
Gaussian Processes with Signature Covariances

Supplementary material

A. Tensors
We recall classical constructions with tensors.

A.1. Tensor products of vector spaces

If u = (u1, . . . , ud) ∈ Rd and v = (v1, . . . , ve) ∈ Re
then u ⊗ v ∈ Rd ⊗ Re is the (d × e)-matrix with indices
i ∈ {1, . . . , d}, j ∈ {1, . . . , e} and the (i, j)-th entry given
as (u ⊗ v)i,j = uivj . Similarly, for u ∈ Rd,v ∈ Re,
w ∈ Rf , the tensor u⊗ v⊗w ∈ Rd⊗Re⊗Rf has indices
i ∈ {1, . . . , d}, j ∈ {1, . . . , e}, j ∈ {1, . . . , f} and its
(i, j, k)-th entry is given as (u⊗ v ⊗ w)i,j,k = uivjwk, etc.

In the paragraph about variations in Section 4, we mention
that one can also lift the sequence to a path evolving in an
infinite-dimensional space V rather than Rd before com-
puting its signatures. Since

∫
dx⊗m ∈ V ⊗m this requires

to take a tensor product of an infinite-dimensional space
V . Since this might be less known in ML, let us briefly re-
call a coordinate-free definition of the tensor product: If U
and V are vector spaces (not necessarily finite dimensional)
then there exists a linear space U ⊗ V and a bilinear map
ι : U × V → U ⊗ V such that any other bilinear map on
U×V factors through U⊗V , that is given any bilinear map
B : U × V → Z into a vector space Z, there exists a linear
map B̂ : U ⊗ V → Z such that B̂ ◦ ι = B. Further, the
vector space U ⊗ V is unique up to isomorphism. If U, V
are finite dimensional it is easy to verify that one recovers
the coordinate-wise definition we recalled at the beginning
of this section. If U = V then we write V ⊗2 instead of
V ⊗ V ; further by convention we define V ⊗0 := {1}.

A.2. Sequences of tensors
∏M
m=0 V

⊗m

The direct product
∏
m≥0 Vm of vector spaces V1, V2, . . . is

the set of sequences∏
m≥0

Vm := {(t0, t1, t2, . . . ,) : tm ∈ Vm}.

In our setting, we apply this when V is a vector space and
Vm := V ⊗m, the get the space∏

m≥0

V ⊗m.

That is, an element t = (tm)m≥0 ∈
⊕

m≥0 V
⊗m is a

sequence of tensors of increasing depth, that is t0 = 1 since
by convention V ⊗0 = {1}, t1 ∈ V is a vector, t2 ∈ V ⊗2,
etc.

The space
∏
m≥0 V

⊗m is itself a vector space if one defines
addition and scalar multiplication coordinate-wise: for s =

(sm)m≥0,t = (tm)m≥0 ∈
∏
m≥0 V

⊗m

s+ t = (s0 + t0, s1 + t1, s2 + t2, . . .)

λ · s = (λs0, λs1, λs2, . . .)

That is, if V = Rd we add vectors to vectors, matrices to
matrices, etc. We note that the space

∏
m≥0 V

⊗m is not
just a vector space but has also a natural algebra structure
and the space

∏
m≥0 V

⊗m is often referred to as the tensor
algebra over V .

A.3. Inner products of tensors

We have seen how to build out of a linear space V another
linear space

∏
V ⊗m of tensors. If V also carries an inner

product, 〈·, ·〉V this extends canonically to an inner product
on subset of

∏
m≥0 V

⊗m; set

〈v1 ⊗ · · · ⊗ vm, w1 ⊗ · · · ⊗ wm〉 :=

m∏
i=1

〈vi, wi〉V

and extend linearly to {t ∈
∏
m≥0 V

⊗m : 〈t, t〉 <∞}. In
particular, we can take linear functionals of t.

A.4. Example: the classic polynomial features

Take Rd with the standard Euclidean inner product. In
Section 2 we recalled the classic “polynomial feature map”
that takes a point in Rd to monomials in coordinates in x,

ϕ : x 7→ (x⊗m)m≥0 ∈
∏
m≥0

(Rd)⊗m. (11)

We can build a functions f : V → R by taking linear
functionals of ϕ, that is for ` ∈

∏M
m=0(Rd)⊗m define

f : x 7→ 〈`, ϕ(x)〉.

It might be helpful for readers less familiar with tensor
products to spell out the definition of f in coordinates: by
definition of the inner product we have

〈`,Φ(x)〉 =

M∑
m=1

〈`m,x⊗m〉.

Spelled out in coordinates, x = (x1, . . . , xd) and `m =
(`i1,...,imm)i1,...,im∈{1,...,d}, the terms in the sum read as

〈`m,x⊗〉 =
∑

i1,...,im∈{1,...,d}

`i1,...,imm xi1 · · ·xim .

Thus formulated in coordinates one has

f(x) = `0 + `11x1 + · · · `11xd
+ `1,12 x21 + `1,22 x1x2 + · · ·+ `2,22 x2d

+
...

+ `1,...,1m xm1 + · · ·+ `d,...,dm xmd

Gaussian Processes with Signature Covariances

which is how the polynomial feature map is often repre-
sented, see (Rasmussen & Williams, 2006).

B. Signature features
In this Section we give background on signature features.
Signature features can be seen as a natural generalization
of the polynomial feature map, but instead of mapping a
point in Rd to a sequence of tensors, they map paths Xpath
to a sequence of tensors. They generalize many of the
nice properties of polynomial features such as universality
and simulatenuously give the option to ignore the time-
parametrization without an explicit search over all possible
time changes (like in DTW approaches).

B.1. Definition

By Definition (3), the signature features are given as iterated
integrals

Φ(x) = (1,
∫ tx
0
dx,
∫ tx
0
dx⊗2, . . . ,

∫ tx
0
dx⊗mτ)

where
∫ t
0
dx⊗(m+1) :=

∫ tx
0

∫ s
0
dx⊗m ⊗ dx(s) ∈ (Rd)⊗m

and by convention
∫ t
0
dx⊗1 := x(t). Hence, Φ(x) ∈∏M

m=0(Rd)⊗m.

