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A Generalization Properties of Causal
Models

A.1 Generalization over Different Distributions

We provide proofs for generalization properties of causal
model over different distributions and a single datapoint.

Theorem 1. Consider a structural causal graph G that con-
nects X to Y, and causal features XC ⊆ X where XC represent
the parents of Y under G. Let P(X, Y) and P∗(X, Y) be two
distributions with arbitrary P(X) and P∗(X), having over-
lap such that P(X = x) > 0 whenever P∗(X = x) > 0. In
addition, the causal relationship between XC and Y is pre-
served, which implies that P(Y|XC) = P∗(Y|XC). Let L be
a symmetric loss function that obeys the triangle inequal-
ity (such as L2 loss), and let f : XC → Y be the optimal
predictor among all hypotheses using XC features under
L, i.e., f = arg minh Lxc(y, h(xc)) for all xc, and thus f
depends only on Pr(Y|XC) (e.g., f := E[Y|XC] for L2 loss).
Further, assume thatHC represents the set of causal models
hc : XC → Y that may use all causal features and HA rep-
resent the set of associational models ha : X→ Y that may
use all available features, such that f ∈ HC andHC ⊆ HA.

1. When generation of Y is deterministic, y = f(Xc) (e.g.,
when Y|XC is almost surely constant), the ODE loss for a
causal model hc ∈ HC is bounded by:

ODEP,P∗(hc, y) = LP∗(hc, y)− LS∼P(hc, y)

≤ discL,HC
(P, P∗) + IDEP(hc, y) (4)

Further, for any P and P∗, the upper bound of ODE from
a dataset S ∼ P(X, Y) to P∗(called ODE-Bound) for a
causal model hc ∈ HC is less than or equal to the upper
bound ODE-Bound of an associational model ha ∈ HA,
with probability at least (1− δ)2.

ODE-BoundP,P∗(hc, y; δ) ≤ ODE-BoundP,P∗(ha, y; δ)

2. When generation of Y is probabilistic, the ODE error for a
causal model hc ∈ HC includes additional terms for the
loss between Y and optimal causal models hOPTc,P = hOPTc,P∗

on P and P∗ respectively.

ODEP,P∗(hc, y) ≤ discL,HC
(P, P∗) + IDEP(hc, y)+

LP∗(hOPTc,P∗ , y) + LP(hOPTc,P , y) (5)

While the loss of an associational model can be lower
on P, there always exists a P∗ such that the worst case

ODE-Bound for an associational model is higher than
the same for a causal model.

max
P∗

ODE-BoundP,P∗(hc, y; δ) ≤ max
P∗

ODE-BoundP,P∗(ha, y; δ)

Proof. The proof has three parts: General ODE Bound for
a model, equivalence of loss-minimizing causal models on
P and P∗, and finally the two claims from the Theorem.

I. GENERAL ODE BOUND
Consider a model h : X → Y belonging to a set of models
H, that was trained on S ∼ P(X, Y). From Def. 2 we write,

ODEP,P∗(h, y) = LP∗(h, y)− LS∼P(h, y)

= LP∗(h, y)− LP(h, y)+

LP(h, y)− LS∼P(h, y)

= LP∗(h, y)− LP(h, y) + IDEP(h, y)

(8)

where the last equation is to due to Def.1 of the in-
distribution generalization error.

Let us denote the optimal loss-minimizing hypotheses over
H for P and P∗ as hOPTP and hOPTP∗ .

hOPTP = arg min
h∈H
LP(h, y) hOPTP∗ = arg min

h∈H
LP∗(h, y)

(9)

Using the triangle inequality of the loss function, we can
write:

LP∗(h, y) ≤ LP∗(h, hOPTP ) + LP∗(hOPTP , y) (10)

And,

LP(h, y) ≥ LP(h, hOPTP )− LP(hOPTP , y)

⇒ −LP(h, y) ≤ −LP(h, hOPTP ) + LP(hOPTP , y)
(11)

Thus, combining Eqns. 8, 10 and 11, we obtain,

ODEP,P∗(h, y)

≤ IDEP(h, y) + LP∗(h, hOPTP )+

LP∗(hOPTP , y)− LP(h, hOPTP ) + LP(hOPTP , y)

= IDEP(h, y) + (LP∗(h, hOPTP )− LP(h, hOPTP ))+

LP∗(hOPTP , y) + LP(hOPTP , f)

≤ IDEP(h, y) + discL,H(P, P∗)+

LP∗(hOPTP , y) + LP(hOPTP , y)

(12)
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where the last inequality is due to the definition of discrep-
ancy distance (Definition 3).

Below we show that Eqn. 12 divides the out-of-distribution
generalization error of a model h in four parts. As defined in
the Theorem statement,HC refers to the class of models that
uses all causal features (XC), parents of Y over the structural
causal graph; and HA refers to the class of associational
models that may use all or a subset of all available features.

1. IDEP(h, y) denotes the in-distribution error of h. This
can be bounded by typical generalization bounds, such
as the uniform error bound that depends only on the VC
dimension and sample size of S (Shalev-Shwartz & Ben-
David, 2014). Using a uniform error bound based on the
VC dimension, we obtain, with probability at least 1− δ,

IDE ≤

√
8
VCdim(H)(ln(2|S|) + 1) + ln(4/δ)

|S|

= IDE-Bound(H, S)

(13)

SinceHC ⊆ HA, VC-dimension of causal models is not
greater than that of associational models. Thus,

VCDim(HC) ≤ VCDim(HA)⇒ IDE-Bound(HC,S)

≤ IDE-Bound(HA,S)

(14)

2. discL,H(P, P∗) denotes the distance between the two
distributions. Given two distributions, the discrepancy
distance does not depend on h, but only on the model
classH. From Definition 3, discrepancy distance is the
maximum quantity over all pairs of models in a model
class. SinceHC ⊆ HA, we obtain that:

discL,HC (P, P
∗) ≤ discL,HA(P, P∗) (15)

3. LP(hOPTP , y) measures the error of the loss-minimizing
model on P, when evaluated on P. While hOPTP is optimal,
there can still be error due to the true labeling function f

being outside the model classH, or irreducible error due
to probabilistic generation of Y.

4. LP∗(hOPTP , y) measures the error of the loss-minimizing
model on P, when evaluated on P∗. In addition to the
reasons cited above, this error can be due to differences
in both Pr(X) and Pr(Y|X) between P and P∗: change in
the marginal distribution of inputs X, and/or change in
the conditional distribution of Y given X.

II. SAME LOSS-MINIMIZING CAUSAL MODEL
OVER P AND P∗

Below we show that for a given distribution P and another
distribution P∗ such that P(Y|XC) = P∗(Y|XC), the loss mini-
mizing model is the same for causal models (hOPTc,P = hOPTc,P∗ ),
but not necessarily for associational models.

