
Choice Set Optimization Under Discrete Choice Models of Group Decisions 

Kiran Tomlinson 1 Austin R. Benson 1 

Abstract 
The way that people make choices or exhibit pref-
erences can be strongly affected by the set of avail-
able alternatives, often called the choice set. Fur-
thermore, there are usually heterogeneous prefer-
ences, either at an individual level within small 
groups or within sub-populations of large groups. 
Given the availability of choice data, there are 
now many models that capture this behavior in or-
der to make effective predictions—however, there 
is little work in understanding how directly chang-
ing the choice set can be used to influence the 
preferences of a collection of decision-makers. 
Here, we use discrete choice modeling to develop 
an optimization framework of such interventions 
for several problems of group influence, namely 
maximizing agreement or disagreement and pro-
moting a particular choice. We show that these 
problems are NP-hard in general, but imposing 
restrictions reveals a fundamental boundary: pro-
moting a choice can be easier than encouraging 
consensus or sowing discord. We design approxi-
mation algorithms for the hard problems and show 
that they work well on real-world choice data. 

1. Context effects and optimizing choice sets 
Choosing from a set of alternatives is one of the most impor-
tant actions people take, and choices determine the compo-
sition of governments, the success of corporations, and the 
formation of social connections. For these reasons, choice 
models have received significant attention in the fields of 
economics (Train, 2009), psychology (Tversky & Kahne-
man, 1981), and, as human-generated data has become in-
creasingly available online, computer science (Overgoor 
et al., 2019; Seshadri et al., 2019; Rosenfeld et al., 2020). In 
many cases, it is important that people have heterogeneous 
preferences; for example, people living in different parts of 
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a town might prefer different government policies. 

Much of the computational work on choice has been devoted 
to fitting models for predicting future choices. In addition to 
prediction, another area of interest is determining effective 
interventions to influence choice—advertising and political 
campaigning are prime examples. In heterogeneous groups, 
the goal might be to encourage consensus (Amir et al., 2015), 
or, for an ill-intentioned adversary, to sow discord, e.g., 
amongst political parties (Rosenberg et al., 2020). 

One particular method of influence is introducing new alter-
natives or options. While early economic models assume 
that alternatives are irrelevant to the relative ranking of op-
tions (Luce, 1959; McFadden, 1974), experimental work has 
consistently found that new alternatives have strong effects 
on our choices (Huber et al., 1982; Simonson & Tversky, 
1992; Shafir et al., 1993; Trueblood et al., 2013). These 
effects are often called context effects or choice set effects. 
A well-known example is the compromise effect (Simonson, 
1989), which describes how people often prefer a middle 
ground (e.g., the middle-priced wine). Direct measurements 
on choice data have also revealed choice set effects in sev-
eral domains (Benson et al., 2016; Seshadri et al., 2019). 

Here, we pose adding new alternatives as a discrete opti-
mization problem for influencing a collection of decision 
makers, such as the inhabitants of a city or the visitors to a 
website. To this end, we consider various models for how 
someone makes a choice from a given set of alternatives, 
where the model parameters can be readily estimated from 
data. In our setup, everyone has a base set of alternatives 
from which they make a choice, and the goal is to find a set 
of additional alternatives to optimize some function of the 
group’s joint preferences on the base set. We specifically an-
alyze three objectives: (i) agreement in preferences amongst 
the group; (ii) disagreement in preferences amongst the 
group; and (iii) promotion of a particular item (decision). 

We use the framework of discrete choice (Train, 2009) to 
probabilistically model a person’s choice from a given set of 
items, called the choice set. These models are parameterized 
for individual preferences, and when fitting parameters from 
data, preferences are commonly aggregated at the level of a 
sub-population of individuals. Discrete choice models such 
as the multinomial logit and elimination-by-aspects have 
played a central role in behavioral economics for several 
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decades with diverse applications, including forest manage-
ment (Hanley et al., 1998), social networks formation (Over-
goor et al., 2019), and marketing campaigns (Fader & McAl-
ister, 1990). More recently, new choice data and algo-
rithms have spurred machine learning research on models 
for choice set effects (Ragain & Ugander, 2016; Chierichetti 
et al., 2018b; Seshadri et al., 2019; Pfannschmidt et al., 
2019; Rosenfeld et al., 2020; Bower & Balzano, 2020). 

We provide the relevant background on discrete choice mod-
els in Section 2. From this, we formally define and ana-
lyze three choice set optimization problems—AGREEMENT, 
DISAGREEMENT, and PROMOTION—and analyze them un-
der four discrete choice models: multinomial logit (McFad-
den, 1974), the context dependent random utility model (Se-
shadri et al., 2019), nested logit (McFadden, 1978), and 
elimination-by-aspects (Tversky, 1972). We first prove that 
the choice set optimization problems are NP-hard in general 
for these models. After, we identify natural restrictions of 
the problems under which they become tractable. These 
restrictions reveal a fundamental boundary: promoting a 
particular item within a group is easier than minimizing or 
maximizing consensus. More specifically, we show that re-
stricting the choice models can make PROMOTION tractable 
while leaving AGREEMENT and DISAGREEMENT NP-hard, 
indicating that the interaction between individuals intro-
duces significant complexity to choice set optimization. 

