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Abstract

Standard methods in supervised learning sepa-
rate training and prediction: the model is fit in-
dependently of any test points it may encounter.
However, can knowledge of the next test point
x? be exploited to improve prediction accuracy?
We address this question in the context of linear
prediction, showing how techniques from semi-
parametric inference can be used transductively to
combat regularization bias. We first lower bound
the x? prediction error of ridge regression and the
Lasso, showing that they must incur significant
bias in certain test directions. We then provide
non-asymptotic upper bounds on the x? predic-
tion error of two transductive prediction rules. We
conclude by showing the efficacy of our methods
on both synthetic and real data, highlighting the
improvements single point transductive prediction
can provide in settings with distribution shift.

1. Introduction

We consider the task of prediction given independent data-
points ((yi,xi))ni=1 from a linear model,

yi = x>
i �0 + ✏i, E[✏i] = 0, ✏i ?? xi (1)

in which our observed targets y = (y1, . . . , yn) 2 Rn and
covariates X = [x1, . . . ,xn]> 2 Rn⇥p are related by an
unobserved parameter vector �0 2 Rp and noise vector
✏ = (✏1, . . . , ✏n) 2 Rn.

Most approaches to linear model prediction are inductive,
divorcing the steps of training and prediction; for example,
regularized least squares methods like ridge regression (Ho-
erl & Kennard, 1970) and the Lasso (Tibshirani, 1996) are
fit independently of any knowledge of the next target test
point x?. This suggests a tantalizing transductive question:
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can knowledge of a single test point x? be leveraged to

improve prediction for x?? In the random design linear
model setting (1), we answer this question in the affirmative.

Specifically, in Section 2 we establish out-of-sample predic-
tion lower bounds for the popular ridge and Lasso estimators,
highlighting the significant dimension-dependent bias intro-
duced by regularization. In Section 3 we demonstrate how
this bias can be mitigated by presenting two classes of trans-
ductive estimators that exploit explicit knowledge of the
test point x?. We provide non-asymptotic risk bounds for
these estimators in the random design setting, proving that
they achieve dimension-free O( 1

n ) x?-prediction risk for n
sufficiently large. In Section 4, we first validate our theory
in simulation, demonstrating that transduction improves the
prediction accuracy of the Lasso with fixed regularization
even when x? is drawn from the training distribution. We
then demonstrate that under distribution shift, our transduc-
tive methods outperform even the popular cross-validated
Lasso, cross-validated ridge, and cross-validated elastic net
estimators (which attempt to find an optimal data-dependent
trade-off between bias and variance) on both synthetic data
and a suite of five real datasets.

1.1. Related Work

Our work is inspired by two approaches to semiparamet-
ric inference: the debiased Lasso approach introduced by
(Zhang & Zhang, 2014; Van de Geer et al., 2014; Javanmard
& Montanari, 2014) and the orthogonal machine learning
approach of Chernozhukov et al. (2017). The works (Zhang
& Zhang, 2014; Van de Geer et al., 2014; Javanmard &
Montanari, 2014) obtain small-width and asympotically-
valid confidence intervals (CIs) for individual model pa-
rameters (�0)j = h�0, eji by debiasing an initial Lasso
estimator (Tibshirani, 1996). The works (Chao et al., 2014;
Cai & Guo, 2017; Athey et al., 2018) each consider a more
closely related problem of obtaining prediction confidence
intervals using a generalization of the debiased Lasso es-
timator of Javanmard & Montanari (2014). The work of
Chernozhukov et al. (2017) describes a general-purpose
procedure for extracting

p
n-consistent and asymptotically

normal target parameter estimates in the presence of nui-
sance parameters. Specifically, Chernozhukov et al. (2017)
construct a two-stage estimator where one initially fits first-
stage estimates of nuisance parameters using arbitrary ML
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estimators on a first-stage data sample. In the second-stage,
these first-stage estimators are used to provide estimates
of the relevant model parameters using an orthogonalized
method-of-moments. Wager et al. (2016) also uses generic
ML procedures as regression adjustments to form efficient
confidence intervals (CIs) for treatment effects.

These pioneering works all focus on improved CI construc-
tion. Here we show that the semiparametric techniques
developed for hypothesis testing can be adapted to provide
practical improvements in mean-squared prediction error.
Our resulting mean-squared error bounds complement the
in-probability bounds of the aforementioned literature by
controlling prediction performance across all events.

While past work on transductive regression has demon-
strated both empirical and theoretical benefits over induction
when many unlabeled test points are simultaneously avail-
able (Belkin et al., 2006; Alquier & Hebiri, 2012; Bellec
et al., 2018; Chapelle et al., 2000; Cortes & Mohri, 2007;
Cortes et al., 2008), none of these works have demonstrated
a significant benefit, either empirical or theoretical, from
transduction given access to only a single test point. For
example, the works (Belkin et al., 2006; Chapelle et al.,
2000), while theoretically motivated, provide no formal
guarantees on transductive predictive performance and only
show empirical benefits for large unlabeled test sets. The
transductive Lasso analyses of Alquier & Hebiri (2012); Bel-
lec et al. (2018) provide prediction error bounds identical
to those of the inductive Lasso, where only the restricted-
eigenvalue constant is potentially improved by transduction.
Neither analysis improves the dimension dependence of
Lasso prediction in the SP setting to provide O(1/n) rates.
The formal analysis of Cortes & Mohri (2007); Cortes et al.
(2008) only guarantees small error when the number of unla-
beled test points is large. Our aim is to develop single point
transductive prediction procedures that improve upon the
standard inductive approaches both in theory and in practice.

