WITH DELAY=3 D-LSTM WITH DELAY=3 93.80 £ 0.13 93.88 +0.13
D-LSTM WITH DELAY=3 D-LSTM WITH DELAY=4 93.23 +0.13 93.38 = 0.11
D-LSTM WITH DELAY=5 BI-LSTM 94.90 + 0.07 94.87 + 0.09
D-LSTM WITH DELAY=5 LSTM 91.84 +0.11 91.98 + 0.20
D-LSTM WITH DELAY=5 D-LSTM WITH DELAY=1 94.36 + 0.09 94.44 4+ 0.08
D-LSTM WITH DELAY=5 D-LSTM WITH DELAY=2 94.05 £+ 0.07 94.19 + 0.05
D-LSTM WITH DELAY=5 D-LSTM WITH DELAY=3 93.61 + 0.07 93.76 + 0.05
D-LSTM WITH DELAY=5 D-LSTM WITH DELAY=4 93.14 + 0.04 93.27 +0.12
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Figure 7. Error maps presented in Figure 4 (left column) together with their standard deviation figures.
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Table 6. Parts-of-Speech results for French. The table shows all possible combinations of delays or bidirectional LSTM networks. The
best forward-only network is marked in bold.

CHARACTER-LEVEL NETWORK

WORD-LEVEL NETWORK

VALIDATION ACCURACY

TEST ACCURACY

BI-LSTM BI-LSTM 97.63 + 0.06 97.22 £0.11
BI1-LSTM LSTM 96.67 + 0.05 96.15 £ 0.17
BI-LSTM D-LSTM WITH DELAY=1 97.48 + 0.02 96.98 + 0.05
BI1-LSTM D-LSTM WITH DELAY=2 97.41 +0.02 96.91 +0.12
BI1-LSTM D-LSTM WITH DELAY=3 97.31 +0.05 96.84 + 0.09
BI-LSTM D-LSTM WITH DELAY=4 97.12 + 0.05 96.61 + 0.06
BI-LSTM D-LSTM WITH DELAY=5 96.88 + 0.10 96.20 +0.14

LSTM BI-LSTM 97.70 £+ 0.07 97.19 £ 0.09

LSTM LSTM 96.67 + 0.07 96.10 £0.11

LSTM D-LSTM WITH DELAY=1 97.49 + 0.07 97.03 £ 0.07

LSTM D-LSTM WITH DELAY=2 97.49 + 0.05 97.00 + 0.06

LSTM D-LSTM WITH DELAY=3 97.34 + 0.04 96.89 £+ 0.09

LSTM D-LSTM WITH DELAY=4 97.16 + 0.06 96.66 + 0.15
D-LSTM WITH DELAY=1 BI-LSTM 97.67 £+ 0.07 97.23 +£0.12
D-LSTM WITH DELAY=1 LSTM 96.66 + 0.06 95.97 + 0.07
D-LSTM WITH DELAY=1 D-LSTM WITH DELAY=1 97.49 + 0.04 97.04 £0.13
D-LSTM WITH DELAY=1 D-LSTM WITH DELAY=2 97.43 +0.05 96.98 + 0.05
D-LSTM WITH DELAY=1 D-LSTM WITH DELAY=3 97.36 =+ 0.08 96.80 + 0.10
D-LSTM WITH DELAY=1 D-LSTM WITH DELAY=4 97.22 + 0.06 96.57 = 0.10
D-LSTM WITH DELAY=3 BI-LSTM 97.67 + 0.08 97.21 +0.08
D-LSTM WITH DELAY=3 LSTM 96.67 & 0.07 95.98 £ 0.14
D-LSTM WITH DELAY=3 D-LSTM WITH DELAY=1 97.52 + 0.04 97.02 + 0.09
D-LSTM WITH DELAY=3 D-LSTM WITH DELAY=2 97.44 + 0.02 96.97 +0.12
D-LSTM WITH DELAY=3 D-LSTM WITH DELAY=3 97.28 + 0.04 96.74 + 0.07
D-LSTM WITH DELAY=3 D-LSTM WITH DELAY=4 97.13 £ 0.05 96.57 + 0.09
D-LSTM WITH DELAY=5 BI-LSTM 97.61 +0.03 97.12 + 0.06
D-LSTM WITH DELAY=5 LSTM 96.64 + 0.06 96.08 + 0.08
D-LSTM WITH DELAY=5 D-LSTM WITH DELAY=1 97.46 + 0.02 96.96 + 0.13
D-LSTM WITH DELAY=5 D-LSTM WITH DELAY=2 97.41 + 0.06 96.87 4+ 0.06
D-LSTM WITH DELAY=5 D-LSTM WITH DELAY=3 97.36 + 0.05 96.82 + 0.07
D-LSTM WITH DELAY=5 D-LSTM WITH DELAY=4 97.15 4+ 0.05 96.51 & 0.07