After this, we provide efficient approximation algorithms 
with guarantees for all three problems under several choice 
models, and we validate our algorithms on choice data. 
Model parameters are learned for different types of individ-
uals based on features (e.g., where someone lives). From 
these learned models, we apply our algorithms to optimize 
group-level preferences. Our algorithms outperform a natu-
ral baseline on real-world data coming from transportation 
choices, insurance policy purchases, and online shopping. 

1.1. Related work 

Our work fits within recent interest from computer science 
and machine learning on discrete choice models in general 
and choice set effects in particular. For example, choice 
set effects abundant in online data has led to richer data 
models (Ieong et al., 2012; Chen & Joachims, 2016; Ra-
gain & Ugander, 2016; Seshadri et al., 2019; Makhijani & 
Ugander, 2019; Rosenfeld et al., 2020; Bower & Balzano, 
2020), new methods for testing the presence of choice set 
effects (Benson et al., 2016; Seshadri et al., 2019; Seshadri 
& Ugander, 2019), and new learning algorithms (Kleinberg 
et al., 2017; Chierichetti et al., 2018b). More broadly, there 
are efforts on learning algorithms for multinomial logit mix-
tures (Oh & Shah, 2014; Ammar et al., 2014; Kallus & Udell, 
2016; Zhao & Xia, 2019), Plackett-Luce models (Maystre 
& Grossglauser, 2015; Zhao et al., 2016), and other random 

utility models (Oh et al., 2015; Chierichetti et al., 2018a; 
Benson et al., 2018). 

One of our optimization problems is maximizing group 
agreement by introducing new alternatives. This is mo-
tivated in part by how additional context can sway opin-
ion on controversial topics (Munson et al., 2013; Liao & 
Fu, 2014; Graells-Garrido et al., 2014). There are also 
related algorithms for decreasing polarization in social net-
works (Garimella et al., 2017; Matakos et al., 2017; Chen 
et al., 2018; Musco et al., 2018), although we have no ex-
plicit network and adopt a choice-theoretic framework. 

Our choice set optimization framework is similar to assort-
ment optimization in operations research, where the goal 
is find the optimal set of products to offer in order to maxi-
mize revenue (Talluri & Van Ryzin, 2004). Discrete choice 
models are extensively used in this line of research, includ-
ing the multinomial logit (Rusmevichientong et al., 2010; 
2014) and nested logit (Gallego & Topaloglu, 2014; Davis 
et al., 2014) models. We instead focus our attention primar-
ily on optimizing agreement among individuals, which has 
not been explored in traditional revenue-focused assortment 
optimization. 

Finally, our problems relate to group decision-making. In 
psychology, introducing new shared information is critical 
for group decisions (Stasser & Titus, 1985; Lu et al., 2012). 
In computer science, the complexity of group Bayesian 
reasoning is a concern (H azła et al.˛ , 2017; 2019). 

2. Background and preliminaries 
We first introduce the discrete choice models that we analyze. 
In the setting we explore, one or more individuals make a 
(possibly random) choice of a single item (or alternative) 
from a finite set of items called a choice set. We use U 
to denote the universe of items and C ⊆ U the choice set. 
Thus, given C, an individual chooses some item x ∈ C. 

Given C, a discrete choice model provides a probability 
for choosing each item x ∈ C. We analyze four broad 
discrete choice models that are all random utility models 
(RUMs), which derive from economic rationality. In a RUM, 
an individual observes a random utility for each item x ∈ 
C and then chooses the one with the largest utility. We 
model each individual’s choices through the same RUM 
but with possibly different parameters to capture preference 
heterogeneity. In this sense, we have a mixture model. 

Choice data typically contains many observations from vari-
ous choice sets. We occasionally have data specific enough 
to model the choices of a particular individual, but often only 
one choice is recorded per person, making accurate pref-
erence learning impossible at that scale. Thus, we instead 
model the heterogeneous preferences of sub-populations 



Choice Set Optimization Under Discrete Choice Models of Group Decisions 

or categories of individuals. For convenience, we still use 
“individual” or “person” when referring to components of a 
mixed population, since we can treat each component as a 
decision-making agent with its own preferences. In contrast, 
we use the term “group” to refer to the entire population. 
We use A to denote the set of individuals (in the broad sense 
above), and a ∈ A indexes model parameters. 

The parameters of the RUMs we analyze can be inferred 
from data, and our theoretical results and algorithms assume 
that we have learned these parameters. Our analysis focuses 
on how the probability of selecting an item x from a choice 
set C changes as we add new alternative items from C = 
U \ C to the choice set. 

We let n = |A|, k = |C|, and m = |C| for notation. We 
mostly use n = 2, which is sufficient for hardness proofs. 

Multinomial logit (MNL). The multinomial logit (MNL) 
model (McFadden, 1974) is the workhorse of discrete choice 
theory. In MNL, an individual a’s preferences are encoded 
by a true utility ua(x) for every item x ∈ U . The observa-
tions are noisy random utilities ũa(x) = ua(x)+ ε, where ε 
follows a Gumbel distribution. Under this model, the proba-
bility that individual a picks item x from choice set C (i.e., 
x = arg maxy∈C ũa(y)) is the softmax over item utilities: 

ua(x)ePr(a ← x | C) = P (1)
eua(y) . 

y∈C 

ua(x)We use the term exp-utility for terms like e . The utility 
of an item is often parameterized as a function of features of 
the item in order to generalize to unseen data. For example, 
a linear function is an additive utility model (Tversky & 
Simonson, 1993) and looks like logistic regression. In our 
analysis, we work directly with the utilities. 