Causal Model. Given a structural causal network, let us
construct a model using all parents of XC of Y. By property
of the structural causal network, XC includes all parents of Y
and therefore there are no backdoor paths. Using Rule 2 of
do-calculus from Pearl (2009):

Pr(Y|do(Xc = xc)) = P(Y|XC = xc) = P∗(Y|XC = xc)
(16)

where the last equality is assumed since data from P∗

also shares the same causal graph. Defining hOPTc,P =
arg min

hc∈HC

LP(hc, y) and hOPTc,P∗ = arg min
hc∈HC

LP∗(hc, y), we

can write,

hOPTc,P = arg min
h∈HC

LP(h, y)

= arg min
h∈HC

EP(xc,y)L(h(xc), y) = fP(Y|XC)
(17)

since f = arg minh Lx(h(xc), y) for all xc and thus does
not depend on Pr(XC), and f ∈ HC. Similarly, for hOPTc,P∗ , we
can write:

hOPTc,P∗ = arg min
h∈HC

LP∗(h, y)

= arg min
h∈HC

EP∗(xc,y)L(h(xc), y) = fP∗(Y|XC)
(18)

Since P(Y|XC) = P∗(Y|XC), we obtain,

fP(Y|XC) = fP∗(Y|XC) ⇒ hOPTc,P = hOPTc,P∗ (19)

Associational Model. In contrast, an associational model
may use a subset XA ⊆ X that may not include all parents
of Y, or may include parents but also include other extra-
neous variables. Following the derivation for causal mod-
els, let us define hOPTa,P = arg min

ha∈HA

LP(ha, y) and hOPTa,P∗ =

arg min
ha∈HA

LP∗(ha, y), we can write,

hOPTa,P = arg min
h∈HA

LP(h, y)

= arg min
h∈HA

EP(xa,y)L(h(xa), y) = fP(XA,Y)
(20)

where we define fA as, fA = arg minh Lx(h(xa), y) for any
xa. Similarly, for hOPTa,P∗ , we can write:

hOPTa,P∗ = arg min
h∈HA

LP∗(h, y)

= arg min
h∈HA

EP∗(xa,y)L(h(xa), y) = fP∗(XA,Y)
(21)

Now, in general,

P(XA, Y) 6= P∗(XA, Y)⇒ fP(XA,Y) 6= fP∗(XA,Y)

Even if the optimal associational model fA ∈ HA (as we
assumed for causal models), and thus fP(XA,Y) = fP(Y|XA) and
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fP∗(XA,Y) = fP∗(Y|XA), they are not the same since P(Y|XA) 6=
P∗(Y|XA). Therefore we obtain,

fP(Y|XA) 6= fP∗(Y|XA) ⇒ hOPTa,P 6= hOPTa,P∗ (22)

That said, since XC ⊂ X, it is possible that XA = XC for some
X andH, and thus the loss-minimizing associational model
includes only the causal features of Y. Then hOPTa,P = hOPTa,P∗ .
In general, though, hOPTa,P 6= hOPTa,P∗ .

IIIa. CLAIM 1
As a warmup, consider the case when Y is generated de-
terministically. That is, the optimal model f has zero
error. Then, both the loss-minimizing causal model and
loss-minimizing associational model have zero error when
evaluated on the same distribution that they were trained
on. Thus, LP(hOPTc,P , y) = LP∗(hOPTc,P∗ , y) = 0. Similarly,
LP(hOPTa,P , y) = 0. (Note that here we consider only those
cases where fP(Y|X) ∈ HA and fP∗(Y|X) ∈ HA for a fair com-
parison; otherwise, the error bound for ha ∈ HA is trivially
larger than that for hc ∈ HC).

Further, for a causal model, using Equation 19, we obtain:

LP∗(hOPTc,P , y) = LP∗(hOPTc,P∗ , y) = 0 (23)

However, the same does not hold for associational models:
LP∗(hOPTa,P , y) need not be zero.

We now present the loss bounds. Using Equations 19 and
23, we write Equation 12 for a causal model as:

ODEP,P∗(hc, y) = LP∗(hc, y)− LS∼P(hc, y)

≤ discL,HC
(P, P∗) + IDEP(hc, y)

(24)

For an associational model, we obtain,

ODEP,P∗(ha, y) = LP∗(ha, y)− LS∼P(ha, y)

≤ discL,HA
(P, P∗) + IDEP(ha, y)

+ LP∗(hOPTa,P , y)

(25)

Using Eqn. 13 that bounds IDE with probability 1− δ, and
Eqns. 14 and 15 that compare IDE-Bound and discrepancy
distance between causal and associational model classes,
we can rewrite Eqn. 24. With probability at least 1− δ:

ODEP,P∗(hc, y) ≤ discL,HC (P, P
∗) + IDE-BoundP(HC, S; δ)

= ODE-BoundP,P∗(hc, y; δ)

≤ discL,HA(P, P∗) + IDE-BoundP(HA, S; δ)
(26)

Similarly, for the associational model,

ODEP,P∗(ha, y) ≤ discL,HA
(P, P∗) + IDE-BoundP(HA, S; δ)

+ LP∗(hOPTa,P , y)

= ODE-BoundP,P∗(ha, y; δ)

(27)

Therefore, comparing Eqn. 26 and 27, we claim for any P

and P∗, with probability (1− δ)2,

ODE-BoundP,P∗(hc, y; δ) ≤ ODE-BoundP,P∗(ha, y; δ)
(28)

IIIb. CLAIM 2
We now consider the general case when Y is generated
probabilistically. Thus, even though f ∈ HC and hOPTc,P =
hOPTc,P∗ = f, LP(hOPTc,P , y) 6= 0 and LP∗(hOPTc,P∗ , y) 6= 0.

Using the IDE bound from Eqn. 13, we write Eqn. 12 as,

ODEP,P∗(hc, y) ≤ discL,HC
(P, P∗) + IDEP(hc, y)

+ LP∗(hOPTc,P , y) + LP(hOPTc,P , y)

≤ discL,HC (P, P
∗) + IDE-BoundP(HC, S; δ)

+ LP∗(hOPTc,P∗ , y) + LP(hOPTc,P , y) (29)

= ODE-BoundP,P∗(hc, y; δ)

≤ discL,HA(P, P∗) + IDE-BoundP(HA, S; δ)

+ LP∗(hOPTc,P∗ , y) + LP(hOPTc,P , y) (30)

where Eqn. 29 uses hOPTc,P = hOPTc,P∗ and Eqn. 30 uses inequali-
ties comparing IDE and discrepancy distance from Eqns. 14
and 15.

Similarly, for associational model,

ODE-BoundP,P∗(ha, y) = discL,HA(P, P∗)

+ IDE-BoundP(HA, S; δ) + LP∗(hOPTa,P , y) + LP(hOPTa,P , y)

(31)

Now, we compare the last two terms of Equations 30 and 31.
SinceHC ⊆ HA, loss of the loss-minimizing associational
model can be lower than the loss of the causal model trained
on the same distribution. Thus, LP(hOPTa,P , y) ≤ LP(hOPTc,P , y).

However, since hOPTa,P 6= hOPTa,P∗ , loss of the loss-minimizing
associational model trained on P can be higher on P∗ than
the loss of optimal causal model trained on P∗ and evaluated
on P∗. Formally, let γ1 ≥ 0 be the loss reduction over P due
to use of associational model optimized on P, compared to
the loss-minimizing causal model. Similarly, let γ2 be the
increase in loss over P∗ due to using the associational model
optimized over P, compared to the loss-minimizing causal
model.

