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Abstract ble explanation for the generalization ability of deep learn-
The notion of flat minima has gained attention as 
a key metric of the generalization ability of deep 
learning models. However, current definitions of 
flatness are known to be sensitive to parameter 
rescaling. While some previous studies have pro-
posed to rescale flatness metrics using parameter 
scales to avoid the scale dependence, the normal-
ized metrics lose the direct theoretical connections 
between flat minima and generalization. We first 
provide generalization error bounds using exist-
ing normalized flatness measures for smooth and 
stochastic networks using second-order approx-
imation. Using the analysis, we then propose a 
novel normalized flatness metric. The proposed 
metric enjoys both direct theoretical connections 
and better empirical correlation to generalization 
error. 

1. Introduction 
Deep learning methods have achieved significant per-
formance improvement in many domains, such as com-
puter vision, language processing, and speech process-
ing (Krizhevsky et al., 2012; Devlin et al., 2019; van den 
Oord et al., 2018). However, we are still on the way to 
understand when they perform well on unseen data. Better 
understanding of the generalization performance of deep 
learning methods would help improve their performance. 
Deep learning community has made tremendous effort to 
understand generalization of neural networks, both theoreti-
cally and empirically (Zhang et al., 2017; Neyshabur et al., 
2017; Arora et al., 2018). 

The notion of “flat minima” has gained attention as a possi-
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ing methods (Hochreiter & Schmidhuber, 1997). Many em-
pirical studies have supported the usefulness of this no-
tion. For example, the notion shed light on the reason for 
larger generalization gaps in large-batch training (Keskar 
et al., 2017; Yao et al., 2018), and also inspired various 
training methods (Hochreiter & Schmidhuber, 1997; Chaud-
hari et al., 2017; Hoffer et al., 2017). Notably, Jiang et al. 
(2020) suggested that PAC-Bayes based generalization met-
rics, which have deep connections with flatness, are effective 
and promising among many other generalization metrics. 
As measures of flatness, previous studies proposed the vol-
ume of the region in which a network keeps roughly the 
same loss value (Hochreiter & Schmidhuber, 1997), the 
maximum loss value around minima (Keskar et al., 2017), 
and the spectral norm of the Hessian (Yao et al., 2018). 

Despite the empirical connections of “flatness” to generaliza-
tion, current definitions of flatness suffer from unnecessary 
scale dependence. Dinh et al. (2017) showed that we can 
arbitrarily change the flatness of the loss-landscape for some 
networks without changing the functions represented by the 
networks. Such scale dependence appears in networks with 
ReLU activation functions or normalization layers such as 
batch-normalization (Ioffe & Szegedy, 2015) and weight-
normalization (Salimans & Kingma, 2016). A major coun-
terargument to the scale dependence is that flatness provides 
valid generalization error bounds when parameter scales are 
taken into account (Dziugaite & Roy, 2017; Neyshabur et al., 
2017). However, both the flatness and parameter scales have 
weak correlations with the generalization error in practical 
settings (Sec. 8). 

Previous studies have tried to make flatness metrics in-
variant with respect to parameter scaling. Li et al. (2018) 
has successfully visualized connections between empirical 
performances and flatness hypotheses by scaling the loss-
landscape using parameter scales. The success suggests 
that the normalized loss-landscape better captures networks’ 
generalization and motivates us to provide their theoretical 
interpretations. Neyshabur et al. (2017), Achille & Soatto 
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invariant with respect to known scaling issues, they did not 
provide direct connections between the metrics and general-
ization error. From the PAC-Bayesian perspective, provid-
ing scale-invariant bounds is not straightforward because 
we need to use the log-uniform distribution as a prior so that 
the Kullback-Leibler divergence term in PAC-Bayes bounds 
becomes scale-invariant (Kingma et al., 2015), while the use 
of the prior invalidates the PAC-Bayesian analysis. 

On the way to understand generalization of deep learning 
and its connections to a normalized loss-landscape, this 
paper makes two contributions. 

• We provide PAC-Bayesian generalization error bounds 
using scale-invariant loss curvature metrics. 

• We propose a novel normalized loss curvature metric 
that has a close connection to the bounds. 

This paper is organized as follows. We start our discus-
sion with the PAC-Bayesian generalization error bound and 
its connection to flat minima (Sec. 3). Next, we connect a 
flatness metric normalized by parameter scales per param-
eter to the PAC-Bayesian analysis (Sec. 4). Unfortunately, 
per-parameter normalization yields a constant term propor-
tional to the number of parameters in the generalization 
error bounds, which makes them vacuous for deep learning 
methods. Thus, we re-analyze the known scale dependence 
issue (Sec. 5). We identify that we do not need to scale the 
loss-landscape per-parameter, but we only need to scale 
it per node. Then, applying the analysis, we improve the 
method of loss-landscape normalization (Sec. 6). Using the 
novel normalized flatness definition, we provide generaliza-
tion error bounds that do not have constant terms that scale 
with the number of parameters. Empirically, the proposed 
metric can predict the generalization performance of models 
more accurately than current unnormalized metrics (Sec. 8). 