The MNL satisfies independence of irrelevant alternatives 
(IIA) (Luce, 1959), the property that for any two choice 

Pr(a←x|C)sets C, D and two items x, y ∈ C ∩ D: = Pr(a←y|C) 
Pr(a←x|D) . In other words, the choice set has no effect onPr(a←y|D) 

a’s relative probability of choosing x or y.1 Although IIA is 
intuitively pleasing, behavioral experiments show that it is 
often violated in practice (Huber et al., 1982; Simonson & 
Tversky, 1992). Thus, there are many models that account 
for IIA violations, including the other ones we analyze. 

Context-dependent random utility model (CDM). The 
CDM (Seshadri et al., 2019) is an extension of MNL that 
can model IIA violations. The core idea is to approximate 
choice set effects by the effect of each item’s presence on the 
utilities of the other items. For instance, a diner’s preference 
for a ribeye steak may decrease relative to a fish option if 
filet mignon is also available. Formally, each item z exerts 

1Over a ∈ A, we have a mixed logit which does not have to 
satisfy IIA (McFadden & Train, 2000). Here, we are interested in 
the IIA property at the individual level. 

a pull on a’s utility from x, which we denote pa(z, x). The 
CDM then resembles the MNL with utilities ua(x | C) =P 
ua(x) + z∈C pa(z, x). This leads to choice probabilities 
that are a softmax over the context-dependent utilities: 

ua(x|C)ePr(a ← x | C) = P 
eua (y|C) . (2) 

y∈C 

Nested logit (NL). The nested logit (NL) model (McFad-
den, 1978) instead accounts for choice set effects by group-
ing similar items into nests that people choose between 
successively. For example, a diner may first choose between 
a vegetarian, fish, or steak meal and then select a particular 
dish. NL can be derived by introducing correlation between 
the random utility noise ε in MNL; here, we instead consider 
a generalized tree-based version of the model.2 

The (generalized) NL model for an individual a consists of 
a tree Ta with a leaf for each item in U , where the internal 
nodes represent categories of items. Rather than having a 
utility only on items, each person a also has utilities ua(v) 
on all nodes v ∈ Ta (except the root). Given a choice set 
C, let Ta(C) be the subtree of Ta induced by C and all 
ancestors of C. To choose an item from C, a starts at the 
root and repeatedly picks between the children of the current 
node according to the MNL model until reaching a leaf. 

Elimination-by-aspects (EBA). While the previous mod-
els are based on MNL, the elimination-by-aspects (EBA) 
model (Tversky, 1972) has a different structure. In EBA, 
each item x has a set of aspects x0 representing properties 
of the item, and person a has a utility ua(χ) > 0 on each 
aspect χ. An item is chosen by repeatedly picking an aspect 
with probability proportional to its utility and eliminating all 
items that do not have that aspect until only one item remains 
(or, if all remaining items have the same aspects, the choice 
is made uniformly at random). For example, a diner may 
first eliminate items that are too expensive, then disregard 
meat options, and finally look for dishes with pasta beforeS 0choosing mushroom ravioli. Formally, let C 0 = x∈C xT 0be the set of aspects of items in C and let C0 = x∈C x 
be the aspects shared by all items in C. Additionally, let 
Cχ = {x ∈ C | χ ∈ x0}. The probability that individual a 
picks item x from choice set C is recursively defined as P 

0\C0 ua(χ) Pr(a←x|Cχ)
Pr(a ← x | C) = χ∈xP . (3)(ψ)ψ∈C0\C0 ua

If all remaining items have the same aspects (C 0 = C0), the 
1denominator is zero, and Pr(a ← x | C) = |C| in that case. 

Encoding MNLs in other models. Although the three 
models with context effects appear quite different, they all 
subsume the MNL model. Thus, if we prove a problem hard 
under MNL, then it is hard under all four models. 

2Certain parameter regimes in this generalized model do not 
correspond to RUMs (Train, 2009), but this model is easier to 
analyze and captures the salient structure. 
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Lemma 1. The MNL model is a special case of the CDM, 
NL, and EBA models. 

Proof. Let M be an MNL model. For the CDM, use the 
utilities from M and set all pulls to 0. For NL, make all 
items children of Ta’s root and use the utilities from M. 
Lastly, for EBA, assign a unique aspect χx to each item x ∈ 
U with utility u ua(x)

a(χx) = e . Following (3), Pr(a ← x |
u (χ ) Pr(a←x|C )

C) = aP x χx Cχx = {x} Pr(a ← x |
0 0 ua(ψ) . Since , 

ψ∈C \C

Cχx ) = 1 and thus Pr(a  ← x | C) ∝ u (χ ) = eu a (x)
a x , 

matching the MNL M. 

3. Choice set optimization problems 
By introducing new alternatives to the choice set C, we 
can modify the relationships amongst individual prefer-
ences, resulting in different dynamics at the collective level. 
Similar ideas are well-studied in voting models, e.g., intro-
ducing alternatives to change winners selected by Borda 
count (Easley & Kleinberg, 2010). Here, we study how 
to optimize choice sets for various group-level objectives, 
measured in terms of individual choice probabilities coming 
from discrete choice models. 

