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A. Proofs

A.1. Proof of Propositions

Proposition 1. (¢, 0, )-strong Bayesian differential pri-
vacy implies (g,,,9,,)-Bayesian differential privacy.

Proof. Let us define a set of outcomes for which the pri-
vacy loss variable exceeds the ¢ threshold: F(z') = {w :
L a(w,D,D’) > ¢}, and its compliment F°(2).

We have,
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where we used the observation that L. < ¢ implies

Pr[A(D) € SN F(z')] < e Pr[A(D)) € SN
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e Pr[A(D") € SNFe(a') | «'], because A(D) does not de-
pend on ', and A(D’) is already conditioned on 2’ through
D’. Additionally, in the first line we used marginalisation,
and the last inequality is due to the fact that
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Proposition 2 (Post-processing). Let A : D — R be a
(en,0u)-Bayesian differentially private algorithm. Then
for any arbitrary randomised data-independent mapping
f:R =R, f(AD)) is (g4, 6,)-Bayesian differentially
private.

Proof. First, by Proposition 1, (g, §,,)-strong BDP implies
the weak sense of BDP:

Pr[A(D) € 8] < e** Pr[A(D') € 8] + 4, (17)
for any set of outcomes S C R.
For a data-independent function f(-):
Pr(f(A(D)) € T] = Pr[A(D) € §] (18)
<ePr[A(D') € S]+46,, (19
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where S = f7![T], i.e. S is the preimage of 7 under
/. O

Proposition 3 (Basic composition). Let A; : D — R;,
Vi = 1..k, be a sequence of (¢,,9,)-Bayesian differen-
tially private algorithms. Then their combination, defined
as A1y : D = Ry X ... X Ry, is (key, ko, )-Bayesian
differentially private.
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Proof. Let us denote L = log %.

Also, let L; = log LDttt

Then,
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For the weak sense of BDP, the proof follows the steps of
Dwork et al. (2014, Appendix B).

O

Proposition 4 (Group privacy). Let A : D — R be a
(€u, 6,)-Bayesian differentially private algorithm. Then
for all pairs of datasets D, D’ € D, differing in k data
points x1,...,x s.t. x; ~ u(x) fori = 1.k, A(D) is
(key, keker s )-Bayesian differentially private.

Proof. Let us define a sequence of datasets Dt i = 1.k,
s.t. D = D% D' = DF, and D* and D'~ differ in a single
example. Then,
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(25)

Mferzfl k.

Denote L; = log (W D7)

Finally, applying the definition of (e, d,,)-Bayesian differ-
ential privacy,
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For the weak sense of BDP,
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where in (33) we use the formula for the sum of a geometric
progression; in (34), the facts that e” — 1 < ze”, for z > 0,
and e® > x + 1. O

A.2. Proof of Theorem 1

Let us restate the theorem:

Theorem 1 (Advanced Composition). Let a learning algo-
rithm run for T iterations. Denote by wV) ... w™T) a se-
quence of private learning outcomes at iterations 1,...,T,
and L) the corresponding total privacy loss. Then,

T
ALET) TAD T
[ } < HEx [ a+1(pellge) ,

where p; = p(w® w1, D), ¢; = p(w® w1 D).

Proof. The proof closely follows (Abadi et al., 2016).

First, we can write
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Unlike the composition proof of the moments accountant by
Abadi et al. (2016), we cannot simply swap the product and
the expectation in our proof, because the additional example
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2’ remains the same in all applications of the privacy mech-
anism and probability distributions will not be independent.
However, we can use generalised Holder’s inequality:
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where (42) is by the law of total expectation; (43) is
due to independence of noise between iterations, similarly
to (Abadi et al., 2016); and (45) is by Holder’s inequal-
ity. O

A.3. Proof of Theorem 3

Let us restate the theorem:

Theorem 3. Given the Gaussian noise mechanism with
the noise parameter o and subsampling probability q, the
privacy cost for A € N at iteration t can be expressed as

ct(A) = max{cy (A), ;" (A},

where
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and B(\, q) is the binomial distribution with \ experiments
and the probability of success q.

Proof. Without loss of generality, assume D' = D U {z'}.
For brevity, let d; = ||g: — g;]|-

Let us first consider D11 (p(w|D")||p(w|D)):
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Here, in (50) we used the binomial expansion, in (51) the
fact that the factors in front of the exponent do not depend
on w, and in (52) the property E.,, [exp(2aw/(20%))] =
exp(a?/(20?)) for w ~ N(0,?). Plugging the above in
the privacy cost formula (Eq. 10 in the main paper), we get
the expression for ¢ ().