Remark: We provide the generalization bounds for 
stochastic networks. Most of them rely on the quadratic 
approximation of the loss function, but not all of them1. 

2. Related work 
The notion of flat minima has its origin in the minimum 
description length principle (MDL) (Hinton & van Camp, 
1993; Rissanen, 1986; Honkela & Valpola, 2004). Dziugaite 
& Roy (2017) connected flat minima to PAC-Bayesian argu-
ments, which is a generalization of the MDL. They pointed 
out that the sharpness of local minima is not sufficient for 
measuring generalization, and that parameter scales need 
to be taken into account. PAC-Bayesian analysis has also 

1Sec. 6 briefly explains that the stochastic network becomes 
close to a deterministic network as sample size increases. 

been used for generalization analysis outside the context of 
flat minima (Neyshabur et al., 2018; Letarte et al., 2019). 
Neyshabur et al. (2018) analyzed the propagation of pa-
rameters’ perturbations to bound the generalization error. 
Given the existence of adversarial examples (Szegedy et al., 
2014), however, this approach inevitably provides vacuous 
bounds. Instead, in this paper, we stick to flat-minima ar-
guments, which will better capture the effect of parameter 
perturbations. 

Since Dinh et al. (2017) pointed out the scale dependences 
of flat minima, many studies have attempted to resolve the 
issue. A common approach is scaling sharpness metrics 
by parameter scales. Neyshabur et al. (2017) pointed out 
that the scale dependence can be removed by balancing 
parameter scales and sharpness metrics. However, their 
proposal requires using data-dependent priors (Guedj, 2019; 
Parrado-Hernández et al., 2012; Dziugaite & Roy, 2018) 
or equivalent alternatives, which adds non-trivial costs to 
the generalization bounds. In this paper, we make the costs 
explicit in Sec. 3 and later reduce them in Sec. 6. Prior to 
Neyshabur et al. (2017), Dziugaite & Roy (2017) tried to 
achieve balance using numerical optimization. While they 
partially mitigated the scale dependence, they could not 
completely overcome scale dependence because the prior 
variance was tied into whole network. Wang et al. (2018) 
explored a better choice of posterior variance. However, not 
only their analysis could not remove scale dependence, it 
was based on a parameter-wise argument, which involved 
a factor that scales with the number of parameters, making 
their bound as vacant as naive parameter counting2. Our 
analysis overcomes both problems. 

Sharpness metrics normalization has also appeared outside 
the PAC-Bayesian context. Li et al. (2018) proposed rescal-
ing the loss-landscape by filters’ scales of convolutional 
layers. Even though they provided useful visualizations 
and insights, it is unclear how the scaling relates to gener-
alization. Our work bridges the gap between the emprical 
success and theoretical understandings. Achille & Soatto 
(2018) proposed a notion of information in weights, which 
has connections to flat minima and PAC-Bayes. However, 
their arguments were based on an improper log-uniform 
prior and did not provide valid generalization error bounds. 
Even if we avoid the log-uniform prior to use a method 
described in Neklyudov et al. (2017), the notion does not 
provide non-vacuous bounds, as we show in Sec. 4. Liang 
et al. (2019) proposed the Fisher-Rao norm, which is a met-
ric invariant with respect to known scaling issues. While the 
Fisher-Rao norm has interesting functional equivalence, in 
addition to invariance, it has been hard to directly connect 
the metric to generalization. 

2More comparison with Wang et al. (2018) is available in 
Appendix L in the supplementary material. 
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We propose a novel scale-invariant sharpness metric for loss-
landscapes. Our definition distinguishes itself by its direct 
connection to PAC-Bayesian generalization error bounds. 
While previous methods for normalization have been based 
on per-parameter normalization, ours is based on per-node 
normalization. This difference is critical from the viewpoint 
of our PAC-Bayesian analysis in terms of the tightness of 
the bounds. 

3. Flat minima from PAC-Bayesian 
perspective 

This section reviews a fundamental PAC-Bayesian general-
ization error bound and its connection to flat minima pro-
vided by prior work. Table 1 in Appendix A in the sup-
plementary material summarizes the notations used in this 
paper. 

3.1. PAC-Bayesian generalization error bound 

The following is one of the most basic PAC-Bayesian gener-
alization error bounds (Germain et al., 2016; Alquier et al., 
2016). Let D be a distribution over input-output space Z , 
S be a set of m samples drawn i.i.d. from D, H be a set 
of parameters θ, ` : X × H → [0, 1] be a loss function, 
P be a distribution over H independent of S, and Q be a 
distribution over H. For any δ ∈ (0, 1], any distribution Q, 
and any nonnegative real number λ, with probability at least 
1 − δ, � � �� � � �� λ 1 1 LD Q θ | θ̄  ≤LS Q θ | θ̄ + + ln 