Agreement and Disagreement. Since we are modeling 
the preferences of a collection of decision-makers, one im-
portant metric is the amount of disagreement (conversely, 
agreement) about which item to select. Given a set of al-
ternatives Z ⊆ C we might introduce, we quantify the 
disagreement this would induce as the sum of all pairwise 
differences between individual choice probabilities over C: X 
D(Z) = | Pr(a ← x | C ∪ Z) − Pr(b ← x | C ∪ Z)|. 

{a,b}⊆A,x∈C 

(4) 

Here, we care about the disagreement on the original choice 
set C that results from preferences over the new choice set 
C ∪ Z. In this setup, C could represent core options (e.g., 
two major health care policies under deliberation) and Z 
additional alternatives designed to sway opinions. 

Concretely, we study the following problem: given A, C, C, 
and a choice model, minimize (or maximize) D(Z) over 
Z ⊆ C. We call the minimization problem AGREEMENT 
and the maximization problem DISAGREEMENT. AGREE-
MENT has applications in encouraging consensus, while 
DISAGREEMENT yields insight into how susceptible a group 
may be to an adversary who wishes to increase conflict. An-
other potential application for DISAGREEMENT is to enrich 
the diversity of preferences present in a group. 

Promotion. Promoting an item is another natural objective, 
which is of considerable interest in online advertising and 
content recommendation. Given A, C, C, a choice model, 

∗and a target item x ∈ C, the PROMOTION problem is 

to find the set of alternatives Z ⊆ C whose introduction 
maximizes the number of individuals whose “favorite” item 

∗in C is x . Formally, this means maximizing the number 
∗of individuals a ∈ A for whom Pr(a ← x | C ∪ Z) > 

∗Pr(a ← x | C ∪ Z), x ∈ C, x 6= x . This also has 
applications in voting, where questions about the influence 
of new candidates constantly arise. 

One of our contributions in this paper is showing that pro-
motion can be easier (in a computational complexity sense) 
than agreement or disagreement optimization. 

4. Hardness results 
We now characterize the computational complexity of 
AGREEMENT, DISAGREEMENT, and PROMOTION under 
the four discrete choice models. We first show that AGREE-
MENT and DISAGREEMENT are NP-hard under all four 
models and that PROMOTION is NP-hard under the three 
models with context effects. After, we prove that imposing 
additional restrictions on these discrete choice models can 
make PROMOTION tractable while leaving AGREEMENT 
and DISAGREEMENT NP-hard. The parameters of some 
choice models have extra degrees of freedom, e.g., MNL 
has additive-shift-invariant utilities. For inference, we use a 
standard form (e.g., sum of utilities equals zero). For ease of 
analysis, we do not use such standard forms, but the choice 
probabilities remain unambiguous. 

4.1. AGREEMENT 

Although the MNL model does not have any context effects, 
introducing alternatives to the choice set can still affect the 
relative preferences of two different individuals. In partic-
ular, introducing alternatives can impact disagreement in a 
sufficiently complex way to make identifying the optimal 
set of alternatives computationally hard. Our proof of Theo-
rem 1 uses a very simple MNL in the reduction, with only 
two individuals and two items in C, where the two individu-
als have exactly the same utilities on alternatives. In other 
words, even when individuals agree about new alternatives, 
encouraging them to agree over the choice set is hard. 

Theorem 1. In the MNL model, AGREEMENT is NP-hard, 
even with just two items in C and two individuals that have 
identical utilities on items in C. 

Proof. By reduction from PARTITION, an NP-complete 
problem (Karp, 1972). Let S be the set of integers we wish 
to partition into two subsets with equal sum. We construct an 
instance of DISAGREEMENT with A = {a, b}, C = {x, y}, 
C = S (abusing notation to identify alternatives with the 

1 P 
PARTITION integers). Let t = z∈S z. Define the util-2 
ities as: ua(x) = log t, ub(x) = log 3t, ua(y) = log t, 
ub(y) = log 2t, and ua(z) = ub(z) = log z for all z ∈ C. 
The disagreement induced by a set of alternatives Z ⊆ C is 
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characterized by its sum of exp-utility sZ = z∈Z z: � � � �

D(Z) = � t − 3t �  t + � − 2t �.2t+sZ 5t+sZ 2t+sZ 5t+sZ 

The total exp-utility of all items in C is 2t. On the interval 
[0, 2t], D(Z) is minimized at sZ = t (Appendix A.1; Fig. 4, 
left). Thus, if we could efficiently find the set Z minimizing 
D(Z), then we could efficiently solve PARTITION. 

From Lemma 1, the other models we consider can all encode 
any MNL instance, which leads to the following corollary. 

Corollary 1. AGREEMENT is NP-hard in the CDM, NL, 
and EBA models. 

4.2. DISAGREEMENT 

Using a similar strategy, we can construct an MNL instance 
whose disagreement is maximized rather than minimized 
at a particular target value (Theorem 2). The reduction 
requires an even simpler MNL setup. 

Theorem 2. In the MNL model, DISAGREEMENT is NP-
hard, even with just one item in C and two individuals that 
have identical utilities on items in C. 