B.2. Examples

Coordinate-wise. For a path x : t 7→ (x1(t), . . . , xd(t))
that evolves in Rd, one can spell this out in coordinates: the
m-th signature feature

∫
dx⊗m ∈ (Rd)⊗m is the tensor that

has as its (i1, . . . , im) ∈ {1, . . . , d}m-th coordinate entry
the real number computed by a Riemann–Stieltjes integral∫
dxi1(t1) · · · dxim(tm) =

∫
ẋi1(t1) · · · ẋim(tm)dt1 · · · dtm

where the integration is taken over 0 ≤ t1 < · · · < tm ≤ tx
and ẋi(t) := dxi(t)

dt .

Linear paths. Consider the path x : [0, 1]→ Rd that just
runs along a straight line

x(t) = t 7→ tv (12)

where v ∈ Rd is a given vector. Plugging (12) into the defi-
nition of the iterated integrals, we get by a direct calculation
that ∫

dx⊗m =
v⊗m

m!
∈ (Rd)⊗m.

We see that for this special case of a path x that is fully
described by its increment x(tx)− x(0) = v, the signature
features Φ(x) equal the polynomial featuresϕ(x(tx)−x(0))
of the total increment v = x(tx) − x(0) up to a rescaling
by a constant 1

m! . (This is one of the many reasons why
signature features are regarded as “polynomials of paths”).

Piecewise linear paths. In general, these integrals need
to be computed by standard integration techniques but for a
piecewise linear path x, that is [0, t] is partitioned into L dis-
joint intervals, [0, tx] =

⊔L−1
i=0 [ti, ti+1], and x is piecewise

linear on each of these pieces, x(t) = t · vi for t ∈ [ti, ti+1]
for a vector vi ∈ Rd, then these iterated integrals just reduce
to iterated sums,

∫
dx⊗m equals∑

i c(i)vi1 ⊗ · · · ⊗ vim · (ti1+1 − tt1) · · · (ttim+1 − ttim)

where the sum is taken over all tuples i = (i1, . . . , im) ∈
{1, . . . , L}m and c(i) is the inverse of the natural number
|{p : {1, . . . , L} → {1, . . . ,m}, p(i + 1) ≥ p(i), p(i) =
i}|!.

B.3. Parametrization invariance.

A classic result going back to Chen (Chen, 1958) shows
that the map x 7→ Φ0(x) is injective up to tree-like equiv-
alence. Loosely speaking, tree-like equivalence is from a
purely analytic point of view more natural to work with
than reparametrization since tree-like equivalence between
paths is analogous to Lebesgue almost sure equivalence be-
tween sets. Howevever, we emphasize that from a practical
point of view, the difference between paths that are tree-like
equivalent and paths that differ by a reparametrization is
negligible and we invite the reader to use them as synonyms
throughout this article. Nevertheless, we give the precise
definition below and refer the interested reader to (Hambly
& Lyons, 2010) for a detailed discussion.

Definition 1. A bounded variation path x : [0, tx]→ V is
tree-like if there exists a continuous function h : [0, tx]→
[0,∞) such that h(0) = h(T) = 0 and such that for all
s < t

|x(t)− x(s)| ≤ h(s) + h(t)− 2 inf
u∈[s,t]

h(u).

Theorem 2. Let x : [0, tx] → V and y : [0, ty] → V be
two paths of bounded variation. Then

Φ(x) = Φ(y)

if and only if x ?←−y is tree-like where ? denotes path con-
catenation and←−y (t) := y(ty − t) denotes time-reversal.

In particular this implies that for any function of the form

f(x) = 〈`,Φ0f(x)〉

f(x) = f(y) if and only if x and y differ by parametriza-
tion (strictly speaking, by a tree-like equivalence). This
ability to factor out time-invariance can be very powerful
since the space of all possible time reparametrization is huge
and we never make an explicit search over all possible time
changes like in the calculation of DTW distance.

Gaussian Processes with Signature Covariances

B.4. Parametrization variance.

Often the functions of sequences f(x) one is interested
in, are invariant up to a certain degree of reparametriza-
tion but not invariant to extreme reparametrizations. For
a stylized example consider TS that arise as blood pres-
sure measurements from patients responding to medication:
some patients respond slower, some faster, depending on
metabolism and many other factors. Up to a certain degree
of time-reparameterisation one should observe a similar
shaped TS if the medication works. However, the feature
map should allow to distinguish extreme cases, e.g. where
the blood pressure is rapidly falling.

To address, we added an extra coordinate to the path x
before computing the signature features of this enhanced
path xτ (t) = (τ · t,x(t)) ∈ Rd+1, for τ > 0. The enhanced
path xτ is never tree-like since the first coordinate t 7→ t · τ
is strictly increasing. Formulated, differently: this ”trick‘’
makes the parametrization part of the trajectory. Hence, the
map

Xpaths 3 x 7→ Φτ (x) := Φ(xτ) ∈
∏M
m=0(R1+d)⊗m

is injective for τ > 0.

B.5. Universality.

One of the most attractive properties of the classical polyno-
mial feature map x→ ϕ(x) for vectors x ∈ X = Rd, (11),
is that any continuous function f : X = Rd → R can be uni-
formly approximated on compact sets as a linear functional
of ϕ, that is f(x) ≈ 〈`, ϕ(x)〉 for some `. The reason is that
linear combinations of monomials (polynomials) form an
algebra and the Stone–Weierstrass theorem applies. Such ap-
proximation properties of feature maps are usually referred
to as “universality” in the ML literature.

One of the most attractive properties of the signature feature
map x 7→ Φτ (x) for paths x ∈ Xpaths is that a universal-
ity result holds. For every continuous f : Xpaths → R,
K ⊂ Xpaths compact, ε > 0 there exists a M ≥ 1,
` ∈

∏M
m=0 V

⊗m such that

supx∈K |f(x)− 〈`,Φτ (x)〉| < ε.

The analogous result holds for τ = 0 when we replace
the domain Xpaths by equivalence classes of paths (under
reparameterisation/tree-like equivalence). For a proof and
many extensions, see (Chevyrev & Oberhauser, 2018).

B.6. High-frequency sampling

One way to think about the embedding of Xseq ↪→ Xpaths
is that Xpaths represents the “real-world” where quantities
evolve in continuous time but due to pratical reasons such
as storage cost we only have access to their preimage in

Xseq. A natural question is what happens when the sam-
pling gets finer and finer. We believe such consistency in
the high-frequency sampling limit is important for the same
reason, consistency in the number of samples nX is impor-
tant: although in practice we only deal with finite numbers
(finite number of samples, sequences rather than paths), we
want that our method makes sense as we get more and more
information. In the context of learning with sequences this
does not only require to study nX →∞ but also the limit
as the mesh size of that sampling grid converges to 0.