2m λ δ 
1 � �

¯ + KL[Q θ | θ k P (θ)], (1)
λ 

where � � ��
¯LD Q θ | θ := E [`(z, θ)] , (2) 

z∼D,θ∼Q(θ|θ̄)� � ��
¯LS Q θ | θ := E [`(z, θ)] . (3) 

z∼S,θ∼Q(θ|θ̄) 

We reorganize the PAC-Bayesian bound (1) for later use as � � �� λ 1 1¯LD Q θ | θ ≤ LS (θ) + + ln 
2m λ δ � � �� 1 � �

¯ + LS Q θ | θ̄  − LS (θ) + KL[Q θ | θ k P (θ)] . | {z
(A) 

} λ| {z
(B) 

} 

(4) 

Similar decompositions can be found in prior 
work (Dziugaite & Roy, 2017; Neyshabur et al., 2017; 2018). 
We use a different PAC-Bayes bound (1) for later analysis, 
but they are essentially the same.3 Flat minima, which 

3To apply our analysis, we can also use other PAC-Bayesian 

are the noise-stable solution with respect to parameters, 
naturally correspond to term (A) in Eq. (4). Following 
prior work (Langford & Caruana, 2002; Hochreiter & 
Schmidhuber, 1997; Dziugaite & Roy, 2017; Arora et al., 
2018), we analyze the true error of the stochastic classifier 
Q in the following sections. Nagarajan & Kolter (2019) 
presented a method to generalize the PAC-Bayes bounds to 
deterministic classifiers. We will leave combining our work 
and theirs as future work. 

3.2. Effect of noise under second-order approximation 

To connect PAC-Bayesian analysis with the Hessian of the 
loss-landscape as in prior work (Keskar et al., 2017; Dinh 
et al., 2017; Yao et al., 2018), we consider the second-order 
approximation of some surrogate loss functions. We use a 
Gaussian with a covariance matrix σ2I as the posterior of 
parameters4. Then term (A) in the PAC-Bayesian bound (4) 
can be calculated as � � �� � �

¯ ¯LS Q θ | θ − LS θ � � �� � �
¯ ¯ = E LS θ + � − LS θ (5) 

�∼N (0,σI) 

1 � �
2≈ Tr rθLS θ̄  σ2 . (6)

2 

Thus, we can approximate term (A) by the trace of the Hes-
sian and use it as a generalization metric. The effect of the 
approximation is further discussed in Appendix H in the 
supplementary material. Note, connecting PAC-Bayes with 
Hessian appears in the literature repeatedly (Dziugaite & 
Roy, 2017; Wang et al., 2018). By tuning σ with an appro-
priate prior, we can balance terms (A) and (B) (Dziugaite & 
Roy, 2017; Neyshabur et al., 2017). However, appropriate 
methods to balance them have not been extensively studied. 
Moreover, while some prior work proposed scaling σ by 
parameter scales, the operation has not been justified from 
the PAC-Bayesian viewpoint. We address the issues in the 
next section. 

4. PAC-Bayes and parameter-wise 
normalization 

In this section, we propose a framework that connects 
parameter-wisely normalized flatness metrics to PAC-
Bayesian generalization error analysis. As a first step, we 
virtually decompose the parameters: 

θ = ηµ e[σ], (7) 

bounds such as Theorem 1.2.6 in Catoni (2007), which is known 
to be relatively tight in some cases and successfully provided 
empirically nontrivial bounds for ImageNet scale networks in 
Zhou et al. (2019). 

4Remark: Eq. (1) holds with not only Gaussian posteriors but 
also arbitrary posteriors. 
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where is the Hadamard product, and e[·] is an element-
wise exponential. The codomain of random variables 
θ, µ, σ is Rn , and a hyperparameter η is a positive real 
number η ∈ R>0. Intuitively, this is a scale-sign decompo-
sition of parameters with continuous relaxation. We extend 
the decomposition to a scale-direction decomposition in 
Sec. 6. We design a specific prior and posterior on µ and σ 
to mitigate the scale dependence. We first define our prior 
design. 

P (µ) = N (µ | 0, I), (8) 
P (σ) = N (σ | β, η0I), (9) 

where β ∈ Rn and η0 ∈ R>0 are hyperparameters. Next, 
we define our posterior design. 

Q (µ | µ̄) = N (µ | µ̄, I), (10) 
Q (σ | σ̄) = N (σ | σ̄, η0I), (11) 

where µ̄ and σ̄ are real vectors in Rn satisfying 

¯ [σ̄]θ = ηµ̄ e , (12) 

where a real vector θ̄  is a parameter assignment. Note that 
the choice of µ̄ and σ̄ is not necessarily unique, and we 
can balance them arbitrarily. Furthermore, the parameter 
η was introduced to address a technical issue concerning 
PAC-Bayesian analysis. 