γ1 =LP(hOPTc,P , y)− LP(hOPTa,P , y) (32)

γ2 =LP∗(hOPTa,P , y)− LP∗(hOPTc,P , y) (33)

Then, Eqn. 31 transforms to,

ODEP,P∗(ha, y) ≤ discL,HA(P, P∗) + IDE-BoundP(HA,S; δ)

+ LP∗(hOPTc,P∗ , y) + LP(hOPTc,P , y) + γ2 − γ1
(34)
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Hence, as long as γ2 ≥ γ1, we obtain,

ODE-BoundP,P∗(hc, y; δ) ≤ ODE-BoundP,P∗(ha, y; δ)
(35)

Below we show that such a P∗ always exists, and further, the
worst-case maxP∗ ODE-BoundP,P∗(h, y; δ) is always lower
for a causal model than an associational model.

There exists P∗ such that γ2 ≥ γ1. The proof is by con-
struction. As an example, consider L1 loss and a distribution
P such that the optimal causal model f for an input data
point x(i) can be written as,

y(i) = fP(x
(i)
C ) + ξi = fP∗(x

(i)
C ) + ξi (36)

where f(xC) = hOPTc,P = hOPTc,P∗ refers to the optimal causal
model and is the same for P and P∗ (using Eqn. 19). Let
fP(xA) = hOPTa,P be the optimal associational model over P.
We can rewrite hOPTa,P as an arbitrary change from hOPTc,P , using

λ
(i)
xA as a parameter that can be different for each data point

x(i). That is,

hOPTa,P (x(i)) = hOPTc,P (x
(i)
C ) + λ(i)xA

(37)

Based on Eqns. 36 and 37, γ1 can be written as,

LP(hOPTc,P , y) = EP[|ξ|]
LP(hOPTa,P , y) = EP[|ξ − λxA |]

⇒ γ1 = EP[|λxA |]
(38)

Then, we can construct a P∗(X, Y) such that (i) the relation-
ship (Pr(Y|XA)) between xA and y is reversed, and (ii) Pr(X)
is chosen such that EP∗ [λxA ] ≥ EP[λxA ] (e.g., by assigning
higher probability weights to data points i where |λ(i)xA | is
high). That is, consider a P∗ such that we can write hOPTa,P∗ as,

hOPTa,P∗(x
(i)) = hOPTc,P∗(x

(i)
C )− λ(i)xA

(39)

On such P∗, the loss-minimizing causal model remains the
same. However, the loss of the associational model hOPTa,P on
such P∗ increases and can be written as:

LP∗(hOPTc,P , y) = EP∗ [|ξ|]
LP∗(hOPTa,P , y) = EP∗ [|ξ + λxA |]

⇒ γ2 = EP∗ [|λxA |]
(40)

From condition (ii) above, EP∗ [λxA ] ≥ EP[λxA ], thus γ2 ≥
γ1.

Note that we did not use any special property of the L1 Loss
above. In general, we can write the loss-minimizing function
hOPTa,P as adding some arbitrary value λ(i)xA to hOPTc,P (x

(i)
c ); and

then construct a P∗ such that the relationship Pr(Y|XA) is
reversed on P∗, and thus hOPTa,P∗ subtracts the same value.
Further, the input data distribution P∗(X) can be chosen

such that γ2 ≥ γ1. That is, for a loss L, we can choose λ
such that LP∗(hOPTa,P , y;λ) − LP∗(hOPTc,P∗ , y) ≥ LP(hOPTc,P , y) −
LP(hOPTa,P , y;λ).

Hence, there exists a P∗ such that γ2 ≥ γ1, and thus,

ODE-BoundP,P∗(hc, y; δ) ≤ ODE-BoundP,P∗(ha, y; δ)
(41)

Worst case ODE-bound for causal model is lower. Fi-
nally, we show that the for a fixed P, the worst case
ODE-Bound also follows Eqn. 41. Looking at Eqns. 30 and
31, ODE-Bound will be highest for a P∗ such that discrep-
ancy between P and P∗ is highest andLP∗(hOPTP , y) is highest.
Below we show that discrepancy discL(P, P

∗) increases as
LP∗(hOPTP , y) increases.

LP∗(h
OPT
P , y) = LP∗(h

OPT
P , y)− LP(h

OPT
P , y) + LP(h

OPT
P , y)

≤ discL(P, P
∗) + LP(h

OPT
P , y)

⇒ discL(P, P
∗) ≥ LP∗(h

OPT
P , y)− LP(h

OPT
P , y) (42)

where LP(hOPTP , y) is fixed since P is fixed. Thus, the above
equation shows that whenever LP∗(hOPTP , y) is high, discrep-
ancy is also high. Hence, for any P∗max that maximizes
ODE-Bound, P∗max = arg maxP∗ ODE-BoundP,P∗(h, y; δ),
LP∗(hOPTP , y) is also maximized.

Now, let us consider causal and associational models, and
their respective worst case P∗max. To complete the proof,
we need to check whether γ2 ≥ γ1 for such maximal
LP∗(hOPTc,P , y) and LP∗(hOPTa,P , y). Since γ2 increases mono-
tonically with LP∗(hOPTa,P , y) ( LP∗(hOPTc,P , y) is bounded by
maxx Lx(h

OPT
c,P , y)), and there exists at least one P∗ such that

γ2 ≥ γ1, this implies that γ2 ≥ γ1 for P∗max too. Therefore,
using Equation 41,

max
P∗

ODE-BoundP,P∗(hc, y; δ) ≤ max
P∗

ODE-BoundP,P∗(ha, y; δ)

(43)

A.2 Generalization over a Single Datapoint

Theorem 2. Consider a causal model hminc,S : XC → Y and
an associational model hmina,S : X → Y trained on a dataset
S ∼ P(X, Y) with loss L. Let (x, y) ∈ S and (x′, y′) /∈ S
be two input instances such that they share the same true
labelling function on the causal features, y ∼ P(Y|XC = x)
and y′ ∼ P(Y|XC = x′). Then, the worst-case generalization
error for the causal model on such x′ is less than or equal
to that for the associational model.

max
x∈S,x′

Lx′(h
min
c,S , y)−Lx(hminc,S , y) ≤ max

x∈S,x′
Lx′(h

min
a,S , y)−Lx(hmina,S , y)

Proof. For any model h, we can write,

max
x∈S,x′

Lx′(h, y)− Lx(h, y) = max
x′

Lx′(h, y)−min
x∈S

Lx(h, y)

(44)
since x′ and x are independently selected. To prove the
main result, we will show that the maximum loss on an
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unseen x′, maxx′ Lx′(h, y) is higher for a loss-minimizing
associational model than a causal model, and that minimum
loss on a training point x ∈ S, minx∈S Lx(h, y) is lower for
the associational model than a causal model.

Loss on a training data point. First, consider loss on
x ∈ S, Lx(h, y).

hminc,S = arg min
h∈HC

LS(hc, y) = arg min
h

1

N

N∑
i=1

Lxi(h, y)

hmina,S = arg min
h∈HA

LS(ha, y) = arg min
h

1

N

N∑
i=1

Lxi(h, y)

SinceHC ⊆ HA, the average training loss will be lower for
the associational model.