Consistency. More formally, given x ∈ Xpaths consider
a sequence (πk) of partitions

πk = {(tk1 , . . . , tkn) : 0 ≤ tk1 < · · · < tkn ≤ tx}

with vanishing mesh

mesh(πk) := max |tki+1 − tki | → 0 as k →∞.

Each partition πk gives rise to sequence xk by sampling
γ along the time points in πk. Following our convention
we identify xk as a piecewise linear path in Xpaths and
it is easy to verify that ‖x − xk‖ → 0 as k → ∞. In-
formally, as k → ∞ we go from discrete to continuous
time. One of the nice properties of our GP covariance, is
that it is consistent under such limits: given x,y ∈ Xpaths,
k(xk,yk) → k(x,y) as k → ∞. Having a well-defined
GP on paths that is consistent under such approximations
from discrete to continuous time guarantee that no constants
blow up as the sequences gets longer (sampling gets high
frequent).

Rough paths. So far we assumed that Xseq consists of
bounded variation paths but in the “real-world”, the evolu-
tion of quantities is often subject to noise, e.g. a classical
model in physics and engineering is

x(t) := a(t) +B(t)

where a is a bounded variation path but B is a Brown-
ian sample path. Since Brownian sample paths are not of
bounded variation, x is not of bounded variation. How-
ever, the same consistency arguments as above go through
but one has to replace the iterated Riemann–Stieltjes inte-
grals by Ito–Stratonovich integrals in the definition of Φ(x).
Even rougher trajectories such as fractional Brownian mo-
tion and non-Markovian processes can be handled that way
with so-called rough path integrals. This is well-beyond the
scope of the present article but we refer the interest reader
to (Chevyrev & Oberhauser, 2018) for such results.

C. GPs with Signature Covariances
We specified a covariance function k on the set Xpaths as
inner product of the signature map. This guarantees that

Gaussian Processes with Signature Covariances

(x,y) 7→ k(x,y) = 〈Φ(x),Φ(y)〉 is a positive definite
function and from the general theory of stochastic pro-
cesses the existence of a centered GP (fx)x∈Xpaths such
that E[fxfy] = k(x,y) follows. However, this does not
guarantee that the sample paths x 7→ fx are continuous.
Seminal work of Dudley (Dudley, 2010) showed that such
regularity estimates can be derived by bounding the growth
of the covering number of the index set of the GP f under
the semi-metric

dk(x,y) =
√
E[|fx − fy|2]

=
√
k(x,x)− 2k(x,y) + k(y,y).

Already when when the index set is finite dimensional “nice”
covariance functions can lead to discontinuous GPs, see
e.g. Section 1.4. in (Adler & Taylor, 2009). Our GP has as
index set the space of bounded variation paths Xpaths which
is infinite-dimensional so some caution is needed. However,
as we show below we can cover this space by lattice paths
and derive covering number estimates that imply continuity.

Theorem 3. For L > 0 and ε > 0 denote with N(ε, L) the
covering number of the set

XLpaths := {x ∈ Xpaths : ‖x‖bv ≤ L}

of bounded variation paths of length less or equal than L
under the dk pseudo-metric. Then

log2N(ε, L) ≤ 2(d+ 1)L

√
M

ε

Proof. By definition of the metric dk

dk(x, y) ≡
√
〈Φ(x)− Φ(y),Φ(x)− Φ(y)〉

= ‖Φ(x)− Φ(y)‖.

By definition Φ and of the norm ‖ · ‖ on
∏M
m=0(Rd)⊗m this

reads

d2k(x,y) =

M∑
m=1

‖
∫
dx⊗m −

∫
dy⊗m‖2

≤M max
m=1,...,M

∆2
m(x,y)

where we denote ∆m(x,y) := ‖
∫
dx⊗m −

∫
dy⊗m‖. Let

X
s,L
lattice ⊂ XLpaths be the set of lattice paths starting at

0 ∈ Rd that take steps of size s and that are of total length
at most L. By the results in Section 4 of (Lyons & Xu,
2011), for every x ∈ XLpaths and every n ≥ 1 there exists a

y ∈ X
L2−n,L
lattice such that for every m ≥ 1,

∆m(x,y) ≤ d

2n−1
4Lm−1

(m− 1)!
. (13)

Since Lm−1

(m−1)! ≤ e
L−1 we can apply (13) with n = n(ε) :=

1 − log2
ε

d
√
M4(eL−1) to get ∆m(x,y) ≤ ε. Hence, there

exists a lattice path y ∈ X
L2−n(ε),L
lattice such that

dk(x,y) ≤ ε.

Further, the set Xpaths is finite and we can bound it by

|XL2
−n(ε),L

lattice | ≤ (2d + 1)L2
n(ε)

≤ 2(d+1)L2n(ε)

= 22(d+1)L2n(ε)−1

= 22(d+1)L
√
M
ε

where the first inequality follows since a lattice path has at
every step 2d directions to choose from and in addition can
choose not to make a step. The last equality follows from the
definition of n(ε). Since x ∈ XLpaths was chosen arbitrary

it follows that XLpaths can be covered by 22(d+1)L
√
M
ε balls

of radius ε centered at lattice paths.

Theorem 3 combined with Dudley’s celebrated entropy esti-
mates gives regularity results for samples of our GP. In fact,
this even yields a modulus of continuity for our GP.

Theorem 4. There exists a centered GP (fx)x∈XLpaths that
has a covariance E[fxfy] the signature covariance func-
tion k(x,y) = 〈Φ(x),Φ(y)〉. Moreover, if we denote its
modulus of continuity on XLpaths with

ω(δ) := sup
x,y∈XLpaths
dk(x,y)<δ

|fx − fy|

then it holds with probability one that

lim sup
δ→0

ω(δ)
√
δ4
√

(d+ 1)L
√
M + cδ

√
ln ln 1

δ

≤ 24(14)

where c > 0 denotes a universal constant.