Under the second-order approximation, terms (A) and (B) 
in the PAC-Bayesian bound (1) can now be approximated 
as follows5. 

n
η2 X� �

2 2σ̄ i(A) : r eθ2 θLS ¯ i,i 
i=1 

n 
(η0)2 X� � � �22 ¯ + rθLS ¯ i,i 

θi + E (LS , Q),θ2 
i=1 

(13)� � 
21 1 1¯ [−2σ̄] 2(B) : θ e + kσ̄ − βk ,2(2λ) η2 2 (η0)2 

(14) 

where E (LS , Q) is an error term introduced by the second-
order approximation. We obtain the following bound by 
combining (13) and (14), optimizing σ, and taking the union 
bound with respect to η, η0, and β. 

Proposition 4.1. For any networks, any λ ∈ Λ and λ0 ∈ Λ0 

where Λ ⊂ R>0 and Λ0 ⊂ R>0 are a finite set of real num-
bers independent of S, any 0–1 bounded twice continuously 
differentiable loss function with respect to parameters, any 
finite set of real numbers B ⊂ R independent of S, and any 
parameter assignment θ̄, there exists a stochastic classifier 

5See Appendix D.1 in the supplementary material for the deriva-
tion. 

� �
¯Q θ | θ such that with probability 1 − δ over the training 

set and Q, the expected error LD (Q) is bounded by 

� � λ0 1¯LS θ + √ FR + √ NS0 (λ
0) 

2 λ 2 λ 
1 λ 

+ Ξ+ + E (LS , Q), (15)
λ 2m 

where 
nX� �

2 ¯FR = r θ2 (16)θθLS ¯ i,i i , 
i=1 

NS0 = 
n 2X h ¯ i� � θ2 (σ̄ i − βi)2 2¯ imin rθ LS ¯ e σi + + ,

i,iσ̄ i∈R 
θ e2σ̄ i λ0 

i=1 βi∈B 

(17) 

and 

1 
Ξ = ln + n ln|B| + 2 ln|Λ| + ln|Λ0|. (18)

δ 

The optimal choice of λ is O(m− 2
1 
). 

The FR and NS in the theorem stands for Fisher-Rao and 
normalized sharpness respectively, where the latter will be 
elaborated later and defined in Sec. 7. The convergence rate 
of the whole bound is O(m−1/4) with the optimal choice 
of λ. This is not worse than existing bounds such as those 
of Bartlett et al. (2017), Neyshabur et al. (2018), and Arora 
et al. (2018). Appendix I in the supplementary material fur-
ther discusses the convergence rate. The second term, con-
taining FR, coincides with the second-order approximation 
of the scaled expected sharpness suggested by Neyshabur 
et al. (2017), the information in weight (Achille & Soatto, 
2018), Gauss-Newton norm (Zhang et al., 2019), and Fisher-
Rao norm under appropriate regularity conditions (Liang 
et al., 2019). The third term, containing NS0, also has a 
connection to normalized loss-landscapes given by 

n q
1 X 

2 
� ̄  �2 

NS1 := lim NS0 (λ
0) = (r LS |θ̄) θi .θ i,i2 λ0→∞ 

i=1 

(19) 

While this equation only holds at the limit, we can match the 
sides of the equation by modifying the prior and posterior 
design. We also can remove the second term at the same 
time. First, we replace B to be a uniform distribution an a 
finite set. The set is carefully designed so that it does not 
become too large but sufficiently dense so that the scale 
dependence can be ignored. Next, we replace both of the 
prior and the posterior of σ with a distribution which takes 
1 on a real vector and 0 anywhere else. The replacement 



Normalized Flat Minima 

corresponds to setting η0 very small in their original prior 
and posterior. A more concrete explanation is provided in 
the proof of the next proposition, provided in Appendix D.3 
in the supplementary material. 

Proposition 4.2. For any networks, any λ ∈ Λ where 
Λ ⊂ R>0 is a finite set of real number independent of S, any 
positive number � ∈ R>0, any 0–1 bounded twice continu-
ously differentiable loss function with respect to parameters, 

¯and any parameter assignment θ̄  such that maxi θi ≤ b, if 
the diagonal elements of the Hessian of the training loss 
LS is bounded by M ∈ R>0 and nonnegative, there exists � �

¯ a stochastic classifier Q θ | θ such that with probability 
1 − δ over the training set and Q, the expected error LD (Q) 
is bounded by6 

1 + � + �2 1 λ LS (θ) + √ NS1 + Ξ1 + + E (LS , Q), 
λ λ 2m 

(20) 

where 

Ξ1 = O(n) · C�,δ,|Λ|,M,b,λ. (21) 

The assumptions that we can bound all elements of θ̄  and the 
diagonal of the Hessian are reasonable because we typically 
train neural networks on computers with finite precision. 
Even though ReLU networks do not satisfy the smoothness 
assumption, which is necessary because we use the Hes-
sian, the proposition at least addresses the scale dependence 
due to normalization layers. Section 6 discusses a possible 
method to address the smoothness and nonnegativity as-
sumptions for the Hessian’s diagonal elements. The method 
is also applicable to the above propositions. The � that 
appears in the proposition comes from an approximation 
error introduced by the discretization trick. Setting � = 1 
suggests that the parameter’s existence does not worsen the 
order of the bound. 