Our approach also bears some resemblance to semi-
supervised learning (SSL) – improving the predictive power
of an inductive learner by observing additional unlabelled
examples (see, e.g., Zhu, 2005; Bellec et al., 2018). Con-
ventionally, SSL benefits from access to a large pool of
unlabeled points drawn from the same distribution as the
training data. In contrast, our procedures receive access to
only a single arbitrary test point x? (we make no assumption
about its distribution), and our aim is accurate prediction
for that point. We are unaware of SSL results that benefit
significantly from access to single unlabeled point x?.

1.2. Problem Setup

Our principal aim in this work is to understand the x? pre-
diction risk,

R(x?, ŷ) = E[(y? � ŷ)2] � �
2
✏ = E[(ŷ � hx?,�0i)2] (2)

of an estimator ŷ of the unobserved test response y? =
x>
? �0 + ✏?. Here, ✏? is independent of x? with variance �2

✏ .
We exclude the additive noise �

2
✏ from our risk definition,

as it is irreducible for any estimator. Importantly, to accom-
modate non-stationary learning settings, we consider x? to
be fixed and arbitrary; in particular, x? need not be drawn
from the training distribution. Hereafter, we will make use
of several assumptions which are standard in the random
design linear regression literature.

Assumption 1 (Well-specified Model). The data (X,y) is
generated from the model (1).

Assumption 2 (Bounded Covariance). The covariate vec-
tors have common covariance ⌃ = E[xix>

i ] with ⌃ii 
1/2, �max(⌃)  Cmax and �min(⌃) � Cmin. We further
define the precision matrix ⌦ = ⌃�1 and condition number
Ccond = Cmax/Cmin.

Assumption 3 (Sub-Gaussian Design). Each covariate vec-
tor ⌃�1/2xi is sub-Gaussian with parameter  � 1, in the
sense that, E[exp

�
v>xi

�
]  exp

�

2k⌃1/2vk2/2

�
.

Assumption 4 (Sub-Gaussian Noise). The noise ✏i is sub-
Gaussian with variance parameter �2

✏ .

Throughout, we use bold lower-case letters (e.g., x) to re-
fer to vectors and bold upper-case letters to refer to matri-
ces (e.g., X). We define [p] = {1, . . . , p} and p _ n =
max(p, n). Vectors or matrices subscripted with an index
set S indicate the subvector or submatrix supported on S.
The expression s�0 indicates the number of non-zero ele-
ments in �0, supp(�0) = {j : (�0)j 6= 0} and B0(s) refers
to the set of s-sparse vectors in Rp. We use &, ., and ⇣ to
denote greater than, less than, and equal to up to a constant
that is independent of p and n.

2. Lower Bounds for Regularized Prediction

We begin by providing lower bounds on the x? prediction
risk of Lasso and ridge regression; the corresponding predic-
tions take the form ŷ = hx?, �̂i for a regularized estimate
�̂ of the unknown vector �0.

2.1. Lower Bounds for Ridge Regression Prediction

We first consider the x? prediction risk of the ridge estimator
�̂R(�) , argmin� ky � X�k22 + �k�k22 with regulariza-
tion parameter � > 0. In the asymptotic high-dimensional
limit (with n, p ! 1) and assuming the training distri-
bution equals the test distribution, Dobriban et al. (2018)
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compute the predictive risk of the ridge estimator in a
dense random effects model. By contrast, we provide a
non-asymptotic lower bound which does not impose any
distributional assumptions on x? or on the underlying pa-
rameter vector �0. Theorem 1, proved in Appendix B.1,
isolates the error in the ridge estimator due to bias for any
choice of regularizer �.

Theorem 1. Under Assumption 1, suppose xi
i.i.d.⇠ N (0, Ip)

with independent noise ✏ ⇠ N (0, In�2
✏ ). If n � p � 20,

E[hx?, �̂R(�) � �0i2] �
k�0k2

2
�2
✏

· n
4

⇣
�/n

�/n+7

⌘2
· kx?k22 · �2

✏
n · cos(x?,�0)

2
.

Notably, the dimension-free term kx?k22·
�2
✏
n in this bound co-

incides with the x? risk of the ordinary least squares (OLS)
estimator in this setting. The remaining multiplicative factor
indicates that the ridge risk can be substantially larger if
the regularization strength � is too large. In fact, our next
result shows that, surprisingly, over-regularization can result
even when � is tuned to minimize held-out prediction error
over the training population. The same undesirable outcome
results when � is selected to minimize `2 estimation error;
the proof can be found in Appendix B.2.

Corollary 1. Under the conditions of Theorem 1, if x̃ d
= x1

and x̃ is independent of (X,y), then for SNR , k�0k22/�2
✏ ,

�⇤ , argmin� E[hx̃, �̂R(�) � �0i2] =

argmin� E[k�̂R(�) � �0k22] = p
SNR , and, for n � 1

6
p

SNR ,

E[hx?, �̂R(�⇤) � �0i2] � p2

nSNR · kx?k22 · �2
✏
n · cos(x?,�0)

2

784 .

Several insights can be gathered from the previous re-
sults. First, the expression E[hx̃, �̂R(�) � �0i2] mini-
mized in Corollary 1 is the expected prediction risk E[(ỹ �
x̃>�̂R(�))2] � �

2
✏ for a new datapoint (x̃, ỹ) drawn from

the training distribution. This is the population analog of
held-out validation error or cross-validation error that is of-
ten minimized to select � in practice. Second, in the setting
of Corollary 1, taking SNR = 1

6
p
n yields

E[hx?, �̂R(�⇤) � �0i2] � p · kx?k22 · �2
✏
n · 3 cos(x?,�0)

2

392 .