Proof. The existence of a centered GP (f̂x)x with co-
variance k follows from general results about Gaussian
processes. The existence of a continuous modification
(fx)x∈Xpaths,L of follows from Dudley’s theorem if∫ 1

0

√
log2N(ε, L)dε <∞

but by Theorem 3 we have∫ 1

0

√
log2N(ε, L)dε ≤

√
2(d+ 1)L

√
M

∫ 1

0

1√
ε
dε <∞.

Dudley’s results immediately yield a modulus of continuity
in probability. By standard arguments this can be strength-
ened to give an almost sure modulus of continuity. Con-
cretely, we use the formulation given in Theorem 2.7.1 in

Gaussian Processes with Signature Covariances

Chapter 5 of (Khoshnevisan, 2002) which guarantees that

lim sup
δ→0

ω(δ)∫ δ
0

√
N(ε2 , L)dε+ cδ

√
ln ln 1

δ

≤ 24.

The bound (14) follows immediately since first term in the
denominator equals∫ δ

0

√
log2N

(ε
2
, L
)
dε =

√
2(d+ 1)L

√
M2
√

2
√
δ

=
√
δ4

√
(d+ 1)L

√
M.

D. Further algorithms
D.1. Notation for computations.

We define notation based on (Kiraly & Oberhauser, 2019)
for concisely describing vectorized computations. We use
1-based indexing for arrays to keep in line with the notation
of the main text. Let A and B be k-fold arrays of size
(n1 × · · · × nk), indexed by ij ∈ {1, . . . , nj} for j ∈
{1, . . . , k}. We define the following operations.

(i) The cumulative sum along axis j as:

A[:, . . . , :,�, :, . . . , :][i1, . . . , ij−1, ij , ij+1, . . . ik]

:=

ij∑
κ=1

A[i1, . . . , ij−1, κ, ij+1, . . . , ik].

(ii) The slice-wise sum along axis j as:

A[:, . . . , :,Σ, :, . . . , :][i1, . . . , ij−1, ij+1, . . . , ik]

:=

nj∑
κ=1

A[i1, . . . , ij−1, κ, ij+1, . . . ik].

(iii) The shift along axis j by +m for m ∈ N as:

A[:, . . . , :,+m, :, . . . , :][i1, . . . , ij , . . . , ik]

:=

{
A[i1, . . . , ij −m, . . . ik], if ij > m,
0, if ij ≤ m.

(iv) The element-wise product of arrays A and B as:

A�B[i1, . . . , ik] := A[i1, . . . , ik] ·B[i1, . . . , ik].

Additionally, note that the use of the cumulative sum, �, in
conjunction with the shift by 1 operator, +1, along the same
axis is equivalent to an exclusive cumulative sum, where in
the new array the ij th index contains the sum of the original
array’s elements from 1 to ij − 1.

Algorithm 3 Computing covariances at sequences, KXX

1: Input: Sequences X = (xi)i=1,...,nX
⊂ Xseq ,

scalars (σ2
0 , σ

2
1 , . . . , σ

2
M), depth M ∈ N

2: Compute K[i, j, l, k] ← 〈∆xi,tl ,∆xj,tk〉 for i, j ∈
{1, . . . , nX}, l, k ∈ {1, . . . , lX}

3: Initialize R[i, j]← σ2
0 for i, j ∈ {1, . . . , nX}

4: Update R← R+ σ2
1 ·K[:, :,Σ,Σ]

5: Assign A← K
6: for m = 2 to M do
7: Iterate A← K �A[:, :,� + 1,� + 1]
8: Update R← R+ σ2

n ·A[:, :,Σ,Σ]
9: end for

10: Output: Matrix of covariances KXX ← R

D.2. Covariances between sequences and sequences

We describe in Algorithm 3 the computation of the
covariance matrix KXX of nX for sequences X =
(xi)i=1,...,nX

⊂ Xseq , which is a modification of Algorithm
3 from (Kiraly & Oberhauser, 2019). The observant reader
will notice that for the vectorization a requirement is that all
sequences in X have the same length, lX := supx∈X lx. In
practice, this is only a computational restriction and can be
circumvented by tabulating each sequence to be the same
length, e.g. by repeating the last observation as required.
The convenience of the parametrization invariance of signa-
tures is that the results remain unchanged.

Simple inspection says that the complexity of Algorithm 3 is
ofO((M+d) ·n2X · l2X) in time andO(d ·nX · lX +n2X · l2X)
in memory. Although, note that for factorizing likelihoods
the computation of the ELBO and making inference about
unseen examples x∗ ∈ Xseq with credible intervals only
requires the diagonals of KXX, i.e. KX := [k(x,x)]x∈X.
Hence, for convenience, we give vectorized pseudo-code
in Algorithm 4 for computing KX, which has complexities
O((M + c) · nX · l2X) in time and O(d · nX · lX + nX · l2X).

Algorithm 4 Computing variances at sequences, KX

1: Input: Sequences X = (xi)i=1,...,nX
⊂ Xseq ,

scalars (σ2
0 , σ

2
1 , . . . , σ

2
M), depth M ∈ N

2: Compute K[i, l, k] ← 〈∆xi,tl ,∆xi,tk〉 for i ∈
{1, . . . , nX}, l, k ∈ {1, . . . , lX}

3: Initialize R[i]← σ2
0 for i ∈ {1, . . . , nX}

4: Update R← R+ σ2
1 ·K[:,Σ,Σ]

5: Assign A← K
6: for m = 2 to M do
7: Iterate A← K �A[:,� + 1,� + 1]
8: Update R← R+ σ2

n ·A[:,Σ,Σ]
9: end for

10: Output: Vector of variances KX ← R

Gaussian Processes with Signature Covariances

E. Further details on experiments
E.1. Implementation details

The implementation of all considered GP models are avail-
able at GITHUBAUTHOR. Here, we detail the technicalities
related to the implementation of each model.