5. Finer-grained scale dependence 
The generalization error bounds (15) and (20) have constant 
terms proportional to the number of parameters. This is 
because specifying scaling parameters per parameter is al-
most as difficult as directly specifying all parameters. Since 
deep learning methods typically use overparametrized mod-
els, the constant terms make the bounds vacuous. Prior 
parameter-wisely normalized sharpness metrics also suffer 
from the problem explictly or inexplicitly (Wang et al., 2018; 
Achille & Soatto, 2018). Fortunately, it turns out that we 
can control parameter scales by using fairly small number 
of scaling parameters. For example, we can guess that pa-
rameters belonging to the same weight matrix have similar 

6The exact form of Ξ1 can be found in the Appendix D.3 in the 
supplementary material. 

scales. In this section, we discuss what controls the parame-
ter scales in deep learning models. This discussion is critical 
for our improved PAC-Bayesian analysis in Sec. 6. It also 
reveals the scale dependence in existing matrix-norm-based 
generalization bounds7. 

Here, we analyze the scale dependences appearing in net-
works with the ReLU activation function. The similar de-
pendences appear in networks with normalization layers, 
which we defer the explanation to Appendix C.1 in the sup-
plementary material. We point out that the matrix-wise scale 
dependence introduced by Dinh et al. (2017) does not fully 
cover scale dependences8. To illustrate the hidden scale 
dependence, we consider a simple network with a single 
hidden layer and ReLU activation: 

fθ(z) = W (2)(ReLU(W (1)(z))), (22) 

where weight matrices W (1) and W (2) are subsets of the pa-
rameters θ, and z is an input of the network fθ . We can scale 
the i-th column of W (2) by α > 0 and i-th row of W (1) by 
1/α without modifying the function that the network rep-
resents.9 Since we are using the ReLU activation function, 
which has positive homogeneity, the transformation does 
not change the represented function. By the transformation, 
the diagonal elements of the Hessian corresponding to the 
i-th row of W (1) are scaled by α2 . The transformation has 
essentially the same effect as the one proposed by Dinh 
et al. (2017). The difference is that the above transformation 
runs node-wise instead of matrix-wise. In terms of weight 
matrices, the node-wise scale dependence can be translated 
into a row- and column-wise scale dependence. 

6. Improved PAC-Bayesian analysis 
In this section, we tighten our PAC-Bayesian bounds in 
Sec. 4 based on Sec. 5. In Sec. 5, we pointed out the row-
and column-wise scale dependencies in modern network 
architectures. Thus, we at least need to absorb the row and 
column scales of weight matrices. It seems, however, that 
we do not need to control all parameter scales separately. 
Thus, we modify the decomposition per weight matrix in 
Sec. 4 in the following way. � � � � 

W (l) = ηDiag [γ(l)]e V (l)Diag [γ0 (l) ]e , η ∈ R, 
(23) � � � � 

[γ(l)] [γ0(l)]where Diag e and Diag e are diagonal ma-

[γ0(l)]trices whose diagonal elements are e[γ
(l)] and e , re-

7See Appendix C.2 in the supplementary material for the expla-
nation. 

8The same scale dependences in ReLU networks were intro-
duced by Neyshabur et al. (2015). 

9Running examples of the transformation can be found in Ap-
pendix B.1 in the supplementary material. 



�

���� ��

�

Normalized Flat Minima 

, γ0(l)spectively. The codomains of random variables γ(l) , 
(l) (l) (l) (l)×h1 2 1 2and V (l) are Rh , Rh , and Rh , respectively. Sim-

ilar decomposition with (23) has been explored for the unit-
invariant SVD (Uhlmann, 2018). In the method, weight 
matrices are normalized using the solution of Program 
II (Rothblum & Zenios, 1992). Even though the same 
method is available for removing the scale dependence, 
we consider the Hessian jointly and use different scaling 
control that has some optimality from the PAC-Bayesian 
perspective. We first define some notations for convenience. 
Let Ū (l) be a matrix defined as Ū (l) = W̄ (l) W̄ (l), where 
¯ ¯W (l) is a subset of a parameter assignment θ̄  . Let H(l) be a 

matrix such that � � 
(l) ∂2LS (θ)

H̄ = ¯ . (24)i,j θ=θ∂W (l)i,j ∂W (l)i,j 

By extending Prop. 4.2 to decomposition (23), we have the 
following proposition. 