LS(hminc,S , y) ≥ LS(hmina,S , y) (45)

Further, under a suitably complex HA there exists a hmina,S

such that the loss L is lower for any x ∈ S. Therefore,

min
x∈S

Lx(h
min
c,S , y) ≥ min

x∈S
Lx(h

min
a,S , y) (46)

Loss on an unseen data point. Second, consider
Lx′(h, y). Without loss of generality, let us write the true
function for some (x′, y′) ∼ P∗ as,

y′ = hOPTc,P∗(x
′
c) + ε = hOPTc,P (x′c) + +ε (47)

where we use that hOPTc,P = hOPTc,P∗ . Suppose there is a data
point (x′1, y

′
1) such that the loss L is maximum for hminc,S .

max
x′ 6∈S

Lx′(h
min
c,S , y) = Lx′1(h

min
c,S (x′1), y

′
1)

= Lx′1(h
min
c,S (x′c,1), h

OPT
c,P (x′c,1) + ε1)

(48)

Now for the associational model hmina,S , the corresponding
loss on x′1 is,

Lx′1(h
min
a,S , y) = Lx′1(h

min
a,S , h

OPT
c,P + ε1) (49)

Without loss of generality, we can write the output of the
associational model hmina,S on a particular input x′ as,

hmina,S (x′) = hminc,S (x′c) + ha(x
′) (50)

where ha is some associational function of x. Therefore the
loss on x′1 becomes,

Lx′1(h
min
a,S , y) = Lx′1(h

min
c,S + ha, h

OPT
c,P + ε1) (51)

Since Pr(Y|XA) can change for different x′ ∼ P∗ (where
XA = X \ XC refers to the associational features), we will
show that RHS of Eqn. 49 can always be greater than or

equal to the RHS of Eqn. 48. For ease of exposition, we
consider L1 loss below. For a causal model, the loss can be
written as,

Lx′1(h
min
c,S ,h

OPT
c,P + +ε)

= |hminc,S (x′c,1)− hOPTc,P (x′c,1)− ε1|
= |hminc,S (x′c,1)− hOPTc,P (x′c,1)|+ |ε1|

(52)

where x′1 (and thus ε1) is chosen such that ε1(hOPTc,P (x′c,1)−
hminc,S (x′c,1)) ≥ 0 which leads to maximum loss. And for the
associational model, the loss on the same (x′1, y

′
1) can be

written as,

Lx′1(h
min
a,S , h

OPT
c,P + ε1)

= |hminc,S (x′c,1) + ha(x
′
1)− hOPTc,P (x′c,1)− ε1|

= |(hminc,S (x′c,1)− hOPTc,P (x′c,1)) + (ha(x
′
1)− ε1)|

(53)

Comparing Eqns. 52 and 53, two cases arise. If ha(x′1)ε1 ≤
0, then we obtain,

Lx′1(h
min
a,S , h

OPT
c,P + ε1)

= |hminc,S (x′c,1)− hOPTc,P (x′c,1)|+ |(ha(x′1)− ε1)|
= |hminc,S (x′c,1)− hOPTc,P (x′c,1)|+ |ha(x′1)|+ |ε1|

(54)

which is greater than maximum loss on x′1 using a causal
model (Eqn. 52). Otherwise, if ha(x′1)ε1 > 0, we can sam-
ple a new data point (x′2, y

′
2) from some other P∗ such that

its causal features are the same (x′c,1 = x′c,2) and thus y is
the same (y′2 = y′1 = hOPTc,P (x′c,1) + ε1), but its associational
features are different (x′a,1 6= x′a,2). Specifically, x′a,2 is
chosen such that ha(x′2)ε1 ≤ 0. Thus we again obtain,

Lx′2(h
min
a,S , h

OPT
c,P + ε1)

= |(hminc,S (x′c,2)− hOPTc,P (x′c,2)) + (ha(x
′
2)− ε1)|

= |(hminc,S (x′c,1)− hOPTc,P (x′c,1)) + (ha(x
′
2)− ε1)|

= |(hminc,S (x′c,1)− hOPTc,P (x′c,1))|+ |(ha(x′2)|+ |ε1|

(55)

where the second equality uses x′c,2 = x′c,1. Combining
Eqns. 54 and 55 and comparing to Eqn. 52, we obtain,

max
x′

Lx′(h
min
c,S , y) ≤ max

x′
Lx′(h

min
a,S , y) (56)

Finally, using Eqns. 46 and 56 leads to the main result.

max
x′

Lx′(h
min
c,S , y)−min

x∈S
Lx(h

min
c,S , y)

≤ max
x′

Lx′(h
min
a,S , y)−min

x∈S
Lx(h

min
a,S , y)

max
x′,x∈S

Lx′(h
min
c,S , y)− Lx(h

min
c,S , y) ≤ max

x′,x∈S
Lx′(h

min
a,S , y)− Lx(h

min
a,S , y)

(57)

Using Eqns. 45 and 56 we also obtain an auxiliary result.

max
x′

Lx′(h
min
c,S , y)−LS(h

min
c,S , y) ≤ max

x′
Lx′(h

min
a,S , y)−LS(h

min
a,S , y)

(58)
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B Sensitivity of Causal and Associational
Models

Before we prove Lemma 1, we prove Corollary 1 and restate
a Lemma from Wu et al. (2015) for completeness.
Corollary 1. Let S be a dataset of n (x, y) values, such
that y(i) ∼ P(Y|XC = x(i))∀(x(i), y(i)) ∈ S, where P(Y|XC)
is the invariant conditional distribution on the causal fea-
tures XC. Consider a neighboring dataset S′ such that
S′ = S\(x, y) + (x′, y′) where (x, y) ∈ S, (x′, y′) /∈ S,
and (x′, y′) shares the same conditional distribution y′ ∼
P(Y|XC = x′c). Then the maximum generalization error from
S to S′ for a causal model trained on S is lower than or
equal to that of an associational model.

max
S,S′
LS′(h

min
c,S , y)−LS(h

min
c,S , y) ≤ max

S,S′
LS′(h

min
a,S , y)−LS(h

min
a,S , y)

Proof. Let Sn−1 = S \ (x, y)) and similarly S′n−1 = S′ \
(x′, y′). Since S and S′ differ in only one data point, Sn−1 =
S′n−1. We will add and subtract sum of losses on data points
in Sn−1, (n− 1)LSn−1

to Theorem 2 statement.

Considering the LHS of Theorem 2,

max
x∈S,x′

Lx′(h
min
c,S , y)− Lx(h

min
c,S , y)

= max
x∈S,x′

Lx′(h
min
c,S , y) + (n− 1)LSn−1

(hminc,S , y)

− Lx(h
min
c,S , y)− (n− 1)LSn−1

(hminc,S , y)

= max
x∈S,x′

Lx′(h
min
c,S , y) + (n− 1)LS′n−1

(hminc,S , y)

− Lx(h
min
c,S , y)− (n− 1)LSn−1

(hminc,S , y)

= max
S′

nLS′(hminc,S , y)− nLS(hminc,S , y)

(59)

Similarly, the RHS of Theorem 2 can be written as,

max
x∈S,x′

Lx′(h
min
a,S , y)− Lx(h

min
a,S , y)

= max
x∈S,x′

Lx′(h
min
a,S , y) + (n− 1)LSn−1

(hmina,S , y)

− Lx(h
min
a,S , y)− (n− 1)LSn−1

(hmina,S , y)

= max
S′

nLS′(hmina,S , y)− nLS(hmina,S , y)

(60)

Using Theorem 2 and dividing Eqns. 59 and 60 by n, we
obtain,

max
S′

nLS′(hminc,S , y)− nLS(hminc,S , y)