More generally, if we take cos(x?,�0)
2 = ⇥(1), SNR =

o(p
2

n ) and SNR � 1
6
p
n then,

E[hx?, �̂R(�⇤) � �0i2] � !(kx?k22 · �2
✏
n ).

If � is optimized for estimation error or for prediction error
with respect to the training distribution, the ridge estimator
must incur much larger test error then the OLS estimator
in some test directions. Such behavior can be viewed as a
symptom of over-regularization – the choice �⇤ is optimized
for the training distribution and cannot be targeted to provide

uniformly good performance over all x?. In Section 3 we
show how transductive techniques can improve prediction
in this regime.

The chief difficulty in lower-bounding the x? prediction risk
in Theorem 1 lies in controlling the expectation over the
design X, which enters nonlinearly into the prediction risk.
Our proof circumvents this difficulty in two steps. First, the
isotropy and independence properties of Wishart matrices
are used to reduce the computation to that of a 1-dimensional
expectation with respect to the unordered eigenvalues of X.
Second, in the regime n � p, the sharp concentration of
Gaussian random matrices in spectral norm is exploited to
essentially approximate 1

nX
>X ⇡ Ip.

2.2. Lower Bounds for Lasso Prediction

We next provide a strong lower bound on the out-of-
sample prediction error of the Lasso estimator �̂L(�) ,
argmin�

1
2nky � X�k22 + �k�k1 with regularization pa-

rameter � > 0. There has been extensive work (see, e.g.,
Raskutti et al., 2011) establishing minimax lower bounds
for the in-sample prediction error and parameter estimation
error of any procedure given data from a sparse linear model.
However, our focus is on out-of-sample prediction risk for a
specific procedure, the Lasso. The point x? need not be one
of the training points (in-sample) nor even be drawn from
the same distribution as the covariates. Theorem 2, proved
in Appendix C.1, establishes that a well-regularized Lasso
program suffers significant biases even in a simple problem
setting with i.i.d. Gaussian covariates and noise.1

Theorem 2. Under Assumption 1, fix s � 0, and let xi
i.i.d.⇠

N (0, Ip) with independent noise ✏ ⇠ N (0, In�2
✏ ). If � �

(8 + 2
p

2)�✏

p
log(2ep)/n and p � 20,2 then there exist

universal constants c1:3 such that for all n � c1s
2 log(2ep),

c3�
2kx?k2(s) � sup

�02B0(s)
E[hx?, �̂L(�) � �0i2]

� sup
�02B0(s),k�0k1�

E[hx?, �̂L(�) � �0i2] � c2�
2kx?k2(s)

where the trimmed norm kx?k(s) is the sum of the magni-
tudes of the s largest magnitude entries of x?.

In practice we will always be interested in a known x?

direction, but the next result clarifies the dependence of our
Lasso lower bound on sparsity for worst-case test directions
x? (see Appendix C.2 for the proof):
Corollary 2. In the setting of Theorem 2, for q 2 [1,1],

sup
kx?kq=1

sup
�02B0(s)

E[hx?, �̂L(�) � �0i2] � c2�
2
s
2�2/q

.

1A yet tighter lower bound is available if, instead of being fixed,
x? follows an arbitrary distribution, and the expectation is taken
over x? as well. See the proof for details.

2The cutoff at 20 is arbitrary and can be decreased.
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We make several comments regarding these results. First,
Theorem 2 yields an x?-specific lower bound – showing that
given any potential direction x? there will exist an under-
lying s-sparse parameter �0 for which the Lasso performs
poorly. Morever, the magnitude of error suffered by the
Lasso scales both with the regularization strength � and
the norm of x? along its top s coordinates. Second, the
constraint on the regularization parameter in Theorem 2,
� & �✏

p
log p/n, is a sufficient and standard choice to ob-

tain consistent estimates with the Lasso (see Wainwright
(2019, Ch. 7) for example). Third, simplifying to the case of
q = 2, we see that Corollary 2 implies the Lasso must incur
worst-case x? prediction error & �2

✏s log p
n , matching upper

bounds for Lasso prediction error (Wainwright, 2019, Exam-
ple 7.14). In particular such a bound is not dimension-free,
possessing a dependence on s log p, even though the Lasso
is only required to predict well along a single direction.

The proof of Theorem 2 uses two key ideas. First, in this
benign setting, we can show that �̂L(�) has support strictly
contained in the support of �0 with at least constant proba-
bility. We then adapt ideas from the study of debiased lasso
estimation in (Javanmard & Montanari, 2014) to sharply
characterize the coordinate-wise bias of the Lasso estima-
tor along the support of �0; in particular we show that a
worst-case �0 can match the signs of the s largest elements
of x? and have magnitude � on each non-zero coordinate.
Thus the bias induced by regularization can coherently sum
across the s coordinates in the support of �0. A similar
lower bound follows by choosing �0 to match the signs of
x? on any subset of size s. This sign alignment between x?

and �0 is also explored in the independent and concurrent
work of (Bellec & Zhang, 2019, Thm. 2.2).

3. Upper Bounds for Transductive Prediction

Having established that regularization can lead to excessive
prediction bias, we now introduce two classes of estima-
tors which can mitigate this bias using knowledge of the
single test direction x?. While our presentation focuses on
the prediction risk (2), which features an expectation over
ŷ, our proofs in the appendix also provide identical high
probability upper bounds on (ŷ � hx?,�0i)2. Throughout
this section, the O(·) masks constants depending only on
, Cmin, Cmax, Ccond.