Proposition 6.1. For any networks with d weight matrices, 
any λ ∈ Λ where Λ ⊂ R>0 is a finite set of real number 
independent of S, any positive number � ∈ R>0, any posi-
tive number R ∈ R>0, any 0–1 bounded twice continuously 
differentiable loss function with respect to parameters, and 

¯ ¯ a parameter assignment θ such that maxi θi ≤ b, if the 
diagonal elements of the Hessian of the training loss LS are 
bounded by M ∈ R>0 and nonnegative, then there exists � �

¯ a stochastic classifier Q θ | θ such that with probability 
1 − δ over the training set and Q, the expected error LD (Q) 
is bounded by10 

� � (1 + �)2 1 λ LS θ̄ + √ NS2(R) + Ξ2 + + E (LS , Q), 
λ λ 2m 

(25) 

where NS2(R) = r 
dX 

[−γ̄(l)]
> 
H̄ (l) � 

Ū (l) �> [γ̄0 (l)]min e e , (26) 
l=1 γ̄(l)∈[−R,R]h1

(l) 

˜Ξ2 = O(hd) · C�,δ,M,b,R,|Λ|, (27) �Pd Pd 
� 

1 (l) (l)and h = max h , h .d l=1 1 l=1 2 

The constant term, Ξ2, scales by the number of nodes, in-
stead of parameters. The reduction of the constant term 
from Prop. 4.2 makes the bound meaningful in practical 
settings. For example, ResNet50 has tens of millions of 
parameters, while it only has tens of thousands of nodes. In 
classification on ImageNet, which has millions of images, 
this reduction is critical. 

10The exact form of Ξ2 can be found in the Appendix D.4 in the 
supplementary material. 

Note that the proof of Prop. 6.1 is constructive. In the� �
¯construction, the posterior Q θ | θ is a Gaussian cen-

tered at θ̄  with a diagonal covariance matrix Σ such that 
kΣk = O(λ− 2

1 
). Since the E (LS , Q) term comes fromF 

a second-order approximation of the loss function, as λ 
increases, which means a training set size m increases, 
the second-order approximation will hold better, and the 
E (LS , Q) term will decrease. 

For the sake of theoretical completeness, we address the 
E (LS , Q) term, smoothness assumption, and nonnegative 
assumption. In Props. 4.2 and 6.1, the E (LS , Q) term was 
introduced as a term satisfying the following equation. � � ��

¯LS Q θ | θ � �
¯ = LS θ + E (LS , Q) 
1 h� �> � � � �i 

2+ E θ − θ̄  rθLS θ̄  θ − θ̄  . (28)
2 θ∼Q(θ|θ̄) 

As long as the equation is satisfied, we can use any vec-
tors which mimick the Hessian’s diagonal elements. For 
example, we can use the following as an estimation of the 
Hessian diagonal. h � � � 
f = Es∈{−1,1}n Div s gS,θ̄,�(r, s) − gS,θ̄,�(r, −s) , �i 

2r(Abs[θ] + �1) , (29) 

where � �
¯ gS,θ̄,�(r, s) = rθ LS θ + r(Abs(θ̄)s + �1) , (30) 

Div [·, ·] is an elementwise division, and Abs [·, ·] is an ele-
mentwise absolute. We added a parameter � for numerical 
stability. When a network is smooth, f is an approximation 
of the diagonal elements of the Hessian. Note, the estima-
tion is scale-invariant when � = 0. The estimation is defined 
even when networks are not smooth. Furthermore, we can 
carry out the following modification to f to enforce the 
nonnegative condition. 

f̂  = Max [f , 0] , (31) 

¯where Max[·, ·] is an elementwise maximum. Let F (l) be 
a matrix such that we substitute the diagonal elements of 
the Hessian by f̂ in the definition of H̄ (l) (24). Using F̄ (l) 

H̄ (l)instead of , we have the following theorem. 

Theorem 6.1. For any networks with d weight matrices, 
for any λ ∈ Λ where Λ ⊂ R>0 is a finite set of real num-
ber independent of S, a positive number � ∈ (0, 0.1], any 
positive number R ∈ R>0, any 0–1 bounded loss function, 

¯and a parameter assignment θ̄  such that maxi θi ≤ b, if all 
elements of f̂ are bounded by M ∈ R>0, then there exists � �

¯a Gaussian distribution Q θ | θ with a mean θ̄  and a co-
variance matrix Σ such that kΣk = O(λ−1/2) in terms of F 
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λ, and with probability 1 − δ over the training set S and Q, 
the expected error LD (Q) is bounded by11 

� � �� 1 1 λ¯LS Q θ | θ + √ NS3(R) + Ξ3 + . (32)
λ λ 2m 

where NS2(R) = r 
dX > � �> 0(l)][−γ̄(l)] F̄ (l) Ū (l) [γ̄ min e e (33) 

l=1 γ̄(l)∈[−R,R]h1
(l) 

and 

Ξ3 = Õ(hd) · C�,δ,M,b,R,|Λ|. (34) 

Note that we can statistically bound the term� � ��
¯LS Q θ | θ using the Monte-Carlo algorithm 

and Hoeffding’s inequality. In Theorem 6.1, we use the 
second-order approximation of the loss to estimate the best 
choice of posterior variance to minimize both terms (A) and 
(B) in Eq. (4). 

7. Normalized sharpness definition and 
calculation 

In this section, based on the analysis in Sec. 6, we define 
normalized sharpness, a sharpness and generalization met-
ric invariant with respect to node-wise rescaling. We also 
describe a practical calculation technique for the metric. 