Proof. By reduction from SUBSET SUM (Karp, 1972). Let 
S be a set of positive integers with target t. Let A = {a, b}, 
C = {x}, C = S, with utilities: ua(x) = log 2t, ub(x) = 
log t/2, and ua(z) = ub(z) = log z for all z ∈ C. LettingP 
sZ = ⊆z∈Z z, including Z  C makes the disagreement � �

 t/2D(Z) = � 2t − �.2t+sZ t/2+sZ 

For sZ ≥ 0, D(Z) is maximized at sZ = t (Appendix A.1; 
Fig. 4, right). Thus, if we could efficiently maximize D(Z), 
then we could efficiently solve SUBSET SUM. 

By Lemma 1, we again have the following corollary. 

Corollary 2. DISAGREEMENT is NP-hard in the CDM, NL, 
and EBA models. 

4.3. PROMOTION 

In choice models with no context effects, PROMOTION has 
a constant-time solution: under IIA, the presence of alterna-
tives has no effect on an individual’s relative preference for 
items in C. However, PROMOTION is more interesting with 
context effects, and we show that it is NP-hard for CDM, 
NL, and EBA. In Section 4.4, we will show that restric-
tions of these models make PROMOTION tractable but keep 
AGREEMENT and DISAGREEMENT hard. 

Theorem 3. In the CDM model, PROMOTION is NP-hard, 
even with just one individual and three items in C. 

Proof. By reduction from SUBSET SUM. Let set S with 
target t be an instance of SUBSET SUM. Let A = {a}, 
C = {x∗ , w, y}, C = S. Using tuples interpreted entry-
wise for brevity, suppose that we have the following utilities: 

u ∗ 
a(hx , w, yi | C) = h1, t, −ti, ua(z) = −∞ for all z ∈ 
C, and p ∗

a(z, hx , w, yi) = hz, 0, 2zi for all z ∈ C. We 
∗ P

wish to promote x . Let sZ = z∈Z z. When we include 
the alternatives in Z, x∗ is the item in C most likely to be 
chosen if and only if 1 + sZ > t and 1 + sZ > −t + 2sZ . 
Since sZ and t are integers, this is only possible if sZ = t. 
Thus, if we could efficiently promote x∗ , then we could 
efficiently solve SUBSET SUM. 

We use the same Goldilocks strategy in our proofs for the 
NL and EBA models (details in Appendix A): by carefully 
defining utilities, we create choice instances where the op-
timal promotion solution is to pick just the right quantity 
of alternatives to increase preference for one item without 
overshooting. However, the NL model has a novel challenge 
compared to the CDM. With CDM, alternatives can increase 
the choice probability of an item in C, but in the NL, new 
alternatives only lower choice probabilities. 

Theorem 4. In the NL model, PROMOTION is NP-hard, 
even with just two individuals and two items in C. 

This construction relies on the two individuals having dif-
ferent tree structures. We will see in Section 4.4 that this 
is a necessary condition for the hardness of PROMOTION. 
Finally, we have the following hardness result for EBA. 

Theorem 5. In the EBA model, PROMOTION is NP-hard, 
even with just two individuals and two items in C. 

4.4. Restricted models that make promotion easier 

We now show that, in some sense, PROMOTION is a funda-
mentally easier problem than AGREEMENT or DISAGREE-
MENT. Specifically, there are simple restrictions on CDM, 
NL, and EBA that make PROMOTION tractable but leave 
AGREEMENT and DISAGREEMENT NP-hard. Importantly, 
these restrictions still allow for choice set effects. In 
Appendix B, we also prove a strong restriction on the 
MNL model where AGREEMENT and DISAGREEMENT are 
tractable, but we could not find meaningful restrictions for 
similar results on the other models. 

2-item CDM with equal context effects. The proof of 
Theorem 3 shows that PROMOTION is hard with only a sin-
gle individual and three items in C. However, if C only 
has two items and context effects are the same (i.e., pa(z, ·) 
is the same for all z ∈ C), then PROMOTION is tractable. 
The optimal solution is to include all alternatives that in-
crease utility for x∗  more than the other item, as doing so 
makes strict progress on promoting x∗ . If individuals have 
different context effects or if there are more than two items, 
then there can be conflicts between which items should be 
included (see Appendix A.2 for a proof that 2-item CDM 
with unequal context effects makes PROMOTION NP-hard). 
Although this restriction makes PROMOTION tractable, it 
leaves AGREEMENT and DISAGREEMENT NP-hard: the 
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proofs of Theorems 1 and 2 can be interpreted as 2-item and 
1-item CDMs with equal (zero) context effects. 

Same-tree NL. If we require that all individuals share the 
same NL tree structure, but still allow different utilities, 
then promotion becomes tractable. For each z ∈ C, we can 
determine whether it reduces the relative choice probability 

∗of x based on its position in the tree: adding z decreases 
∗the relative choice probability of x if and only if z is a 

∗sibling of any ancestor of x (including x ∗) or if it causes 
such a sibling to be added to Ta(C). Thus, the solution to 
PROMOTION is to include all z not in those positions, which 
is a polynomial-time check. This restriction leaves AGREE-
MENT and DISAGREEMENT NP-hard via Theorems 1 and 2 
as we can still encode any MNL model in a same-tree NL 
using the tree in which all items are children of the root. 

Disjoint-aspect EBA. The following condition on aspects 
∗makes promoting x tractable: for all z ∈ C, either 

∗0 0 ∗ z0 ∩ x = ∅ or z0 ∩ y = ∅ for all y ∈ C, y 6= x . That is, 
∗alternatives either share no aspects with x or share no as-

pects with other items in C. This prevents alternatives from 
∗cannibalizing from both x and its competitors. To promote 

∗ x , we include all alternatives that share aspects with com-
∗ ∗ ∗petitors of x but not x itself, which strictly promotes x . 