GP-Sig. This is the standard GP model with the signa-
ture kernel over sequences. This is built on top of GPflow
(de G. Matthews et al., 2017), and other than a few tweaks,
they interface with GPflow models in a straightforward man-
ner. Particularly for the kernel, there are several variants
available with different state space embeddings, including
RBF and Matérn static kernels. The hyperparameters of the
kernel which are learnt from the data are: (1) the length-
scales corresponding to each state space dimension, (2) the
scaling parameters that multiply each signature level, al-
lowing to strengthen or weaken its effect, (3) the lag val-
ues by which the additional lagged versions of each co-
ordinate are shifted, that is a continuous parameter and
is applied using linear interpolation and flat extrapolation
(i.e. when the queried time-point is negative then the value
at time 0 is used). In Section 5, we denoted the aug-
mented sequence with a time coordinate and p lags by
x̂ := (ti, xti , xti−s1 , . . . , xti−sp)i=1,...,lx . The lagged co-
ordinates use the same lengthscales as the original ones,
which in many cases leads to better generalization compared
to not using lags (e.g. Takens’ theorem (Takens, 1981)). The
signature kernel is also normalized using the standard ker-
nel normalization k̃(x,y) := k(x,y)/

√
k(x,x) k(y,y),

which we apply individually to each signature level. The
supported inducing variables are InducingTensors and
InducingSequences corresponding to the two variants
described in the main text.

GP-Sig-LR. As previously mentioned, there exists a low-
rank variant of the signature kernel as introduced in (Kiraly
& Oberhauser, 2019), which aims to approximate the feature
map using a low-rank approximation, rather than computing
inner product of signature features directly. Our implemen-
tation first uses the Nyström approximation to find a low-
dimensional approximation of the state-space embedding,
and then uses the primal formulation of the signature algo-
rithms (see Algorithm 5 in (Kiraly & Oberhauser, 2019))
to compute the signature kernel, while keeping the size of
the low-rank factors manageable with sparse randomized
projections (Li et al., 2006). Its advantage is that it extends
to very long time series due to linear complexity in the time
series length lX ∈ N, while the quadratic complexity of
the full-rank kernel needs to be addressed another way. We
did not include this variant among the experiments because
overall it performed much worse than the full-rank vari-
ant. There were two main issues: (i) on several datasets it
failed to fit the dataset due to being less flexible and noise,

(ii) even when the predictive means are good, it can still
give severely miscalibrated uncertainties similarly to classic
kernel approximation techniques (Nyström, RFF), since an
LR covariance matrix results in a degenerate GP prior.

GP(-Sig)-LSTM/GRU. The RNN based models with a
GP layer placed on top use the Keras implementation of the
RNN architectures (Chollet et al., 2015), while the GP parts
use the GPflow API, which is possible as both packages
can define the computational graph using the Tensorflow
backend. However, since none of the packages supports
the other, the resulting models have to be trained somewhat
manually using the slightly more primitive Tensorflow API,
and therefore are not very user friendly. It is up to future
work to build a more user friendly API that makes it possible
to deploy models that combine neural networks and sparse
variational GPs in a convenient manner.

GP-KConv1D. The 1-dimensional convolutional kernel
essentially uses the same code as (van der Wilk et al.,
2017) included in the GPflow package, with some tweaks
that allow different length time series to be compared by
padding each sequence with nans and masking the nan en-
tries during the computation. We also normalize the features
corresponding to this kernel to unit length in the feature
space using the standard kernel normalization. In the ex-
periments, we set the window size to w = 10, but a few
datasets have minx∈X lx < 10, and in those cases we set
w = min (10,minx∈X lx). Also, as the sequence length lx,
and hence, the number of windows can vary from instance
to instance, the weighted version of the convolutional kernel
from (van der Wilk et al., 2017) is not applicable in this
case, and the translation invariant version is used.

E.2. Datasets details

Table 3 details the datasets from (Baydogan, 2015) that
we used for benchmarking. Here c denotes the number of
classes, d the dimension of the sequence state space, lx the
range of sequence lengths, nX and nX? respectively denote
the number of examples in the pre-specified training and
testing sets. In the experiments, all state space dimensions
were normalized to zero mean and unit variance. For the
models GP-Sig(-LSTM/GRU), GP-KConv1D, we subsam-
pled very long time series to lX = 500, in order to deal with
the quadratic complexity of kernel evaluations and be able
to fit within GPU memory limitations.

E.3. Training details

Initialization. For all models considered in the main text
in Section 5, the RBF kernel was used as static kernel, which
has lengthscale parameters (l1, . . . , ld), i.e. the RBF kernel

GITHUBAUTHOR

Gaussian Processes with Signature Covariances

Table 3: Specification of datasets used for benchmarking

DATASET c d lx nX nX?

ARABIC DIGITS 10 13 4–93 6600 2200
AUSLAN 95 22 45–136 1140 1425
CHAR. TRAJ. 20 3 109–205 300 2558
CMUSUBJECT16 2 62 127–580 29 29
DIGITSHAPES 4 2 30–98 24 16
ECG 2 2 39–152 100 100
JAP. VOWELS 9 12 7–29 270 370
KICK VS PUNCH 2 62 274–841 16 10
LIBRAS 15 2 45 180 180
NETFLOW 2 4 50–997 803 534
PEMS 7 963 144 267 173
PENDIGITS 10 2 8 300 10692
SHAPES 3 2 52–98 18 12
UWAVE 8 3 315 896 3582
WAFER 2 6 104–198 298 896
WALK VS RUN 2 62 128–1918 28 16

over Rd is up to rescaling given by

κ(x,x′) := exp

(
−1

2
(x− x′)>Σ−1(x− x′)

)
with Σii := l2i a diagonal matrix. We used the initialization
l
(0)
i :=

√
E[(xi − x′i)2] · d, where xi, x′i are two indepen-

dent copies of the i-th input space coordinate, and we used
a stochastic estimator of this with typically n = 1000 obser-
vation samples from the data.