3.1. Javanmard-Montanari (JM)-style Estimator

Our first approach to single point transductive prediction
is inspired by the debiased Lasso estimator of Javanmard
& Montanari (2014) which was to designed to construct
confidence intervals for individual model parameters (�0)j .
For prediction in the x? direction, we will consider the
following generalization of the Javanmard-Montanari (JM)

debiasing construction3:

ŷJM = hx?, �̂i + 1
nw

>X>(y � X�̂) for (3)

w = argminw̃ w̃>⌃nw̃ s.t. k⌃nw̃ � x?k1  �w. (4)

Here, �̂ is any (ideally `1-consistent) initial pilot estimate
of �0, like the estimate �̂L(�) returned by the Lasso. When
x? = ej the estimator (3) reduces exactly to the program
in (Javanmard & Montanari, 2014), and equivalent general-
izations have been used in (Chao et al., 2014; Athey et al.,
2018; Cai & Guo, 2017) to construct prediction intervals
and to estimate treatment effects. Intuitively, w approxi-
mately inverts the population covariance matrix along the
direction defined by x? (i.e., w ⇡ ⌦x?). The second term
in (3) can be thought of as a high-dimensional one-step cor-
rection designed to remove bias from the initial prediction
hx?, �̂i; see (Javanmard & Montanari, 2014) for more in-
tuition on this construction. We can now state our primary
guarantee for the JM-style estimator (3); the proof is given
in Appendix D.1.

Theorem 3. Suppose Assumptions 1, 2, 3 and 4 hold and
that the transductive estimator ŷJM of (3) is fit with regular-

ization parameter �w = 8a
p
Ccond

2kx?k2
q

log(p_n)
n for

some a > 0. Then there is a universal constant c1 such that
if n � c1a

2 log(2e(p _ n)),

E[(ŷJM � h�0,x?i)2]  (5)

O

⇣
�2
✏x?⌦x?

n + r
2
�,1(�

2
w + kx?k21

1
(n_p)c3 )

⌘
.

for c3 = a2

4 � 1
2 and r�,1 = (E[k�̂ � �0k41])1/4, the `1

error of the initial estimate. Moreover, if �w � kx?k1,
then E[(ŷJM � h�0,x?i)2] = E[hx?, �̂ � �̂0i2].

Intuitively, the first term in our bound (5) can be viewed as
the variance of the estimator’s prediction along the direc-
tion of x? while the second term can be thought of as the
(reduced) bias of the estimator. We consider the third term
to be of higher order since a (and in turn c3) can be chosen
as a large constant. Finally, when �w � kx?k1 the error
of the transductive procedure reduces to that of the pilot
regression procedure. When the Lasso is used as the pilot
regression procedure we can derive the following corollary
to Theorem 3, also proved in Appendix D.3.

Corollary 3. Under the conditions of Theorem 3, consider
the JM-style estimator (3) with pilot estimate �̂ = �̂L(�)

with � � 80�✏

q
log(2ep/s�0)

n . If p � 20, then there exist
universal constants c1, c2 such that if k�0k1/�✏ = o(ec1n)

and n � c2 max{ s�0
4

Cmin
, a

2} log(2e(p _ n)),

E[(ŷJM �h�0,x?i)2]O(�
2
✏x?⌦x?

n +�
2
s
2
�0

(�2
w+

kx?k2
1

(n_p)c3 )).
3In the event the constraints are not feasible we define w = 0.
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We make several remarks to further interpret this result.
First, to simplify the presentation of the results (and match
the lower bound setting of Theorem 2) consider the set-
ting in Corollary 3 with a ⇣ 1, � ⇣ �✏

p
log p/n, and

n & s
2
�0

log p log(p _ n). Then the upper bound in Theo-

rem 3 can be succinctly stated as O(
�2
✏kx?k2

2
n ). In short, the

transductive estimator attains a dimension-free rate for suffi-
ciently large n. Under the same conditions the Lasso estima-
tor suffers a prediction error of ⌦(kx?k2(s)

�2
✏ log p
n ) as Theo-

rem 2 and Corollary 2 establish. Thus transduction guaran-
tees improvement over the Lasso lower bound whenever x?

satisfies the soft sparsity condition kx?k2
kx?k(s)

. p
log p. Since

x? is observable, one can selectively deploy transduction
based on the soft sparsity level kx?k2

kx?k(s)
or on bounds thereof.

Second, the estimator described in (3) and (4) is transduc-
tive in that it is tailored to an individual test-point x?. The
corresponding guarantees in Theorem 3 and Corollary 3
embody a computational-statistical tradeoff. In our setting,
the detrimental effects of regularization can be mitigated
at the cost of extra computation: the convex program in
(4) must be solved for each new x?. Third, the condition
k�0k1/�✏ = o(ec1n) is not used for our high-probability
error bound and is only used to control prediction risk (2)
on the low-probability event that the (random) design ma-
trix X does not satisfy a restricted eigenvalue-like con-
dition. For comparison, note that our Theorem 2 lower
bound establishes substantial excess Lasso bias even when
k�0k1 = � = o(1).