This condition is slightly weaker than requiring all items to 
have disjoint aspects, which reduces to MNL. However, this 
condition is again not sufficient to make AGREEMENT and 
DISAGREEMENT tractable, since any MNL model can be 
encoded in a disjoint-aspect EBA instance. 

5. Approximation algorithms 

Algorithm 1 ε-additive approximation for AGREEMENT in 
the MNL model. 

1 Input: n individuals A, k items C, m alternatives C, 
utilities ua(·) > 0 for each a ∈ A. For brevity: P � � 

ua(x) n
2 eax ← e , sa ← eaz , δ ← ε/(2km )z∈C 2 
3 L0 ← empty n-dimensional array whose ath dimension 

has size 1+blog1+δ sac (each cell can store a set Z ⊆ C 
and its n exp-utility sums for each individual) 

4 Initialize L0[0, . . . , 0] ← (∅, 0, . . . , 0) (n zeros) 
5 for i = 1 to m do 
6 z ← C[i − 1], Li ← Li−1 

7 for each cell of Li−1 containing (Z, t1, . . . , tn) do 
8 h ← n-tuple w/ entries blog1+δ(tj + eaj z )c, ∀j 
9 if Li[h] is empty then 

10 Li[h] ← (Z ∪{z}, t1 +ea1 z , . . . , tn +eanz) 
11 Zm ← collection of all sets Z in cells of Lm 

12 return arg minZ∈Zm D(Z) (see Eq. (4)) 

Figure 1. Example of the structure Li used in Algorithm 1 for 
n = 3 individuals and C = {F, �}. Here, Alice has high utility 
for F and low utility for �, Bob has medium utility for F and low 
utility for �, and Carla has low utility for F and high utility for �. 
The exp-utility sums stored in cells are omitted. 

Alice 
Carla 

Bob 

∅ {F} 

{F, �
}{�} 

Thus far, we have seen that several interesting group 
decision-making problems are NP-hard across standard dis-
crete choice models. Here, we provide a positive result: 
we can compute arbitrarily good approximate solutions to 

many instances of these problems in polynomial time. We 
focus our analysis on Algorithm 1, which is an ε-additive 
approximation algorithm to AGREEMENT under MNL, with 
runtime polynomial in k, m, and 1 , but exponential in nε 

(recall that k = |C|, m = |C|, and n = |A|). In contrast, 
brute force (testing every set of alternatives) is exponential 
in m and polynomial in k and n. AGREEMENT is NP-hard 
even with n = 2 (Theorem 1), so our algorithm provides 
a substantial efficiency improvement. We discuss how to 
extend this algorithm to other objectives and other choice 
models later in the section. Finally, we present a faster but 
less flexible mixed-integer programming approach for MNL 
AGREEMENT and DISAGREEMENT that performs very well 
in practice. 

Algorithm 1 is based on an FPTAS for SUBSET SUM (Cor-
men et al., 2001, Sec. 35.5), and the first parts of our anal-
ysis follow some of the same steps. The core idea of our 
algorithm is that a set of items can be characterized by its 
exp-utility sums for each individual and that there are only 
polynomially many combinations of exp-utility sums that 
differ by more than a multiplicative factor 1 + δ. We can 
therefore compute all sets of alternatives with meaningfully 
different impacts and pick the best one. For the purpose of 
the algorithm, we assume all utilities are positive (otherwise 
we may access a negative index); utilities can always be 
shifted by a constant to satisfy this requirement. 

We now provide an intuitive description of Algorithm 1. 
The array Li has one dimension for each individual in 
A (we use a hash table in practice since Li is typically 
sparse). The cells along a particular dimension discretize 
the exp-utility sums that the individual corresponding to 
that dimension could have for a particular set of alternatives 
(Figure 1). In particular, if individual j has total exp-utility P 
tj = y∈Z e

uj (y) for a set Z, then we store Z at index 
blog1+δ tj c along dimension j. 

As the algorithm progresses, we place possible sets of al-
ternatives Z in the cells of Li according to their exp-utility 
sums t1, . . . , tn for each individual (we store t1, . . . , tn in 
the cell along with Z). We add one element at a time from C 
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to the sets already in Li (L0 starts with only the empty set). 
If two sets have very similar exp-utility sums, they may map 
to the same cell, in which case only one of them is stored. 
If the discretization of the array is coarse enough (that is, 
with large enough δ), many sets of alternatives will map to 
the same cells, reducing the number of sets we consider and 
saving computational work. On the other hand, if the dis-
cretization is fine enough (δ is sufficiently small), then the 
best set we are left with at the end of the algorithm cannot 
induce a disagreement value too different from the optimal 
set. The proof of Theorem 6 formalizes this reasoning. 

Theorem 6. Algorithm 1 is an ε-additive approximation 
for AGREEMENT in the MNL model. 

Proof. We will use the following lemma, which says that 
sets mapping to the same cell have similar exp-utility sums. 