Computing Dy 1 (p(w|D)||p(w|D’)) is a little more chal-
lenging. Let us first change to Dy (p(w|D)||p(w|D")), so
that the expectation is taken over N'(0, o2). Then, we can
bound it observing that f(z) = 1 is convex for 2 > 0 and
using the definition of convexity, and apply the same steps
as above:

.
()]
.
=" ((1—q>N<é\,/£’>f)qN<dt,a2>>] o
— Eton0g {e’i*;"”lgtg;ﬂ] (56)

In practice, we haven’t found any instance of

D1 (p(w|D)[lp(w]|D)) < Daya(p(w|D)||p(w]D"))
when the latter was computed using numerical integration,
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although it may happen when using this theoretical upper
bound. O

A.4. Proof of Theorem 4

Let us restate the theorem:

Theorem 4. Estimator ¢,(\) overestimates ¢, (\) with prob-
ability 1 — ~. That is,

Prici(\) < e(N)] <.

Proof. First of all, we can drop the logarithm from our
consideration because of its monotonicity.

Now, assuming that samples P S have a common mean
and a common variance, and applying the maximum entropy
principle in combination with an uninformative (flat) prior,
M(t)flﬁ[e*b(ﬁl
one can show that the quantity —sm
follows the Student’s ¢-distribution with m — 1 degrees of

freedom (Oliphant, 2006).

m—1

Finally, we use the inverse of the Student’s ¢ CDF to find
the value that this random variable would only exceed with
probability . The result follows by simple arithmetical
operations. O

B. Evaluation
B.1. Experimental setting

All experiments were performed on a machine with Intel
Xeon E5-2680 (v3), 256 GB of RAM, and two NVIDIA
TITAN X graphics cards. We train a classifier represented
by a neural network on MNIST (LeCun et al., 1998) and
on CIFAR10 (Krizhevsky, 2009) using DP-SGD. The first
dataset contains 60,000 training examples and 10,000 testing
images. We use large batch sizes of 1024, clip gradient
norms to C' = 1, and 0 = 0.1. We also experimented with
the idea of dropping updates for a random subset of weights,
and achieved the best performance with updating 10% of
weights at each iteration. The second dataset consists of
50,000 training images and 10,000 testing images of objects
split in 10 classes. For this dataset, we use the batch size
of 512, C = 1, and 0 = 0.8. We fix § = 1075 in all
experiments, and &, = 10~'° to achieve (£,10~°) bound
for 99.999% of data distribution using Markov inequality.

MNIST experiments are performed with the CNN model
from Tensorflow tutorial (the same as in (Abadi et al., 2016),
except we do not use PCA), trained using SGD with the
learning rate 0.02. In case of CIFARIO0, in order for our
results to be comparable to (Abadi et al., 2016), we pre-
train convolutional layers of the model on a different dataset
and retrain a fully-connected layer in a privacy-preserving
way. We were unable to reproduce the experiment exactly

as specified in (Abadi et al., 2016) and chose a different
model (VGG-16 pre-trained on ImageNet), guided by main-
taining a similar or lower non-private accuracy. The model
was trained using Adam with the learning rate of 0.001.
Since the goal of these experiments is to show relative per-
formance of private methods, we did not perform an ex-
haustive search for hyperparameters, either using default or
previously published values or values that yield reasonable
training behaviour.

Privacy accounting with DP-SGD works in the following
way. The non-private learning outcome at each iteration ¢ is
the gradient g, of the loss function w.r.t. the model parame-
ters, the outcome distribution is the Gaussian A (g;, 02C?).
Before adding noise, the norm of the gradients is clipped
to C. For the moments accountant, the privacy loss is cal-
culated using this C' and o. For the Bayesian accountant,
either pairs of examples x;, x; or pairs of batches are sam-
pled from the dataset at each iteration, and used to compute
¢t(A). Although clipping gradients is no longer necessary
with the Bayesian accountant, it is highly beneficial for in-
curring lower privacy loss at each iteration and obtaining
tighter composition. Moreover, it ensures the classic DP
bounds on top of BDP bounds.