≤ max
S′

nLS′(hmina,S , y)− nLS(hmina,S , y)

⇒max
S′
LS′(hminc,S , y)− LS(hminc,S , y)

≤ max
S′
LS′(hmina,S , y)− LS(hmina,S , y)

(61)

Finally, since the above holds for any S ∼ P, it will also
hold for the worst-case S. The result follows.

max
S,S′
LS′(hminc,S , y)− LS(hminc,S , y)

≤ max
S,S′
LS′(hmina,S , y)− LS(hmina,S , y)

(62)

Lemma 3. [From Wu et al. (2015)] Let S and S′ be two
neighboring datasets as defined in Corollary 1 where S′ =
S \ (x, y) + (x′, y′). Given a model classH, Let hminS be the
loss-minimizing model on S and hminS′ be the loss-minimizing
model on S′. Then the difference in losses between the two
models on the same dataset is bounded by,

LS(hminS′ , y)− LS(hminS , y)

≤ Lx′(h
min
S , y)− Lx′(h

min
S′ , y)

n
+

Lx(h
min
S′ , y)− Lx(h

min
S , y)

n
(63)

Proof. The proof follows from expanding loss over a dataset
into individual terms for each data point and then using the
fact that hminS′ has the minimum loss on S′.

Using the definition of LS = 1
n

∑n
i=1 Lxi(h, y), we can

write the following for any two neighboring datasets S and
S′.

LS(hminS′ , y)− LS(hminS , y)

= LS′(hminS′ , y) +
Lx(h

min
S′ , y)− Lx′(h

min
S′ , y)

n

− (LS′(hminS , y) +
Lx(h

min
S , y)− Lx′(h

min
S , y)

n
)

= (LS′(hminS′ , y)− LS′(hminS , y)) +
Lx(h

min
S′ , y)− Lx′(h

min
S′ , y)

n

+
Lx′(h

min
S , y)− Lx(h

min
S , y)

n
)

≤ Lx′(h
min
S , y)− Lx′(h

min
S′ , y)

n
+

Lx(h
min
S′ , y)− Lx(h

min
S , y)

n
(64)

where the last inequality is since hminS′ is the minimizer of
LS′(h, y) and thus LS′(hminS′ , y)− LS′(hminS , y) ≤ 0.

Lemma 1. Let S and S′ be two datasets defined as in Corol-
lary 1. Let a model h be specified by a set of parameters
θ ∈ Ω ⊆ Rd. Let hminS (x; θS) be a model learnt using S as
training data and hminS′ (x; θS′) be the model learnt using S′

as training data, using a loss function L that is λ-strongly
convex over Ω, ρ-Lipschitz, symmetric and obeys the trian-
gle inequality. Then, under the conditions of Theorem 1
(optimal predictor f ∈ HC) and for a sufficiently large n,
the sensitivity of a causal learning function Fc that outputs
learnt empirical model hminc,S ← Fc(S) and hminc,S′ ← Fc(S

′)
is lower than or equal to the sensitivity of an associa-
tional learning function Fa that outputs hmina,S ← Fa(S) and
hmina,S′ ← Fa(S

′),

∆Fc = max
S,S′
||hminc,S −hminc,S′ ||1 ≤ max

S,S′
||hmina,S −hmina,S′ ||1 = ∆Fa

where the maximum is over all such datasets S and S′.
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Proof. Since L is a strongly convex function over Ω, we can
write for the two models hminc,S and hminc,S′ trained on S and S′

respectively (Wu et al., 2015),

LS(hminc,S , y) ≤ LS(αhminc,S + (1− α)hminc,S′ , y)

≤ αLS(hminc,S , y) + (1− α)LS(hminc,S′ , y)

− λ

2
α(1− α)||hminc,S′ − hminc,S ||2

(65)

where α ∈ (0, 1) and the first inequality is since hminc,S is the
loss-minimizing model over S. Rearranging the terms and
tending α to 1 leads to,

(1− α)(LS(hminc,S , y)− LS(hminc,S′ , y))

≤ −λ
2

(1− α)
∥∥hminc,S′ − hminc,S

∥∥2
⇒λ

2

∥∥hminc,S′ − hminc,S

∥∥2 ≤ LS(hminc,S′ , y)− LS(hminc,S , y)

(66)

Now consider maxS,S′
∥∥hminc,S − hminc,S′

∥∥
1
. Without loss of gen-

erality, we can order the pair of datasets S, S′ such that
LS(hminc,S′ , y) ≤ LS′(hminc,S , y). Then using Eqn. 66 and taking
the maximum, we obtain,

λ

2
max
S,S′

∥∥hminc,S − hminc,S′

∥∥2
1
≤ max

S,S′
LS(hminc,S′ , y)− LS(hminc,S , y)

≤ max
S,S′
LS′(hminc,S , y)− LS(hminc,S , y)

≤ max
S,S′
LS′(hmina,S , y)− LS(hmina,S , y)

(67)

where the last inequality is due to Theorem 2. Let S1 and
S′1 denote the datasets that lead to the maximum in the RHS
above. We know that LS1(hmina,S′1

) ≥ LS′1(h
min
a,S′1

) since hmina,S′1
is the loss-minimizing model over S′1. Therefore, we can
rewrite,

max
S,S′
LS′(hmina,S , y)− LS(hmina,S , y)

= LS′1(h
min
a,S1 , y)− LS1(hmina,S1 , y)

≤ LS′1(h
min
a,S1 , y)− LS1(hmina,S1 , y) + (LS1(hmina,S′1

, y)− LS′1(h
min
a,S′1

, y))

= (LS′1(h
min
a,S1 , y)− LS′1(h

min
a,S′1

, y)) + (LS1(hmina,S′1
, y)− LS1(hmina,S1 , y))

(68)

Now using Lemma 3, we obtain the following two bounds.

LS1(hmina,S′1
, y)− LS1(hmina,S1 , y)

≤
Lx′(h

min
a,S1 , y)− Lx′(h

min
a,S′1

, y)

n
+

Lx(h
min
a,S′1

, y)− Lx(h
min
a,S1 , y)

n

LS′1(h
min
a,S1 , y)− LS′1(h

min
a,S′1

, y)

≤
Lx′(h

min
a,S1 , y)− Lx′(h

min
a,S′1

, y)

n
+

Lx(h
min
a,S′1

, y)− Lx(h
min
a,S1 , y)

n
(69)

Since the loss function L(., y) is ρ-Lipschitz, we have
Lx(h1, y) − Lx(h2, y) ≤ ρ‖h1 − h2‖1 for any data point
x and any two models h1 and h2. Plugging Eqn. 69 and the
ρ-Lipschitz property back in Eqn. 68,

LS′1(h
min
a,S1 , y)− LS′1(h

min
a,S′1

, y) ≤ 2

n
ρ
∥∥∥hmina,S1 − hmina,S′1

∥∥∥
1

LS1(hmina,S′1
, y)− LS1(hmina,S1 , y) ≤ 2

n
ρ
∥∥∥hmina,S1 − hmina,S′1

∥∥∥
1

⇒max
S,S′
LS′(hmina,S , y)− LS(hmina,S , y)

≤ (LS′1(h
min
a,S1 , y)− LS′1(h

min
a,S′1

, y)) + (LS1(hmina,S′1
, y)− LS1(hmina,S1 , y))