Finally, we highlight that Cai & Guo (2017) have shown that
the JM-style estimator with a scaled lasso base procedure

and �w ⇣
q

log p
n produce CIs for x>

? �0 with minimax rate
optimal length when x? is sparsely loaded. Although our
primary focus is in improving the mean-square prediction
risk (2), we conclude this section by showing that a different
setting of �w yields minimax rate optimal CIs for dense x?

and simultaneously minimax rate optimal CIs for sparse and
dense x? when �0 is sufficiently sparse:
Proposition 4. Under the conditions of Theorem 3 with
�✏ = 1, consider the JM-style estimator (3) with pilot

estimate �̂ = �̂L(�) and � = 80
q

log(2p)
n . Fix any

C1, C2, C3 > 0, and instate the assumptions of Cai & Guo
(2017), namely that the vector x? satisfies maxj |(x?)j |

minj |(x?)j |  C1

and s�0 ⇣ p
� for 0  � <

1
2 . Then for n & s�0 log p the

estimator ŷJM (3) with �w = 8
p
Ccond

2 1
s�0

p
log p

kx?k2
yields (minimax rate optimal) 1�↵ confidence intervals for
x>
? �0 of expected length

• O(kx?k1 · s�0

q
log p
n ) in the dense x? regime where

kx?k0 = C3p
�q with 2� < �q < 1 (matching the result

of (Cai & Guo, 2017, Thm. 4)).

• O(kx?k2 · 1p
n
) in the sparse x? regime of (Cai & Guo,

2017, Thm. 1) where kx?k0  C2s�0 if n & s
2
�0

(log p)2.

Here the O(·) masks constants depending only on
, C1, C2, C3, Cmin, Cmax, Ccond.

The proof can be found in Appendix D.2.

3.2. Orthogonal Moment (OM) Estimators

Our second approach to single point transductive prediction
is inspired by orthogonal moment (OM) estimation (Cher-
nozhukov et al., 2017). OM estimators are commonly used
to estimate single parameters of interest (like a treatment ef-
fect) in the presence of high-dimensional or nonparametric
nuisance. To connect our problem to this semiparametric
world, we first frame the task of prediction in the x? direc-
tion as one of estimating a single parameter, ✓0 = x>

? �0.
Consider the linear model equation (1)

yi = x>
i �0 + ✏i = ((U�1)>xi)>U�0 + ✏i

with a data reparametrization defined by the matrix U =

kx?k2 ·

u1

R

�
for x?

kx?k2
= u1 so that e>1 U�0 = x>

? �0 = ✓0.

Here, the matrix R 2 R(p�1)⇥p has orthonormal rows
which span the subspace orthogonal to u1 – these are
obtained as the non-u1 eigenvectors of the projector ma-
trix Ip � u1u>

1 . This induces the data reparametrization
x0 = [t, z] = (U�1)>x. In the reparametrized basis, the
linear model becomes,

yi = ✓0ti + z>i f0 + ✏i, ti = g0(zi) + ⌘i,

q0(zi) , ✓0g0(zi) + z>i f0 (6)

where we have introduced convenient auxiliary equations in
terms of g0(zi) , E[ti | zi].

To estimate ✓0 = x>
? �0 in the presence of the unknown

nuisance parameters f0,g0,q0, we introduce a thresholded-
variant of the two-stage method of moments estimator pro-
posed in (Chernozhukov et al., 2017). The method of mo-
ments takes as input a moment function m of both data and
parameters that uniquely identifies the target parameter of
interest. Our reparameterized model form (6) gives us ac-
cess to two different Neyman orthogonal moment functions
described (Chernozhukov et al., 2017):

f moments: m(ti, yi, ✓, z>i f ,g(zi)) =

(yi � ti✓ � z>i f)(ti � g(zi)) (7)
q moments: m(ti, yi, ✓,q(zi),g(zi)) =

(yi � q(zi) � ✓(ti � g(zi)))(ti � g(zi)).

These orthogonal moment equations enable the accurate
estimation of a target parameter ✓0 in the presence of high-
dimensional or nonparametric nuisance parameters (in this
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case f0 and g0). We focus our theoretical analysis and
present description on the set of f moments since the analy-
sis is similar for the q, although we investigate the practical
utility of both in Section 4.

Our OM proposal to estimate ✓0 now proceeds as fol-
lows. We first split our original dataset of n points into
two4 disjoint, equal-sized folds (X(1)

,y(1)) = {(xi, yi) :
i 2 {1, . . . , n

2 }} and (X(2)
,y(2)) = {(xi, yi) : i 2

{n
2 + 1, . . . , n}}. Then,

• The first fold (X(1)
,y(1)) is used to run two first-stage

regressions. We estimate �0 by linearly regressing y(1)

onto X(1) to produce �̂; this provides an estimator
of f0 as e>�1U�̂ = f̂ . Second we estimate g0 by re-
gressing t(1) onto z(1) to produce a regression model
ĝ(·) : Rp�1 ! R. Any arbitrary linear or non-linear
regression procedure can be used to fit ĝ(·).

• Then, we estimate E[⌘21 ] as µ2 = 1
n/2

Pn
i=n

2 +1 ti(ti �
ĝ(zi)) where the sum is taken over the second fold of
data in (X(2)

,y(2)); crucially (ti, zi) are independent
of ĝ(·) in this expression.

• If µ2  ⌧ for a threshold ⌧ we simply output ŷOM =
x>
? �̂. If µ2 � ⌧ we estimate ✓0 by solving the empirical

moment equation:
Pn

i=n
2 +1 m(ti, yi, ŷOM, z>i f̂ , ĝ(zi)) = 0 =)

ŷOM =
1

n/2

Pn
i=n

2
+1(yi�z>

i f̂)(ti�ĝ(zi))

µ2
(8)

where the sum is taken over the second fold of data in
(X(2)

,y(2)) and m is defined in (7).