We define normalized sharpness as r 
dX > � 

NS = inf e[γ̄
(l) ] F̄ (l) Ū (l) �> 

e[−γ̄(l)], 
γ(l) ∈Rh

(l) 
l=1 ¯ 1 

(35) 

¯where the notations Ū (l) and F (l) were introduced in Sec. 6. 
Normalized sharpness appeared in Prop. 6.1 and Theo-
rem 6.1. The reason for the scale-invariance of normalized 
sharpness is explained in Appendix J in the supplementary 
material. 

In convolutional layers, since the same filter has the same 
scale, we can tie the scaling parameter per channel. We 
defer a more detailed description of normalized sharpness 
for convolutional layers to Appendix F in the supplemen-
tary material. Fortunately, the optimization problem (35) 
is convex with respect to γ̄(l).12 Thus, we can estimate a 
near-optimal solution to the optimization problem by gradi-
ent descent. It is straightforward to see that the convexity 
also holds with convolutional layers. When calculating the 

11The exact form of Ξ3 can be found in the Appendix D.5 in the 
supplementary material. 

12See Appendix E in the supplementary material. 

normalized sharpness, we need to ensure that the choice 
of surrogate loss function does not introduce other scale 
dependences. We discuss this choice in Appendix G in the 
supplementary material 

8. Numerical evaluation 
We numerically evaluated the effectiveness of normalized 
sharpness (35). We mainly validated the following two 
points. 

• Unnormalized sharpness metrics can fail to predict 
generalization performance. 

• Normalized sharpness (35) better predicts generaliza-
tion than unnormalized metrics. 

For these purposes, we checked the metrics’ ability to dis-
tinguish models trained on random labels (Sec. 8.1) and pre-
dict the generalization performance of models trained with 
different hyperparameters (Sec. 8.2). As existing current 
sharpness metrics, we used the trace of the Hessian with-
out normalization (6) and the sum of the squared Frobenius 
norm of the weight matrices (Neyshabur et al., 2017). We 
also investigated the empirical dependence of normalized 
sharpness on the width and depth of networks (Sec. 8.3). 
In all experiments, we trained multilayer perceptrons with 
three hidden layers, LeNet (Lecun et al., 1998), and Wide 
ResNet (Zagoruyko & Komodakis, 2016) with 16 layers and 
width factor 4 on MNIST (LeCun et al., 1998) and CIFAR-
10 (Krizhevsky, 2009). More detailed experimental setups 
are described in Appendix M in the supplementary material. 

8.1. Random labels 

We first investigated whether normalized sharpness (35) and 
current unnormalized sharpness metrics can distinguish 
models trained on random labels. In this experiment, sharper 
minima are expected to indicate larger generalization gaps. 

Results: Figure 1 shows plots of the mean sharpness met-
rics for models trained on datasets with different random 
label ratios. The results show that networks trained on ran-
dom labels had larger normalized sharpness to fit the random 
labels. Thus, we can say that normalized sharpness provides 
a fairly good hierarchy in the hypothesis class. Even though 
sharpness without normalization and the squared Frobe-
nius norm of weight matrices could also distinguish models 
trained on random labels to some extent, the signal was 
much weaker than that of normalized sharpness. Note that 
normalized sharpness has an advantage in that it does not 
require a biplot for both the unnormalized sharpness and the 
squared Frobenius norm. 
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Figure 1. The figure shows the values of normalized sharp-
ness (35), trace of the Hessian (6), and the sum of the squared 
Frobenius norms of weight matrices of models trained on datasets 
with different random label ratios. Each dot represents the mean 
of the generalization metric among trained networks and the error 
bars represent the standard deviation. The left column is the re-
sults on MNIST and the right is on CIFAR10. All generalization 
metrics were rescaled to [0, 1] by their maximum and minimum 
per network architecture. 

8.2. Different hyperparameters 

We tested whether normalized sharpness and the ex-
isting unnormalized sharpness metrics can predict the 
generalization performance of models trained with dif-
ferent hyperparameters. We then checked the correla-
tions between the generalization metrics and their gener-
alization gaps, defined by (test misclassification ratio) − 
(train misclassification ratio). Models are trained with 
different strengths of l2-regularization, weight de-
cay (Loshchilov & Hutter, 2019), and dropout. This is an 
adversarial setting for existing unnormalized sharpness met-
rics because both regularizations on weights and dropout 
directly affects the balance between parameter scales and 
flatness of minima. 

Table 1. Correlation coefficients between generalization gap and 
the generalization metrics for models trained on MNIST. 

MLP Lenet WResNet 

Normalized sharpness 0.73 0.73 0.59 
Trace of Hessian −0.62 −0.79 −0.59 
Frobenius norm 0.58 0.58 0.49 

Table 2. Correlation coefficients between generalization gap and 
the generalization metrics for models trained on CIFAR10. 