Lemma 2. Let Ci be the first i elements processed by the 
outer for loop. At the end of the algorithm, for all Z ⊆ Ci 
with exp-utility sums ta, there exists some Z 0 ∈ Li with 

ta < t0exp-utility sums t0 such that < ta(1 + δ)i, for a (1+δ)i a 

all a ∈ A (with δ as defined in Algorithm 1, Line 2).� � 
nThe proof is in Appendix C. Now let β = ε/(k ). Fol-2 

lowing our choice of δ and using Lemma 2, at the end of the 
algorithm, the optimal set Z∗ ⊆ C (with exp-utility sums 
t ∗) has some representative Z 0 in Lm such that a 

∗ t m a < t0 < t ∗ (1 + β/(2m)) , ∀a ∈ A.(1+β/(2m))m a a 

x 2Since e ≥ (1 + x/m)m , we have t ∗/e 
β 
< t0 < t ∗ e 

β 
2 ,a a a 

xand since e ≤ 1 + x + x2 when x < 1, 

∗ t a < t0 < t ∗(1 + β/2 + β2/4).1+β/2+β2/4 a a 

t aFinally, 
∗ 

< t0 < t ∗(1 + β) because 0 < β < 1.1+β a a 

Now we show that D(Z∗) and D(Z 0) differ by at most ε. 
To do so, we first bound the difference between Pr(a ← x |P 
C ∪Z∗) and Pr(a ← x | C ∪Z 0) by β. Let ca = x∈C eax 

be the total exp-utility of a on C. By the above reasoning, 

eax eax eax 
< < , 

aca + t ∗(1 + β) ca + t0 t ∗ 

a a ca + 1+β 

where the middle term is equal to Pr(a ← x | C ∪ Z 0). 
From the lower bound, the difference between Pr(a ← x |
C ∪ Z∗) and Pr(a ← x | C ∪ Z 0) could be as large as 

eax eax− 
+ t ∗ ca + t ∗(1 + β)ca a a 

eaxt ∗ 
aβ eaxta 

∗ β β 
= < ≤ . 

(ca + t ∗)(ca + t ∗(1 + β)) 2cat ∗ 2a a a 

From the upper bound, the difference between Pr(a ← x | 

C ∪ Z∗) and Pr(a ← x | C ∪ Z 0) could be as large as 
1 

e eaxta(1 − )ax eax 1+β 
t ∗ − = t∗a a ca + ca + t∗ 

a (ca + )(ca + t ∗a)1+β 1+β 

eaxt ∗β eaxt ∗ 
a a β β

= < ≤ . 
(ca(1 + β) + t ∗)(ca + t ∗) 2cat ∗ 

a a a 2

Thus, Pr(a ← x | C ∪ Z∗) and Pr(a ← x | C ∪ Z 0) differ 
by at most β . Using the same argument for an individual b2 ,
the disagreement between a and b about x can only increase 
by β with the set Z compared to the optimal set Z∗ . Since� � 
there are n pairs of individuals and k items in C2 , the total � � 
error of the algorithm is bounded by k n β = ε2 .

We now show that the runtime of Algorithm 1 is O((m + 
kn2)(1 + blog1+δ sc)n), where s = maxa sa is the max-
imum exp-utility sum for any individual. Thus, for any 
fixed n, this runtime is bounded by a polynomial in k, m, 
and 1 . To see this, first note that the size of Li ε is bounded 
above by (1 + blog1+δ sc)n . For each z ∈ C, we perform 
constant-time operations on each entry of Li, for a total of 
O(m(1 + blog1+δ sc)n) time. Then we compute D(Z) for 
each cell of Lm, which takes O(kn2) time per cell. The 
total runtime is therefore O((m + kn2)(1 + blog1+δ sc)n), 
as claimed. Finally, (1 + blog1+δ sc)n is bounded by a 
polynomial in m, k, and 1 for any fixed n ε (Appendix C.2).

AGREEMENT is NP-hard even when individuals have equal 
utilities on alternatives. In this case, we only need to com-
pute exp-utility sums for a single individual, which brings 
the runtime down to O((m + kn2) log1+δ s). 

Extensions to other objectives and models. Algorithm 1 
can be easily extended to any objective function that is 
efficiently computable from utilities. For instance, Algo-
rithm 1 can be adapted for DISAGREEMENT by replacing 
the arg min with an arg max on Line 12. 

Algorithm 1 can also be adapted for CDM and NL. The anal-
ysis is similar and details are in Appendix C, although the 
running times and guarantees are different. With CDM, the 
exponent in the runtime increases to nk for AGREEMENT 
and DISAGREEMENT, and the ε-additive approximation is 
guaranteed only if items in C exert zero pulls on each other. 
However, even for the general CDM, our experiments will 
show that the adapted algorithm remains a useful heuris-
tic. When we adapt Algorithm 1 for NL, we retain the full 
approximation guarantee but the exponent in the runtime 
increases and has a dependence on the tree size. 

PROMOTION is not interesting under MNL and also has a 
discrete rather than continuous objective, i.e., the number of 
people with favorite item x∗ in C. For models with context 
effects, we can define a meaningful notion of approximation. 
We say that an item y ∈ C ∪ Z is an ε-favorite item of indi-
vidual a if Pr(a ← y | C ∪Z)+ε ≥ Pr(a ← x | C ∪Z) for 
all x ∈ C. A solution then ε-approximates PROMOTION if 
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the number of people for whom x ∗ is an ε-favorite item is at 
least the value of the optimal PROMOTION solution. Using 
this, we can adapt Algorithm 1 for PROMOTION under CDM 
and NL. Again, for CDM, the approximation has guarantees 
in certain parameter regimes and the NL has full approxima-
tion guarantees. Since we do not have compute D(Z), the 
runtimes loses the kn2 term compared to the AGREEMENT 
and DISAGREEMENT versions (Appendix C.5). 