If we had oracle access to the underlying f0 and
g0, solving the population moment condition
Et1,y1,z1 [m(t1, y1, ✓, z>1 f0,g0(z1))] = 0 for ✓ would
exactly yield ✓0 = x>

? �0. In practice, we first con-
struct estimates f̂ and ĝ of the unknown nuisance
parameters to serve as surrogates for f0 and g0 and
then solve an empirical version of the aforementioned
moment condition to extract ŷOM. A key property of
the moments in (7) is their Neyman orthogonality: they
satisfy E[rz>

1 fm(t1, y1, ✓0, z>1 f0,g0(z1))] = 0 and
E[rg(z1)[m(t1, y1, ✓0, z>1 f0,g0(z1))] = 0. Thus the
solution of the empirical moment equations is first-order
insensitive to errors arising from using f̂ , ĝ in place of f0
and g0. Data splitting is further used to create independence
across the two stages of the procedure. In the context of
testing linearly-constrained hypotheses of the parameter
�0, Zhu & Bradic (2018) propose a two-stage OM test

4In practice, we use K-fold cross-fitting to increase the sample-
efficiency of the scheme as in (Chernozhukov et al., 2017); for
simplicity of presentation, we defer the description of this slight
modification to Appendix G.4.

statistic based on the transformed f moments introduced
above; they do not use cross-fitting and specifically employ
adaptive Dantzig-like selectors to estimate f0 and g0.
Finally, the thresholding step allows us to control the
variance increase that might arise from µ2 being too small
and thereby enables our non-asymptotic prediction risk
bounds. Before presenting the analysis of the OM estimator
(8) we introduce another condition5:

Assumption 5. The noise ⌘i is independent of zi.

Recall ĝ is evaluated on the (independent) second fold data
z. We now obtain our central guarantee for the OM estimator
(proved in Appendix E.1).

Theorem 5. Let Assumptions 1, 2, 3, 4 and 5 hold, and as-
sume that g0(zi) = g>

0 zi in (6) for g0 = argming E[(t1 �
z>1 g)2]. Then the thresholded orthogonal ML estimator ŷOM

of (8) with ⌧ = 1
4�

2
⌘ satisfies

E[(ŷOM � x>
? �0)2] 

kx?k22
h
O( �2

✏
�2
⌘n

) + O(
r2�,2r

2
g,2

(�2
⌘)

2 ) + O(
r2�,2�

2
⌘+r2g,2�

2
✏

(�2
⌘)

2n )
i

(9)

where r�,2 = (E[k�̂ � �0k42])1/4 and rg,2 = (E[(ĝ(zn) �
g0(zn))4])1/4 denote the expected prediction errors of the
first-stage estimators.

Since we are interested in the case where �̂ and ĝ(·) have
small error (i.e., r�,2 = rg,2 = o(1)), the first term in
(9) can be interpreted as the variance of the estimator’s
prediction along the direction of x?, while the remaining
terms represent the reduced bias of the estimator. We first
instantiate this result in the setting where both �0 and g0

are estimated using ridge regression (see Appendix E.2 for
the corresponding proof).

Corollary 4 (OM Ridge). Assume k�0k1/�✏ = O(1). In
the setting of Theorem 5, suppose �̂ and ĝ(zi) = ĝ>zi are
fit with the ridge estimator with regularization parameters
�� and �g respectively. Then there exist universal constants
c1:5 such that if p � 20, c1 n2Cmin

pCcond
e
�nc2/

4C2
cond  �� 

c3 (CcondCmaxn)1/3, and c4
n2Cmin
pCcond

e
�nc2/

4C2
cond  �g 

p

⇣
Cmaxkx?k2

2
Ccond

n
p�

4
⌘

⌘1/3
for n � c5

4
C

2
condp,

E[(ŷOM � x>
? �0)2]

 kx?k22
h
O( �2

✏
�2
⌘n

) + O( p2

(�2
⌘)

2n2 ) + O(
p(�2

⌘+�2
✏ )

(�2
⌘)

2n2 )
i
.

Similarly, when �0 and g0 are estimated using the Lasso
we conclude the following (proved in Appendix E.2).

5This assumption is not essential to our result and could be
replaced by assuming ⌘i satisfies E[⌘i|zi] = 0 and is almost surely
(w.r.t. to zi) sub-Gaussian with a uniformly (w.r.t. to zi) bounded
variance parameter.
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Corollary 5 (OM Lasso). In the setting of Theorem 5, sup-
pose �̂ and ĝ(zi) = ĝ>zi are fit with the Lasso with
regularization parameters �� � 80�✏

p
log(2ep/s�0)/n

and �g � 80�⌘

p
log(2ep/sg)/n respectively. If p � 20,

s�0 = k�0k0, and sg0 = kg0k0, then there exist universal
constants c1, c2 such that if k�0k1/�✏ = o(ec1n), then for
n � c1

4

Cmin
max{s�0 , sg} log(2ep),

E[(ŷOM � x>
? �0)2] 

kx?k22
h
O( �2

✏
�2
⌘n

) + O(
�2
��2

gs�0sg0

(�2
⌘)

2 ) + O(
�2
�s�0�

2
⌘+�2

gsg0�
2
✏

(�2
⌘)

2n )
i
.