≤ 2

n
ρ
∥∥∥hmina,S1 − hmina,S′1

∥∥∥
1

+
2

n
ρ
∥∥∥hmina,S1 − hmina,S′1

∥∥∥
1

=
4

n
ρ
∥∥∥hmina,S1 − hmina,S′1

∥∥∥
1

(70)

Finally, combining with Eqn. 67, we obtain,

max
S,S′

∥∥hminc,S′ − hminc,S

∥∥2
1
≤ 8ρ

λn

∥∥∥hmina,S1 − hmina,S′1

∥∥∥
1

≤ 8ρ

λn
max
S,S′

∥∥hmina,S − hmina,S′

∥∥
1

≤ max
S,S′

∥∥hmina,S − hmina,S′

∥∥
1

(71)

where the last inequality holds for a sufficiently large n

such that 8ρ
λn ≤ 1. If maxS,S′

∥∥hminc,S′ − hminc,S

∥∥
1
≥ 1, the

result follows. Otherwise, we need a larger n such that
n ≥ 8ρ

λmaxS,S′
∥∥∥hmin

c,S′−h
min
c,S

∥∥∥
1

. In both cases, we obtain,

max
S,S′

∥∥hminc,S − hminc,S′

∥∥
1
≤ max

S,S′

∥∥hmina,S − hmina,S′

∥∥
1

(72)

Thus sensitivity of a causal learning function is lower than
that of an associational learning function, that is, ∆Fc ≤
∆Fa.

C Differential Privacy Guarantees with
Tighter Data-dependent Bounds

In this section we present the differential privacy guarantee
of a causal model based on a recent method (Papernot et al.,
2017) that provides tighter data-dependent bounds.

Before analyzing the differential privacy guarantee, we pro-
vide a generalization result for a 0-1 classifier based on the
results from Theorem 1: causal classification models trained
on data from two different distributions P(X) and P∗(X) are
more likely to output the same value for a new input than
associational models.

Lemma 4. Under the conditions of Theorem 1 and 0-1
loss, let hminc,S be the loss-minimizing causal classification
model trained on a dataset S from distribution P and let
hminc,S∗ be the loss-minimizing model trained on a dataset S∗
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from P∗. Similarly, let hmina,S and hmina,S∗ be loss-minimizing
associational classification models trained on S and S∗

respectively. Then for any new data input x,

min
S∼P,S∗∼P∗

Pr
(
hminc,S (x) = hminc,S∗(x)

)
≥ min

S∼P,S∗∼P∗
Pr
(
hmina,S (x) = hmina,S∗(x)

)
As the size of the training sample |S| = |S∗| → ∞, the
LHS→ 1.

Proof. Let hmina,P = arg minh∈HA
LS(h, y) and hmina,P∗ =

arg minh∈HA
LS∗(h, y) be the loss-minimizing associa-

tional hypotheses under the two datasets S and S∗ re-
spectively, where HA is the set of hypotheses. We
can analogously define hminc,P and hminc,P∗ . Likewise, let
hOPTa,P = arg minh∈HA

LP(h, y) and similarly let hOPTa,P∗ =
arg minh∈HA

LP∗(h, y) be the loss-minimizing hypotheses
over the two distributions. We can analogously define hOPTc,P

and hOPTc,P∗ . For ease of exposition, let us consider a bi-
nary classification task where all associational models map
X→ {0, 1} and causal models map XC → {0, 1}.

Infinite sample result. As |S| = |S∗| → ∞, each of
the models on S and S∗ approach their loss-minimizing
functions on the distributions P and P∗ respectively. Then,
for any input x,

lim
|S|→∞

hmina,S = hOPTa,P lim
|S∗|→∞

hmina,S∗ = hOPTa,P∗ (73)

lim
|S|→∞

hminc,S = hOPTc,P lim
|S∗|→∞

hminc,S∗ = hOPTc,P∗ (74)

From Theorem 1 (Equation 19), we know that hOPTc,P = hOPTc,P∗ .
Therefore, for any new input x for a causal model, we ob-
tain Pr

(
hOPTc,P (x) = hOPTc,P∗(x)

)
= 1, but not necessarily for

associational models. This leads to,

lim
|S|→∞,|S∗|→∞

Pr
(
hminc,S (x) = hminc,S∗(x)

)
= 1 (75)

≥ lim
|S|→∞,|S∗|→∞

Pr
(
hmina,S (x) = hmina,S∗(x)

)
(76)

Finite sample result. Under finite samples, let S1 and S∗2
be the two datasets from P and P∗ respectively that lead
to the minimum probability of agreement between the two
causal models hminc,S1 and hminc,S∗1

.

min
S∼P,S∗∼P∗

Pr
(
hminc,S (x) = hminc,S∗(x)

)
= Pr

(
hminc,S1(x) = hminc,S∗1

(x)
)

(77)
Now consider the probability of agreement for the two as-
sociational models trained on the same datasets, hmina,S1 and
hmina,S∗1

. Without loss of generality, we can write the associa-
tional models as,

hmina,S1(x) = |hminc,S1(x)− ha,S1(x)|
hmina,S∗1

(x) = |hminc,S∗1
(x)− ha,S∗1 (x)|

(78)

where ha,S1 : X → {0, 1} and ha,S∗1 : X → {0, 1} are any
two functions. Effectively, when ha,S1 is 1, it flips the output
of the loss-minimizing associational model compared to the
loss-minimizing causal model on S1 (and similarly for ha,S∗1
on S∗1).

Now we can select a different S∗2 ∼ P∗2 where y and the
causal features remain the same as S∗1 but associational
features are changed for each input x ∈ S∗2 . Therefore we
construct S∗2 such that hminc,S∗1

= hminc,S∗2
but the term in the

loss-minimizing associational model hmina,S∗2
has the following

property: ha,S∗2 6= ha,S1(x) if hminc,S∗1
= hminc,S1 , and ha,S∗2 =

ha,S1(x) if hminc,S∗1
6= hminc,S1 . Thus, under S∗2 , for all x,∣∣∣hmina,S1(x)− hmina,S∗2

(x)
∣∣∣ ≥ ∣∣∣hminc,S1(x)− hminc,S∗2

(x)
∣∣∣

=
∣∣∣hminc,S1(x)− hminc,S∗1

(x)
∣∣∣ = max

S,S∗

∣∣hminc,S (x)− hminc,S∗(x)
∣∣
(79)

Therefore, the disagreement between two associational mod-
els trained on two datasets is greater than or equal to the
disagreement between causal models on the worst-case S1
and S∗1 . Since the loss is 0-1 loss, the worst-case probability
of agreement is lower.

max
S,S∗

∣∣hminc,S (x)− hminc,S∗(x)
∣∣ ≤ max

S,S∗

∣∣hmina,S (x)− hmina,S∗(x)
∣∣

⇒ min
S∼P,S∗∼P∗

Pr
(
hminc,S (x) = hminc,S∗(x)

)
≥ min

S∼P,S∗∼P∗
Pr
(
hmina,S (x) = hmina,S∗(x)

)