All considered models in Section 5 used some form of induc-
ing variables. For the signature models, they were placed
in the feature space of the signature map in the form of
inducing tensors. These inducing tensors given in (4.1) are
tensor products of elements in V . As detailed at the end of
Section 4, although the state space of a sequence is Rd, we
can embed this sequence into a path that evolves in a linear
space V that does not have to be Rd. One way to do this is
to use an observation-wise state space embedding given by
a kernel κ : Rd×Rd → R and map a sequence x = (ti, xi)
to a sequence κx = (ti, κxi) that evolves in the RKHS V of
κ; here κx := κ(x, ·) ∈ V . Therefore signatures of depth
M now live in the space

∏M
m=0 V

⊗m, which is for most
kernels κ a genuine infinite-dimensional space. However,
all computations from Sections 3 and 4 carry on mutatis
mutandis, with the difference being that we do not have
the flexibility to represent the inducing tensors as tensor
products of arbitrary elements in V , which are generally
infinite dimensional. In this case, we take

z = (zm)m=0,...,M ∈
M∏
m=0

V ⊗m0 (15)

with z0 ∈ R and zm = κ(xm,1, ·)⊗ · · · ⊗ κ(xm,m, ·) with
xi,j ∈ Rd for 1 ≤ j ≤ i, 1 ≤ i ≤ m, 1 ≤ m ≤ M , where

V0 := {κ(x, ·) : x ∈ Rd}. Put differently, the inducing
tensors are also constrained to being tensor products of only
such elements in V which arise as reproducing kernels6

associated to vectors in Rd. Hence, the complexity of evalu-
ating 〈κ(x, ·), κ(x′, ·)〉 is the same as in Rd, and storing an
element κ(x, ·) ∈ V0 is the same memory. Now, the initial-
ization of the inducing tensors is simply done by sampling
random observations from the input sequences in a two step
manner: (1) a random input sequence is selected, (2) from
the sequence a time-increasing subset of its observations are
selected and plugged into the tensor products given in (15),
and this procedure is repeated nZ times.

Other forms of inducing variables used by the models in
Section 5 are inducing points for the GP-RNNs and in-
ducing patches for GP-KConv1D. The inducing points are
initialized randomly by selecting a x ∈ X and comput-
ing its RNN-image φθ(x), which is then used as an induc-
ing point, and repeated for all nZ. The inducing patches
are also initialized in two steps: (1) select a random in-
put sequence x ∈ X, (2) select a random window from
x, (xi, xi+1, . . . , xi+w−1), where 1 ≤ w ≤ minx∈X lx
denotes the window length in the convolutional kernel.

For the alternative sparse inference scheme for signatures
described in Section 5, denoted the method of inducing
sequences, we use the same initialization as for the inducing
patches: select a random sequence, and select a random
window, and repeat for all nZ.

The means and covariances of the inducing points used the
usual whitening transformation, that is, reparametrization in
terms of the Cholesky factor L of KZZ, KZZ = LL>, and
parameters initialized from zeros and identity.

The RNNs use the usual initializations, that is, Glorot initial-
ization for the weights (Glorot & Bengio, 2010), orthogonal
initialization for the recurrent weights (Saxe et al., 2014),
and zeros for the bias.

Optimization details. The training for the benchmarking
experiment in Section 4 was performed on 11 GPUs overall:
4 Tesla K40Ms, 5 Geforce 2080 TIs and 2 Quadro GP100
graphics cards. All models were trained 5 times for the
benchmarking and the RNN based models an additional 6
times for the grid-search. Thus, the training of overall 480
models required extensive computational resources.

In all experiments in Section 5, we used similar optimiza-
tion details, that is, optimization with early stopping and
checkpointing by optimizing on 80% of the training data
and monitoring the nlpp7 on a 20% validation set. We used

6The reproducing kernel associated to a point x ∈ X is sim-
ply the kernel function evaluated in one of its arguments at x,
i.e. κ(x, ·) ∈ H0 ⊂ H for a kernel κ : X× X→ R.

7We found that monitoring the validation nlpp rather than the

Gaussian Processes with Signature Covariances

a minibatch size of 50, fixed learning rate α = 1 × 10−3,
and a patience value of n = 500 epochs. As optimizer, GP-
Sig and GP-KConv1D used Nadam (Dozat, 2015), while
the RNN based models used Adam (Kingma & Ba, 2014).
Additionally, as is well-known for SVGPs (Bauer et al.,
2016), first fixing the hyperparameters and only optimizing
over the variational approximation for a fixed number of
epochs is beneficial which we follow. Furthermore, after the
main training phase of the hyperparameters has finished, to
learn the rest of the validation data that was excluded from
the optimization, we re-merge the validation set into the
training set, fix the hyperparameters, and optimize only over
the variational parameters again to assimilate the remaining
information into the variational approximation.

Hence, the training for all models is split into the following
phases (1) partition the data in an 80−20 ratio for optimiza-
tion and monitoring, (2) with fixed kernel hyperparameters
initialized as described previously, train the variational pa-
rameters for fixed n epochs to tighten the ELBO bound;
(3) unfix the hyperparameters and train by monitoring the
nlpp on the validation set, stopping after no improvement
for n epochs, and restoring and best model; (4) re-merge the
validation set into the training data and train the variational
distribution again only for a fixed n epochs with the kernel
hyperparameters fixed. In all scenarios, we used n = 500.

For GP-Sig, the insertion of an additional optimization phase
was found to be beneficial. Particularly, we reparametrize
the scaling parameters for the signature levels σ =
(σ0, . . . , σM) as σ = (β · σ′0, . . . , β · σ′M), where β ∈ R+.
Then, phase (3) is split into two steps: first, train with unfix-
ing all kernel hyperparameters except (σ′0, . . . σ

′
M), which

are a-priori all set as 1; secondly, now unfixing all parame-
ters, continue training with early stopping. This trick allows
to calibrate the overall variance of the GP using β in the first
step, while fixing σ0 = · · · = σM . The intution why this
works is that the signature levels in general contain com-
plementary information about a given sequence, and fixing
them to be equal first enforces the model to find a fit of the
data for all signature levels jointly, i.e. in some sense this is
an implicit regularization step. The second step allows to
slightly adjust the contribution of each level without relying
too heavily on any one of them. On the RNN-based signa-
ture models this trick did not give substantial improvements,
possibly because the variance of the RNN layer generally
outweights the variance of the signature layer.

In our experience, when using GP-Sig on datasets with a
larger nX, it can yield a further improvement to gradually
increase the learning to rate to α = 1× 10−2 to allow the
optimizer to explore the space in more depth, and then de-
crease it back to α = 1×10−3 to drive it to the closest local
optima. However, on the smaller datasets this was found to

validation accuracy leads to better generalization behaviour.

be counterproductive, and in the experiments we chose to
stick with a unified scheme that worked consistently on all
datasets. However, we also remark that without applying
any of the previously described techniques, and training
from front to back all parameters jointly with a small learn-
ing rate (e.g. α = 1× 10−3) gives good results already, but
a few percents of test set accuracy can be gained on some
datasets by using them.