We also run evaluation on two binary classification tasks
taken from UCI database: Abalone (Waugh, 1995) (pre-
dicting the age of abalone from physical measurements)
and Adult (Kohavi, 1996) (predicting income based on a
person’s attributes). In this setting, we compare differen-
tially private variational inference (DPVI-MA (Jalko et al.,
2016)) to the variational inference with BDP. The datasets
have 4,177 and 48,842 examples with 8 and 14 attributes
accordingly. We use the same pre-processing and models
as (Jalko et al., 2016). We run experiments using the au-
thors original implementation (https://github.com/
DPBayes/DPVI-code) with slight modifications (e.g.
accounting randomness of sampling from variational distri-
butions, instead of adding noise, using Bayesian accountant,
and performing classification with variational samples in-
stead of optimal variational parameters).

B.2. Effect of o and bounded sensitivity

The primary goal of our paper is to obtain more meaningful
privacy guarantees sacrificing as little utility as possible.
The main factor in the loss of utility is the variance of the
noise we add during training. Therefore it is critical to
examine how our guarantee behaves compared to the classic
DP for the same amount of noise. Or equivalently, how
much noise does it require to reach the same €.

As stated above, there are two possible regimes of operation
for the Gaussian noise mechanism under Bayesian differen-
tial privacy: with bounded sensitivity and with unbounded
sensitivity. The first is just like the classic DP: there is a
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(a) Clipping at 0.01-quantile of |V f]|. (b) Clipping at 0.50-quantile of ||V f]|. (c) Clipping at 0.99-quantile of ||V f||.

Figure 1: Dependency between ¢ and ¢ for different C' when clipping for both DP and BDP.

ovs g, C=0.05-quantile, no clipping o vs g, C=0.5-quantile, no clipping o vs g, C=0.95-quantile, no clipping
407 . 351 \ —- P 357 \ —- DpP
EEE N BDP 0] N\ BDP 0] N BDP
N \ \
01N 251 AN 25 A
S, \ \
254 N \ \
AN 204 N\ 204 \
N\ N\
w 204 \\ w N w N,
O 151 AN 151 AN
154 N N .
\\ \\ 4 \\
104 RN 104 ol 10 Seo
5] \‘~~~\ 5 ‘~\\~~ 5 \*~~~~
4 T 0 i _————=aa ol T ==
0.6 0.7 0.8 0.9 1.0 11 12 13 0.6 0.7 0.8 0.9 1.0 11 12 13 0.6 0.7 0.8 0.9 1.0 11 12 13
o o o
(a) Noise at 0.05-quantile of ||V f||. (b) Noise at 0.50-quantile of ||V f]|. (c) Noise at 0.95-quantile of ||V f]|.

Figure 2: Dependency between o and ¢ for different C' when clipping for DP and not clipping for BDP.

maximum bound on the contribution of an individual ex- A vs ¢ for different C, 6 =105

ample, and the noise is scaled to it. The second does not I IS

have a bound on contribution and mitigates it by taking into 10° c=0.7

account the low probability of extreme contributions. 106 ] T L0

Figures 1 and 2 demonstrate the dependency between o and 10 |

¢ for different clipping thresholds C' chosen relative to the

quantiles of the gradient norm distribution. If we bound © 10 ]

sensitivity by clipping the gradients, it ensures that BDP

always requires less noise than DP to reach the same ¢, as 10t

seen in Figure 1. As we decrease the clipping threshold C,

more and more gradients get clipped and the BDP curve 1 Tt

approaches the DP curve (Figure 1a). However, as we ob- . . . . R .
0 10 20 30 40 50

serve in Figure 2 comparing DP with bounded sensitivity
and BDP with unbounded sensitivity, using unclipped gra-
dients results in less consistent behaviour. It may require a
more thorough search for the right noise variance to reach
the same ¢.

Figure 3: Dependency of A\ and ¢ for different clipping
thresholds C, ¢ = 64,/60000, o = 1.0.

B.3. Effect of \

Depicted in Figure 3 is € as a function of A for 10000 steps.
We observe that A has a clear effect on the final ¢ value.
In some cases this effect is very significant and the change
is sharp. It suggests that in practice one should be careful
about the choice of A. We also note that for lower signal-to-
noise ratios (e.g. C' = 0.1, 0 = 1) the optimal choice of A
is much further on the real line and may well be outside the
typically range computed in the literature.

As mentioned in Section 4.2, the privacy cost, and therefore
the final value of ¢, depend on the choice of A. We run the
Bayesian accountant for the Gaussian mechanism with the
fixed pairwise gradient distances (s.t. these results apply
exactly to the moments accountant) for different signal-to-
noise ratios and different \.
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