Based on the above generalization property, we now show
that causal models provide stronger differential privacy guar-
antees than corresponding associational models. We uti-
lize the subsample and aggregate technique (Dwork et al.,
2014) that was extended for machine learning in Hamm et al.
(2016) and Papernot et al. (2017), for constructing a differ-
entiably private model. The framework considers M arbitrary
teacher models that are trained on a separate subsample of
the dataset without replacement. Then, a student model is
trained on some auxiliary unlabeled data with the (pseudo)
labels generated from a majority vote of the teachers. Dif-
ferential privacy can be achieved by either perturbing the
number of votes for each class (Papernot et al., 2017), or per-
turbing the learnt parameters of the student model (Hamm
et al., 2016). For any new input, the output of the model is a
majority vote on the predicted labels from the M models. The
privacy guarantees are better if a larger number of teacher
models agree on each input, since by definition the majority
decision could not have been changed by modifying a single
data point (or a single teacher’s vote). Since causal models
generalize to new distributions, intuitively we expect causal
models trained on separate samples to agree more. Below
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we show that for a fixed amount of noise, a causal model is
εc-DP compared to ε-DP for a associational model, where
εc ≤ ε.
Theorem 4. Let D be any dataset generated from possibly a
mixture of different distributions Pr(X, Y) such that Pr(Y|XC)
remains the same. Let nk be the votes for the kth class from
M teacher models. LetM be the mechanism that produces
a noisy max, arg maxk{nk + Lap(2/γ)}. Then the privacy
budget εc for a causal model trained on D is lower than that
for an associational model.

Proof. Consider a change in a single input example (x, y),
leading to a new D′ dataset. Since sub-datasets are sampled
without replacement, only a single teacher model can change
in D′. Let n′k be the vote counts for a class k under D′.
Because the change in a single input can only affect one
model’s vote, |nk − n′k| ≤ 1.

Let the noise added to each class be rk ∼ Lap(2/γ). Let
the majority class (class with the highest votes) using data
from D be i and the class with the second largest votes be j.
Let us consider the minimum noise r∗ required for class i
to be the majority output underM over D. Then,

ni + r∗ > nj + rj

For i to have the maximum votes usingM over D′ too, we
need,

n′i + ri > n′j + rj

In the worst case, n′i = ni − 1 and n′j = nj + 1 for some j.
Thus, we need,

ni − 1 + ri > nj + 1 + rj ⇒ ni + ri > nj + 2 + rj

(80)

which shows that ri > r∗+2. Note that r∗ > rj−(ni−nj).
We have two cases:

CASE I: The noise rj < ni − nj , and therefore r∗ < 0.
Writing Pr(i|D′) to denote the probability that class i is
chosen as the majority class under D′,

P(i|D′) = P(ri ≥ r∗ + 2) = 1− 0.5 exp(γ) exp

(
1

2
γr∗
)

= 1− exp(γ)(1− P(ri ≥ r∗))

= 1− exp(γ)(1− P(i|D))

(81)

where the equations on the right are due to Laplace c.d.f.
Using the above equation, we can write:

P(i|D′)
P(i|D)

= exp(γ) +
1− exp(γ)

P(i|D)

= exp(γ) +
1− exp(γ)

P(ri ≥ r∗)
≤ exp(ε)

(82)

for some ε > 0. As P (i|D) = P (ri ≥ r∗) increases, the
ratio decreases and thus the effective privacy budget (ε)
decreases. Thus, a DP-mechanism based on teacher models
with lower r∗ (effectively higher |r∗|) will exhibit the lowest
ε.

Below we show that the worst-case |r∗| across any two
datasets D1 ∼ P, D2 ∼ P∗ such that P(Y|XC) = P∗(Y|XC)
is higher for a causal model, and thus maxD P(ri ≥ r∗)
is higher. Intuitively, |r∗| is higher when there is more
consensus between the M teacher models since |r∗| is the
difference between the votes for the highest voted class with
the votes for the second-highest class. For two sub-datasets
D1 ⊂ D and D2 ⊂ D, let the two causal teacher models be
hc,D1 and hc,D2 , and the two associational teacher models
be ha,D1 and ha,D2 . From Lemma 4, for any new x, there is
more consensus among causal models. For any dataset D,

min
D1,D2

Pr(hc,D1(x) = hc,D2(x)) ≥ min
D1,D2

Pr(ha,D1(x) = ha,D2(x))

Hence worst-case r∗c ≤ r∗. From Equation 82, εc ≤ ε.

CASE II: The noise rj >= ni−nj , and therefore r∗ >=
0. Following the steps above, we obtain:

P(i|D′) = P(ri ≥ r∗ + 2) = 0.5 exp(−γ) exp

(
−1
2
γr∗
)

= exp(−γ)(P(ri ≥ r∗))

= exp(−γ)(P(i|D))

(83)

Thus, the ratio does not depend on r∗.

P(i|D′)
P(i|D)

= exp(−γ) (84)

Under CASE II when the noise is higher to the differences
in votes between the highest and second highest voted class,
causal models provide the same privacy budget as associa-
tional models.

Hence, overall, εc ≤ ε.

D Maximum Advantage of a Differentially
Private algorithm

Theorem 6. Under the conditions of Theorem 1, let S ∼
P(X, Y) be a dataset sampled from P. Let F̂c,S and F̂a,S be
the differentially private mechanisms trained on S by adding
identical Laplacian noise to the causal and associational
learning functions from Lemma 1 respectively. Assume that
a membership inference adversary is provided inputs sam-
pled from either P or P∗, where P∗ is any distribution such
that P(Y|XC) = P∗(Y|XC). Then, across all adversaries A
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that predict membership in S ∼ P, the worst-case member-
ship advantage of F̂c,S is not greater than that of F̂a,S.

max
A,P∗

Adv(A, F̂c,S, n, P, P
∗) ≤ max

A,P∗
Adv(A, F̂a,S, n, P, P

∗)

Proof. Consider a neighboring dataset S′ to S ∼ P such
that S′ replaces data point x ∈ S with a different point x′.
Following Theorem 1 proof from Yeom et al. (2018), the
membership advantage of an adversaryA on a differentially
private algorithm F̂ can be written as:

Adv(A, F̂ , n, P, P∗) = Pr(A = 1|b = 1)− Pr(A = 1|b = 0)

= Pr
(
A(x, F̂S) = 1|x ∈ S

)
− Pr

(
A(x, F̂S′) = 1|x ∈ S

)
(85)

where A(x, F̂S) denotes a membership adversary for an
algorithm F̂S trained on a dataset S, and A(x, F̂S′) denotes
an adversary for algorithm F̂S′ trained on S′. Without loss of
generality for the case where there are an infinite number of
models h, assume that models are sampled from a discrete
set of K models: {h1, h2, ..., hK}. Then using the law of
total probability over the models yielded by the algorithms
F̂S and F̂S′ ,

Adv(A, F̂ , n, P, P∗) =

K∑
j=1

Pr
(
A(x, hj) = 1

)
Pr
(
F̂S = hj

)
−

K∑
j=1

Pr
(
A(x, hj) = 1

)
Pr
(
F̂S′ = hj

)
=

K∑
j=1

Pr
(
A(x, hj) = 1

)
[Pr
(
F̂S = hj

)
− Pr

(
F̂S′ = hj

)
]

(86)

where Pr
(
A(x, hj) = 1

)
can be interpreted as the non-

negative weights in a sum. Thus, the above is a weighted
sum and will be maximum when positive values for
Pr
(
F̂S = hj

)
− Pr

(
F̂S′ = hj

)
have the highest weight and

negative values for Pr
(
F̂S = hj

)
−Pr

(
F̂S′ = hj

)
have zero

weight. It follows that to obtain the maximum advan-
tage, the adversary will choose Pr

(
A(x, hj) = 1

)
= 1 if

Pr
(
F̂S = hj

)
− Pr

(
F̂S′ = hj

)
> 0, and 0 otherwise. In

other words, the adversary predicts membership in train set
for an input x ∈ S whenever probability of the given model
hj being generated from F̂S is higher than it being generated
from F̂S′ .