MLP Lenet WResNet 

Normalized sharpness 0.92 0.98 0.92 
Trace of Hessian −0.42 −0.51 −0.53 
Frobenius norm 0.72 0.76 0.43 

Results: We summarized the correlation coefficients be-
tween curvature metrics and the accuracy gaps in Table 1 
and Table 2. Scatter plots can be found in Appendix N.1 
in the supplementary material with more detailed results. 
On CIFAR10, especially for LeNet and Wide ResNet, we 
observed almost linear correlations between normalized 
sharpness and accuracy gap. Thus, we can confirm the use-
fulness of our generalization error bounds and normalized 
sharpness. On MNIST, even though there were weak corre-
lations between normalized sharpness and the accuracy gap, 
the correlation was weaker than the results on CIFAR10. A 
possible explanation of this phenomenon is that the scale of 
the accuracy gap was too small on MNIST, which was at 
most 0.02. Since we could not create models with various 
accuracy gaps by merely changing the regularization param-
eters on MNIST, the effect of noise would have become 
larger. In all settings, both the trace of the Hessian and the 
squared Frobenius norm of the weight matrices had a weaker 
ability to predict the generalization. We can confirm that 
normalized sharpness had consistently stronger correlations 
with generalization. Notably, we observed a negative corre-
lation with the trace of the Hessian and positive correlation 
with the squared Frobenius norm. If we use the tuples of 
the two as a generalization metric (Neyshabur et al., 2017), 
we cannot determine which models will generalize better. 
We explain the negative correlations as follows. In our 
expeirments, we used three regularizers: l2-regularization, 
weight-decay, and dropout. When we use l2-regularization 
or weight-decay, stronger regularization decreases the gener-
alization error and parameter scales. Since there are certain 
trade-offs between the sharpness and parameter scales, as 
shown in Eq.(4), the stronger regularization makes the Hes-
sian larger. 
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Figure 2. Plot of the dependence of normalized sharpness on width 
and depth. The top figure plots the dependence on width of the 
normalized shaprness of multilayer-perceptron with different width. 
The bottom figure plots those on depth. The normalized sharpness 
showed almost linear dependence on network depth and sublinear 
dependence on network width. 

8.3. Dependence on width and depth 

To verify that the reduction of the constant term presented 
in Sec. 6 improves the overall bounds, we empirically in-
vestigated the dependency of normalized sharpness on net-
work width and depth. We trained multilayer perceptron 
with depth-{1, 2, 3, 4} and width-{32, 128, 512, 2048} on 
MNIST three times for each and calculated normalized 
sharpness for every trained model. Figure 2 shows the re-
sults. It indicates that the normalized sharpness has an al-
most linear dependence on the network depth and sub-linear 
dependence on the network width, at least under this setting. 
This suggests that the constant term reduction presented in 
Sec. 6 contributes to tightening the overall generalization 
bounds. 

9. Comparison with other generalization 
bounds: 

We compare the tightness of our bounds and a prior PAC-
Bayesian approach13 (Neyshabur et al., 2018). First, we 
remark that Neyshabur et al. (2018) relies on a margin pa-
rameter. The margin parameter controls the term (A) in 
Eq. (4) to some extent. Importantly, the margin loss they 
rely on does not decrease when the sample size increases. 
On the other hand the term (A) is solely controlled by the 
posterior choice in our bounds. As a result, the term de-
crease as the sample size increases. However, the difference 
makes the rate of convergence different and their direct com-
parison harder. The convergence rate is further discussed in 
Appendix I in the supplementary material. Nevertheless, we 
can still compare the effect of our constant term, which is 
O(hd), with existing bounds. The main bound in Neyshabur 
et al. (2018) scales at least O(d2h). Compared to that, our 
constant term will not be critical to the tightness of our 
bound. 

An O(hd) generalization bound corresponds to O(1/h) 
compression per layer. This is fairly competitive with the 
reported result by Arora et al. (2018). Even though our 
work is not directly comparable to Arora et al. (2018), this 
suggests that our bounds are comparably tight compared to 
those derived by Arora et al. (2018). 

Observations in Sec. 8.3 suggest an advantage of normalized 
sharpness over the Fisher-Rao norm. Since the Fisher-Rao 
norm scales O(d2) with respect to depth, when the repre-
sented function is identical (Liang et al., 2019), normalized 
sharpness might be more robust against architecture changes, 
especially concerning depth of networks. 

10. Conclusion 
We have formally connected normalized loss curvatures 
with generalization through PAC-Bayesian analysis. The 
analysis bridged the known gap between theoretical under-
standings and empirical connections between normalized 
loss-landscape and generalization. The proof consists of 
two steps: scale-direction decompositions of parameters and 
discretization trick. In the analysis, we found that using a 
smaller number of scaling parameters is critical for mean-
ingful generalization bounds, at least within our framework. 
Applying this discovery, we proposed normalized sharpness 
as a novel generalization metric. Experimental results sug-
gest that this metric is more powerful than unnormalized 
loss sharpness metrics as a measure of generalization. 

13Remark: Our primal goal is not providing the state-of-the-art 
tightest bound, but connecting scale-invariant flatness metric and 
generalization. 
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