Architecture search. Table 4 details each of the archi-
tectures used for the models containing an RNN layer,
where H denotes the number of hidden units used, and
D is a boolean trigger, that specifies whether dropout
was used for the given experiment or not. In the case
D = 1, we used the settings dropout = 0.25 and
recurrent_dropout = 0.05, otherwise both were
set to 0. To find the best performing architecture, we con-
ducted a grid-search among 6 considered architectures, that
is, H ∈ [8, 32, 128] and D ∈ [0, 1]. For the grid-search,
only the training data was used, and the data was split in a
60− 20− 20 fashion, using 60% for training, 20% for early
stopping and checkpointing, and the last 20% was used to
evaluate the performance. The training itself was carried
out using the same initialization and schedule as described,
and was performed only once for each method and setting
pair, due to the large number of datasets that we considered.

E.4. Benchmark results

We report in Table 5 and Table 6 the negative log-predictive
probabilities and accuracies of the GP models considered
in Section 5. For each method-dataset pair, 5 models were
trained with the initialization described in Appendix E.3.
The variance of the results is therefore due to random initial-
ization of some parameters, and the minibatch randomness
while training. The RNN based models used the archi-
tectures detailed in Table 4. As non-Bayesian baselines,
we report the results of recent frequentist TS classification
methods from the respective publications, that is, (Cuturi
& Doucet, 2011; Baydogan & Runger, 2015a;b; Karlsson
et al., 2016; Tuncel & Baydogan, 2018; Schäfer & Leser,
2017; Karim et al., 2019). Particularly for MLSTMFCN,
we report the same results as in (Schäfer & Leser, 2017). In
Figure 5, we visualize the box-plot distributions of (1) nega-
tive log-predictive probabilities of the GPs, (2) classification
accuracies of both the GPs and the frequentist baselines.

Gaussian Processes with Signature Covariances

Table 4: List of architectures used for the RNN based models

DATASET GP-SIG-LSTM GP-SIG-GRU GP-LSTM GP-GRU

ARABIC DIGITS H = 128 D = 1 H = 128 D = 1 H = 32 D = 1 H = 128 D = 1
AUSLAN H = 128 D = 0 H = 128 D = 0 H = 128 D = 0 H = 32 D = 0
CHARACTER TRAJ. H = 8 D = 1 H = 128 D = 1 H = 128 D = 1 H = 128 D = 1
CMUSUBJECT16 H = 32 D = 1 H = 32 D = 1 H = 32 D = 1 H = 32 D = 1
DIGITSHAPES H = 8 D = 1 H = 128 D = 1 H = 128 D = 1 H = 32 D = 1
ECG H = 128 D = 0 H = 128 D = 1 H = 128 D = 0 H = 8 D = 1
JAP. VOWELS H = 128 D = 0 H = 128 D = 1 H = 128 D = 1 H = 128 D = 0
KICK VS PUNCH H = 8 D = 1 H = 8 D = 0 H = 128 D = 1 H = 128 D = 1
LIBRAS H = 128 D = 0 H = 128 D = 0 H = 32 D = 0 H = 32 D = 0
NETFLOW H = 8 D = 0 H = 32 D = 0 H = 32 D = 0 H = 8 D = 1
PEMS H = 32 D = 0 H = 8 D = 1 H = 32 D = 1 H = 32 D = 0
PENDIGITS H = 128 D = 0 H = 128 D = 1 H = 128 D = 1 H = 128 D = 1
SHAPES H = 8 D = 1 H = 8 D = 1 H = 8 D = 1 H = 8 D = 1
UWAVE H = 32 D = 1 H = 128 D = 0 H = 32 D = 0 H = 32 D = 0
WAFER H = 128 D = 0 H = 128 D = 1 H = 32 D = 0 H = 32 D = 0
WALK VS RUN H = 128 D = 1 H = 8 D = 1 H = 8 D = 1 H = 32 D = 1

Table 5: Mean and standard deviation of negative predictive log-probabilities (nlpp) on test sets over 5 independent runs

DATASET GP-SIG-LSTM GP-SIG-GRU GP-SIG GP-LSTM GP-GRU GP-KCONV1D

ARABIC DIGITS 0.047± 0.030 0.023± 0.006 0.071± 0.021 0.082± 0.022 0.066± 0.010 0.050± 0.003
AUSLAN 0.106± 0.007 0.123± 0.045 0.550± 0.114 0.650± 0.071 0.248± 0.063 1.900± 0.139
CHARACTER TRAJ. 0.031± 0.007 0.258± 0.265 0.108± 0.005 2.506± 1.007 3.523± 0.635 0.409± 0.141
CMUSUBJECT16 0.088± 0.020 0.040± 0.009 0.089± 0.027 0.270± 0.080 0.089± 0.039 0.255± 0.002
DIGITSHAPES 0.008± 0.001 0.035± 0.051 0.021± 0.001 0.013± 0.002 0.727± 0.569 0.035± 0.003
ECG 0.402± 0.023 0.431± 0.037 0.356± 0.008 0.496± 0.018 0.601± 0.137 0.543± 0.019
JAP. VOWELS 0.080± 0.031 0.053± 0.009 0.069± 0.003 0.061± 0.029 0.052± 0.005 0.067± 0.001
KICK VS PUNCH 0.301± 0.109 0.493± 0.128 0.224± 0.014 0.696± 0.046 0.674± 0.037 0.662± 0.017
LIBRAS 0.320± 0.045 0.346± 0.091 0.259± 0.021 0.911± 0.056 1.110± 0.248 1.608± 0.311
NETFLOW 0.218± 0.009 0.259± 0.078 0.189± 0.014 0.251± 0.041 0.194± 0.011 0.168± 0.081
PEMS 0.704± 0.130 1.100± 0.064 0.520± 0.058 1.194± 0.308 0.784± 0.111 0.537± 0.010
PENDIGITS 0.289± 0.127 0.399± 0.206 0.146± 0.007 0.185± 0.027 0.187± 0.043 0.181± 0.005
SHAPES 0.014± 0.004 0.012± 0.004 0.011± 0.002 0.016± 0.008 0.168± 0.142 0.012± 0.001
UWAVE 0.113± 0.011 0.121± 0.017 0.140± 0.004 0.745± 0.151 1.168± 1.063 0.189± 0.008
WAFER 0.048± 0.021 0.081± 0.011 0.105± 0.010 0.105± 0.086 0.029± 0.011 0.085± 0.002
WALK VS RUN 0.030± 0.008 0.030± 0.008 0.023± 0.007 0.048± 0.040 0.028± 0.000 0.066± 0.001