Let H+ ⊂ H be the set of models for which Pr
(
F̂S = hj

)
−

Pr
(
F̂S′ = hj

)
> 0. Similarly, let H− = H \ H+ be the set

of models that are more probable to be generated from
F̂S′ : Pr

(
F̂S′ = hj

)
− Pr

(
F̂S = hj

)
≥ 0. The worst-

case adversary selects datasets S ∼ P, S′ such that the
sum

∑
hj∈H+ Pr

(
F̂S = hj

)
− Pr

(
F̂S′ = hj

)
is the highest.

Therefore, for a given distribution P and a differentially

private algorithm F̂S learnt on S ∼ P, we can write the
maximum membership advantage as,

max
A,P∗

Adv(A, F̂S, n, P, P
∗)

= maxS,S′
∑
hj∈H+

[P(F̂S = hj)− P(F̂ ′S = hj)]

= maxS,S′P(F̂S ∈ H+)− P(F̂ ′S ∈ H+)

= maxS,S′P(F̂S ∈ H+)− (1− P(F̂ ′S ∈ H−))

= maxS,S′2Pr
(
F̂S ∈ H+

)
− 1

(87)

where the last equality is since F̂S and F̂S′ have
Laplace noise added from identical distributions and thus
Pr
(
F̂S ∈ H+

)
= Pr

(
F̂S′ ∈ H−

)
. Equation 87 provides the

maximum membership advantage for any ε-DP mechanism
F̂S with Laplace noise.

We next show that Eqn. 87 for a causal differentially pri-
vate mechanism F̂c is not greater than that for an associa-
tional mechanism F̂a. Let Pr

(
F̂S

)
be a Laplace distribution

with mean at hS,min and Pr
(
F̂S′
)

be a Laplace distribution
with mean hS′,min with identical scale/noise parameters. We
would like to find the boundary model h† of the set H+ where
P(F̂S = hj) = P(F̂ ′S = hj), since Pr

(
F̂S ∈ H+

)
is the prob-

ability under the Laplace distribution, cut off at the point
h†. Due to identical noise for F̂S and F̂ ′S and the symmetry
of the Laplace distribution, the boundary h† corresponds
to the midpoint of hS,min and hS′,min: 0.5(hS,min + hS′,min).
Alternatively, the `1 distance of the boundary h† from the
means of the Laplace distributions can be written as (for a
worst case S, S′),

∥∥h† − hS,min
∥∥
1

=
‖hS′,min − hS,min‖1

2
=

∆FS

2
(88)

where ∆FS is the sensitivity of the learning function FS and
the last equality is due to the choice of worst-case S and S′.

From Lemma 1, we know that sensitivity of a causal learn-
ing function is lower than that of an associational learning
function.

∆Fc,S ≤ ∆Fa,S (89)

Thus, `1 distance of h†c from the mean hminc,S is lower for
a causal learning function, and consequently its probabil-
ity Pr

(
F̂S = h†c

)
is higher. Now the set H+ is a one-sided

boundary on the values of h and includes the mean of the
Laplace distribution. Given symmetry of the Laplace distri-
bution, probability of F̂S lying in H+, Pr

(
F̂S ∈ H+

)
should

be lower whenever the probability at the one-sided bound-
ary is higher. Therefore, P(F̂S ∈ H+) is lower for a causal
mechanism than the associational learning mechanism.

∆Fc,S ≤ ∆Fa,S ⇒ Pr
(
F̂c,S ∈ H+

)
≤ Pr

(
F̂a,S ∈ H+

)
(90)
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Finally, using the above equation in Eqn. 87 shows that the
maximum membership advantage of a causal model is lower.

max
A,P∗

Adv(A, F̂c,S, n, P, P
∗) ≤ max

A,P∗
Adv(A, F̂a,S, n, P, P

∗)

(91)

E Infinite Sample Robustness to MI Attacks
Corollary 2. Under the conditions of Theorem 1, let hminc,S

be a causal model trained using empirical risk minimization
on a dataset S ∼ P(X, Y) with sample size n. As n → ∞,
membership advantage Adv(A, hminc,S )→ 0.

Proof. hminc,S can be obtained by empirical risk minimization.

hminc,S = arg min
h∈HC

LS∼P(h, y) = arg min
h∈HC

1

n

n∑
i=1

Lxi(h, y)

(92)
As |S| = n → ∞, hminc,S → hOPTc,P . Suppose now that there
exists another S′ of the same size such that S′ ∼ P∗. Then
as |S′| → ∞, hminc,S′ → hOPTc,P∗ .

From Theorem 1, hOPTc,P = hOPTc,P∗ . Thus,

lim
n→∞

hminc,S = lim
n→∞

hminc,S′ (93)

Equation 93 implies that as n→∞, the learnt hminc,S does not
depend on the training set, as long as the training set is sam-
pled from any distribution P∗ such that P(Y|XC) = P∗(Y|XC).
That is, being the global minimizer over distributions,
hminc,S = hOPTc,P does not depend on its training set. There-
fore, hminc,S (x) is independent of whether x is in the training
set.

lim
n→∞

Adv(A, hminc,S ) = Pr(A = 1|b = 1)− Pr(A = 1|b = 0)

= E[A|b = 1]− E[A|b = 0]

= E[A(hminc,S )|b = 1]− E[A(hminc,S )|b = 0]

= E[A(hminc,S )]− E[A(hminc,S )] = 0

(94)

where the second last equality follows since any function of
hminc,S is independent of the training dataset.

F Robustness to Attribute Inference Attacks
Theorem 7. Given a dataset S(X, Y) of size n and a struc-
tural causal model that connects X to Y, a causal model hc
makes it impossible to infer non-causal features.
Proof. The proof follows trivially from the definition of
a causal model. hc includes only causal features during
training. Thus, h(x) is independent of all features not in Xc.

Adv(A, h) = Pr(A = 1|xs = 1)− Pr(A = 1|xs = 0)

= Pr(A(h) = 1|xs = 1)− Pr(A(h) = 1|xs = 0)

= Pr(A(h) = 1)− Pr(A(h) = 1) = 0

G Generating Train and Test Datasets
This section describes how the train and test data are gen-
erated for the target and attacker models. The target model
is built using a dataset generated using the bnlearn library.
We divide the total dataset into training and test datasets in
a 60 : 40 ratio.

To generate train and test sets for the attacker model, the
output of the target model for each of the training and test
dataset is again divided into 50:50 ratio. Note that the
attacker model is trained on the confidence outputs of the
target model. Therefore, the training set for the attacker
model consists of output confidence values from the target
model’s training as well as the test dataset. The dataset
creation process is summarized in Figure 5.

Figure 5: Dataset division for training target and attacker models.