We make several comments regarding the aforementioned
results. First, Theorem 5 possesses a double-robustness
property. In order for the dominant bias term O(r2�,2r

2
g,2) to

be small, it is sufficient for either �0 or g0 to be estimated at
a fast rate or both to be estimated at a slow rate. As before,
the estimator is transductive and adapted to predicting along
the direction x?. Second, in the case of ridge regression, to
match the lower bound of Corollary 1, consider the setting
where n = ⌦(p2), SNR = o(p

2

n ), cos(x?,�0)
2 = ⇥(1) and

SNR & p
n . Then, the upper bound6 can be simplified to

O(kx?k22
�2
✏
n ). By contrast, Corollary 1 shows the error of

the optimally-tuned ridge estimator is lower bounded by
!(kx?k22

�2
✏
n ); for example, the error is ⌦(pkx?k22

�2
✏
n ) when

SNR = 1
6
p
n . Hence, the performance of the ridge estimator

can be significantly worse then its transductive counter-
part. Third, if we consider the setting of Corollary 5 where
n & s�0sg0(log p)2 while we take �� ⇣ �✏

p
log p/n and

�g ⇣ �⌘

p
log p/n, the error of the OML estimator attains

the fast, dimension-free O(kx?k22
�2
✏
n ) rate. On the other

hand, Corollary 2 shows the Lasso suffers prediction error
⌦(kx?k2(s)

�2
✏ log p
n ), and hence again strict improvement is

possible over the baseline when kx?k2
kx?k(s)

. p
log p. Finally,

although Theorem 5 makes stronger assumptions on the
design of X than the JM-style estimator introduced in (4)
and (3), one of the primary benefits of the OM framework
is its flexibility. All that is required for the algorithm are
“black-box” estimates of g0 and �0 which can be obtained
from more general ML procedures than the Lasso.

4. Experiments

We complement our theoretical analysis with a series of
numerical experiments highlighting the failure modes of
standard inductive prediction. In Sections 4.1 and 4.2, er-
ror bars represent ±1 standard error of the mean computed
over 20 independent problem instances. We provide com-
plete experimental set-up details in Appendix G and code
replicating all experiments at https://github.com/

6Note that in this regime,
p

SNR = k�0k2/�✏ = o(1) and
hence the condition k�0k1/�✏ = O(1) in Corollary 4 is satisfied.

nileshtrip/SPTransducPredCode.

4.1. Excess Lasso Bias without Distribution Shift

We construct problem instances for Lasso estimation by in-
dependently generating xi ⇠ N (0, Ip), ✏i ⇠ N (0, 1), and
(�0)j ⇠ N (0, 1) for j less then the desired sparsity level
s�0 while (�0)j = 0 otherwise. We fit the Lasso estimator,
JM-style estimator with Lasso pilot, and the OM f -moment
estimator with Lasso first-stage estimators. We set all hy-
perparameters to their theoretically-motivated values. As
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Figure 1. Lasso vs. OM and JM Lasso prediction without distribu-
tion shift. Hyperparameters are set according to theory (see Sec-
tion 4.1). Left: p = 200, s�0 = 20. Right: p = 200, s�0 = 100.

Figure 1 demonstrates, both transductive methods signif-
icantly reduce the prediction risk of the Lasso estimator
when the hyperparameters are calibrated to their theoretical
values, even for a dense �0 (where p

s�0
= 2).

4.2. Benefits of Transduction under Distribution Shift

The no distribution shift simulations of Section 4.1 corrobo-
rate the theoretical results of Corollaries 3 and 5. However,
since our transductive estimators are tailored to each indi-
vidual test point x?, we expect these methods to provide an
even greater gain when the test distribution deviates from
the training distribution.

In Figure 2, we consider two cases where the test distri-
bution is either mean-shifted or covariance-shifted from
the training distribution and evaluate the ridge estimator
with the optimal regularization parameter for the training
distribution, �⇤ = p�2

✏

k�0k2
2

. We independently generated
xi ⇠ N (0, Ip), ✏i ⇠ N (0, 1), and �0 ⇠ N (0, 1p

pIp). In
the case with a mean-shifted test distribution, we generated
x? ⇠ N (10�0, Ip) for each problem instance while the
covariance-shifted test distribution was generated by taking
x? ⇠ N (0, 100�0�>

0 ). The plots in Figure 2 show the OM
estimator with �⇤-ridge pilot provides significant gains over
the baseline �⇤-ridge estimator.

In Figure 4 we also consider two cases where the test distri-
bution is shifted for Lasso estimation but otherwise identical
to the previous set-up in Section 4.1. For covariance shift-
ing, we generated (x?)i

indep⇠ N (0, 100) for i 2 supp(�0)
and (x?)i = 0 otherwise for each problem instance. For

https://github.com/nileshtrip/SPTransducPredCode
https://github.com/nileshtrip/SPTransducPredCode
https://github.com/nileshtrip/SPTransducPredCode
https://github.com/nileshtrip/SPTransducPredCode
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Figure 2. Ridge vs. OM ridge prediction (p = 200) under train-test
distribution shift. Hyperparameters are set according to theory.
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Figure 3. Ridge vs. OM ridge prediction (p = 200) under train-test
distribution shift. Hyperparameters are set according to CV.
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Figure 4. Lasso vs. OM and JM Lasso prediction (p = 200) under
mean (s�0 = 100) or covariance (s�0 = 20) train-test distribution
shifts. Hyperparameters are set according to theory.

mean shifting, we generated x? ⇠ N (10�0, Ip) for each
problem instance. The first and second plots in Figure 4
show the transductive effect of the OM and JM estimators
improves prediction risk with respect to the Lasso when the
regularization hyperparameters are selected via theory.

We also note that Figure 3 and Figure 5 compares CV-
tuned ridge or Lasso to OM and JM with CV-tuned base
procedures—showing the benefit of transduction in this
practical setting where regularization hyperparameters are
chosen by CV. As the first and second plots in Figure 3 show,
selecting � via CV leads to over-regularization of the ridge
estimator, and the transductive methods provide substantial
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Figure 5. Lasso vs. OM and JM Lasso prediction (p = 200) under
mean (s�0 = 100) or covariance (s�0 = 20) train-test distribution
shifts. Hyperparameters are set according to CV.

gains over the base ridge estimator. In the case of the Lasso,
the first and second plots in Figure 5 show the residual bias
of the CV Lasso also causes it to incur significant error in
its test predictions, while the transductive methods provide
substantial gains by adapting to each x?.