MEAN NLPP. 0.175 0.238 0.180 0.514 0.603 0.423
MED. NLPP. 0.097 0.122 0.124 0.261 0.221 0.185
SD. NLPP. 0.183 0.273 0.161 0.623 0.841 0.542

MEAN RANK (nX < 300) 2.800 2.900 2.200 4.700 4.000 4.400
MEAN RANK (nX ≥ 300) 2.333 3.333 2.833 4.833 4.333 3.333
MEAN RANK (ALL) 2.625 3.062 2.438 4.750 4.125 4.000

Gaussian Processes with Signature Covariances

Table 6: Mean and standard deviation of accuracies on test sets over 5 independent runs

DATASET GP-SIG-LSTM GP-SIG-GRU GP-SIG GP-LSTM GP-GRU GP-KCONV1D

ARABIC DIGITS 0.992± 0.003 0.994± 0.002 0.979± 0.004 0.985± 0.004 0.986± 0.005 0.984± 0.001
AUSLAN 0.983± 0.003 0.978± 0.006 0.925± 0.014 0.880± 0.012 0.949± 0.014 0.784± 0.012
CHARACTER TRAJ. 0.991± 0.003 0.925± 0.078 0.979± 0.002 0.233± 0.331 0.114± 0.050 0.941± 0.013
CMUSUBJECT16 1.000± 0.000 1.000± 0.000 0.979± 0.017 0.924± 0.051 0.993± 0.014 0.897± 0.000
DIGITSHAPES 1.000± 0.000 0.988± 0.025 1.000± 0.000 1.000± 0.000 0.812± 0.153 1.000± 0.000
ECG 0.816± 0.029 0.832± 0.012 0.848± 0.010 0.782± 0.032 0.734± 0.033 0.760± 0.018
JAP. VOWELS 0.981± 0.005 0.985± 0.004 0.982± 0.005 0.982± 0.004 0.986± 0.005 0.986± 0.002
KICK VS PUNCH 0.900± 0.063 0.820± 0.098 0.900± 0.000 0.620± 0.075 0.600± 0.110 0.700± 0.089
LIBRAS 0.921± 0.013 0.899± 0.031 0.923± 0.004 0.776± 0.019 0.742± 0.050 0.698± 0.026
NETFLOW 0.931± 0.002 0.921± 0.012 0.937± 0.003 0.928± 0.011 0.926± 0.012 0.945± 0.027
PEMS 0.763± 0.016 0.775± 0.019 0.820± 0.014 0.745± 0.044 0.769± 0.020 0.794± 0.008
PENDIGITS 0.928± 0.030 0.902± 0.048 0.955± 0.002 0.953± 0.008 0.951± 0.008 0.946± 0.001
SHAPES 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000 0.867± 0.163 1.000± 0.000
UWAVE 0.970± 0.004 0.968± 0.006 0.964± 0.001 0.870± 0.029 0.763± 0.225 0.947± 0.002
WAFER 0.988± 0.005 0.978± 0.005 0.965± 0.004 0.966± 0.037 0.994± 0.002 0.984± 0.001
WALK VS RUN 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

MEAN ACC. 0.948 0.935 0.947 0.853 0.824 0.898
MED. ACC. 0.982 0.973 0.964 0.926 0.896 0.946
SD. ACC. 0.068 0.070 0.052 0.193 0.218 0.107

MEAN RANK (nX < 300) 3.000 3.100 2.800 4.250 4.250 3.600
MEAN RANK (nX ≥ 300) 2.167 3.500 3.000 4.167 4.333 3.833
MEAN RANK (ALL) 2.688 3.250 2.875 4.219 4.281 3.688

Table 7: Accuracies of frequentist time series classification methods

DATASET SMTS LPS MVARF DTW ARKERNEL GRSF MLSTMFCN MUSE

ARABIC DIGITS 0.964 0.971 0.952 0.908 0.988 0.975 0.990 0.992
AUSLAN 0.947 0.754 0.934 0.727 0.918 0.955 0.950 0.970
CHARACTER TRAJ. 0.992 0.965 0.928 0.948 0.900 0.994 0.990 0.937
CMUSUBJECT16 0.997 1.000 1.000 0.930 1.000 1.000 1.000 1.000
DIGITSHAPES 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ECG 0.818 0.820 0.785 0.790 0.820 0.880 0.870 0.880
JAP. VOWELS 0.969 0.951 0.959 0.962 0.984 0.800 1.000 0.976
KICK VS PUNCH 0.820 0.900 0.976 0.600 0.927 1.000 0.900 1.000
LIBRAS 0.909 0.903 0.945 0.888 0.952 0.911 0.970 0.894
NETFLOW 0.977 0.968 NA 0.976 NA 0.914 0.950 0.961
PEMS 0.896 0.844 NA 0.832 0.750 1.000 NA NA
PENDIGITS 0.917 0.908 0.923 0.927 0.952 0.932 0.970 0.912
SHAPES 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
UWAVE 0.941 0.980 0.952 0.916 0.904 0.929 0.970 0.916
WAFER 0.965 0.962 0.931 0.974 0.968 0.992 0.990 0.997
WALK VS RUN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

MEAN ACC. 0.945 0.933 0.949 0.899 0.938 0.955 0.970 0.962
MED. ACC. 0.964 0.964 0.952 0.929 0.952 0.984 0.990 0.976
SD. ACC. 0.059 0.073 0.055 0.111 0.073 0.058 0.039 0.043

Gaussian Processes with Signature Covariances

G
PS
ig
LS
TM

G
PS
ig
G
R
U

G
PS
ig

G
PL
ST
M

G
PG
R
U

G
PK
C
on
v1
D

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
LP
P

G
PS
ig
LS
TM

G
PS
ig
G
R
U

G
PS
ig

G
PL
ST
M

G
PG
R
U

G
PK
C
on
v1
D

SM
TS LP
S

m
vA
R
F

D
TW

AR
Ke
rn
el

gR
SF

M
LS
TM
FC
N

M
U
SE

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy

Figure 5: Box-plots of negative log-predictive probabilities (left) and classification accuracies (right) on 16 TSC datasets