4.3. Improving Cross-validated Prediction

Motivated by our findings on synthetic data, we next report
the performance of our methods on 5 real datasets with and
without distribution shift. We also include the popular elas-
tic net estimator as a base regression procedure alongside
ridge and the Lasso. All hyperparameters are selected by
CV. For the OM estimators we exploited the flexibility of the
framework by including a suite of methods for the auxiliary
g regressions: Lasso estimation, random forest regression,
and a g = 0 baseline. Amongst these, we select the method
with the least estimated asymptotic variance, which can be
done in a data-dependent way without introducing any ex-
tra hyperparameters into the implementation. The f and
q regressions were always fit with Lasso, ridge, or elastic
net estimation. See Appendix G for further details on the
methodology and datasets from the UCI dataset repository
(Dua & Graff, 2017).

In Table 1 we see that the OM estimators generically pro-
vide gains over the CV Lasso, CV ridge, and CV elastic net
on datasets with intrinsic distribution shift and perform com-
parably on a dataset without explicit distribution shift. On
Wine, we see a substantial performance gain from 0.96-0.99
RMSE without transduction to 0.77 with OM q transduc-
tion. The gains on other datasets are smaller but notable as
they represent consistent improvements over the de facto
standard of CV prediction.

We also report the performance of ordinary least squares
(OLS) which produces an unbiased estimate of the entire pa-
rameter vector �0. OLS fares worse than most methods on
each dataset due to an increase in variance. In contrast, our
proposed transductive procedures limit the variance intro-



Single Point Transductive Prediction

Table 1. Test set RMSE of OLS; CV-tuned ridge, Lasso, and elastic net; OM and JM transductive CV-tuned ridge, Lasso, and elastic net;
and prior transductive approaches (TD Lasso, Ridge, and KNN) on real-world datasets. All hyperparameters are set via CV. Error bars
represent a delta method interval based on ±1 standard error of the mean squared error over the test set.
Method Wine Parkinson Fire Fertility Triazines (no shift)
OLS 1.0118±0.0156 12.7916±0.1486 82.7147±35.5141 0.3988±0.0657 0.1716±0.037

Ridge 0.9936±0.0155 12.5267±0.1448 82.3462±35.5955 0.399±0.0665 0.1469±0.0285
OM f (Ridge) 0.9883±0.0154 12.4686±0.1439 82.3522±35.5519 0.3987±0.0655 0.1446±0.029

OM q (Ridge) 0.7696±0.0145 12.0891±0.1366 81.9794±35.7872 0.3977±0.0653 0.1507±0.0242

Lasso 0.9812±0.0155 12.2535±0.1356 82.0656±36.0321 0.4092±0.0716 0.1482±0.0237
JM (Lasso) 1.0118±0.0156 12.7916±0.1486 82.7147±35.5141 0.3988±0.0657 0.173±0.0367
OM f (Lasso) 0.9473±0.0152 11.869±0.1339 81.794±35.5699 0.398±0.0665 0.1444±0.0239

OM q (Lasso) 0.7691±0.0144 11.8692±0.1339 81.811±35.5637 0.3976±0.0656 0.1479±0.0226

Elastic 0.9652±0.0154 12.2535±0.1356 81.8428±35.8333 0.4092±0.0716 0.1495±0.0238
OM f (Elastic) 0.9507±0.0152 11.8369±0.1338 81.7719±35.6166 0.398±0.0655 0.1445±0.024

OM q (Elastic) 0.7693±0.0145 11.8658±0.1341 81.803±35.6485 0.3976±0.0657 0.147±0.0228
TD Lasso (Alquier & Hebiri, 2012) 0.9813±0.0154 12.2535±0.1358 82.0657±36.0320 0.4092±0.0716 0.1483±0.0237
TD Ridge (Chapelle et al., 2000) 0.8411±0.0004 12.2534±0.0021 82.0664±2.567 0.4089±0.0128 0.1735±0.0004
TD KNN (Cortes & Mohri, 2007) 0.8345±0.0153 12.3326±0.1447 81.9467±35.8340 0.3845±0.0760 0.1510±0.0240

duced by targeting a single parameter of interest, hx?,�0i.

Finally, we evaluated three existing transductive prediction
methods—the transductive Lasso (TD Lasso) of (Alquier &
Hebiri, 2012; Bellec et al., 2018), transductive ridge regres-
sion (TD Ridge) (Chapelle et al., 2000), and transductive
ridge regression with local (kernel) neighbor labelling (TD
KNN) (Cortes & Mohri, 2007)—on each dataset, tuning all
hyperparameters via CV. TD Lasso does not significantly
improve upon the Lasso baseline on any dataset. TD Ridge
only improves upon the baselines on Wine but is outper-
formed by OM q. TD KNN also underperforms OM q on
every dataset except Fertility.

5. Discussion and Future Work

We presented two single point transductive prediction pro-
cedures that, given advanced knowledge of a test point,
can significantly improve the prediction error of an induc-
tive learner. We provided theoretical guarantees for these
procedures and demonstrated their practical utility, espe-
cially under distribution shift, on synthetic and real data.
Promising directions for future work include improving our
OM debiasing techniques using higher-order orthogonal
moments (Mackey et al., 2017) and exploring the utility of
these debiasing techniques for other regularizers (e.g., group
Lasso (Yuan & Lin, 2006) penalties) and models such as
generalized linear models and kernel machines.
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