Finally, EBA has considerably different structure than the 
other models. We leave algorithms for EBA to future work. 

Fast exact methods for MNL. We provide another ap-
proach for solving AGREEMENT and DISAGREEMENT in 
the MNL model, based on transforming the objective func-
tions into mixed-integer bilinear programs (MIBLPs; details 
in Appendix D). MIBLPs can be solved for moderate prob-
lem sizes with high-performance branch-and-bound solvers 
(we use Gurobi’s implementation). In practice, this ap-
proach is faster than Algorithm 1 and can optimize over 
larger sets C. However, this approach does not easily ex-
tend to CDM, NL, or PROMOTION and does not have a 
polynomial-time runtime guarantee. 

6. Numerical experiments 

Table 1. Dataset statistics: item, observation, and unique choice 
set counts; and percent of observations in sub-population splits. 

Dataset # items # obs. # sets split % 

SFWORK 6 5029 12 16/84 
ALLSTATE 24 97009 2697 45/55 
YOOCHOOSE 41 90493 1567 47/53 

Table 2. Sum of error over all 2-item choice sets C compared to 
optimal (brute force) on SFWORK. Algorithm 1 is optimal. 

Model Problem Greedy Algorithm 1 

MNL AGREEMENT 0.03 0.00 
DISAGREEMENT 0.00 0.00 

rank-2 CDM AGREEMENT 0.14 0.00 
DISAGREEMENT 0.13 0.00 

NL AGREEMENT 0.00 0.00 
DISAGREEMENT 0.00 0.00 

We apply our methods to three datasets (Table 1). The 
SFWORK dataset (Koppelman & Bhat, 2006) comes from 
a survey of San Francisco residents on available (choice 
set) and selected (choice) transportation options to get to 
work. We split the respondents into two segments (|A| = 2) 
according to whether or not they live in the “core residen-
tial district of San Fransisco or Berkeley.” The ALLSTATE 
dataset (Kaggle, 2014) consists of insurance policies (items) 
characterized by anonymous categorical features A–G with 
2 to 4 values each. Each customer views a set of policies (the 
choice set) before purchasing one. We reduce the number 

Figure 2. Algorithm 1 vs. Greedy performance box plots when 
applied to all 2-item choice sets in ALLSTATE and YOOCHOOSE 

under MNL and CDM (subplots also show ε and the percent of 
subsets of C computed by Algorithm 1, written X% sets). Each 
point is the difference in D(Z) when Algorithm 1 and Greedy are 
run on a particular choice set. Horizontal spread shows approxi-
mate density and the Xs mark means. A negative (resp. positive) 
y-value for AGREEMENT (resp. DISAGREEMENT) indicates that 
Algorithm 1 outperformed Greedy. Algorithm 1 performs better in 
all cases except for DISAGREEMENT under CDM on YOOCHOOSE. 
Even in this exception, though, our approach finds a few very good 
solutions and Algorithm 1 has better mean performance. 
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of items to 24 by considering only features A, B, and C. To 
model different types of individuals, we split the data into 
homeowners and non-homeowners (again, |A| = 2). The 
YOOCHOOSE dataset (Ben-Shimon et al., 2015) contains 
online shopping data of clicks and purchases of categorized 
items in user browsing sessions. Choice sets are unique cate-
gories browsed in a session and the choice is the category of 
the purchased product (categories appearing fewer than 20 
times were omitted). We split the choice data into two sub-
populations by thresholding on the purchase timestamps. 

For inferring maximum-likelihood models from data, we 
use PyTorch’s Adam optimizer (Kingma & Ba, 2015; Paszke 
et al., 2019) with learning rate 0.05, weight decay 0.00025, 
batch size 128, and the amsgrad flag (Reddi et al., 2018). 
We use the low-rank (rank-2) CDM (Seshadri et al., 2019) 
that expresses pulls as the inner product of item embeddings. 
Our code and data are available at https://github. 
com/tomlinsonk/choice-set-opt. 

For SFWORK under the MNL, CDM, and NL models, we 
considered all 2-item choice sets C (using all other items 
for C) for AGREEMENT and DISAGREEMENT (for the NL 
model, we used the best-performing tree from Koppelman 
& Bhat (2006)). We compare Algorithm 1 (ε = 0.01) to a 

https://github.com/tomlinsonk/choice-set-opt
https://github.com/tomlinsonk/choice-set-opt
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greedy approach (henceforth, “Greedy”) that builds Z by 
repeatedly selecting the item from C that, when added to 
Z, most improves the objective, if such an item exists. This 
dataset was small enough to compare against the optimal, 
brute-force solution (Table 2). In all cases, Algorithm 1 
finds the optimal solution, while Greedy is often subopti-
mal. However, for this value of ε, we find that Algorithm 1 
searches the entire space and actually computes the brute 
force solution (we get the number of sets analyzed by Al-
gorithm 1 from |Lm| for a given ε and compare it to 2|C|). 
Even though we have an asymptotic polynomial runtime 
guarantee, for small enough datasets, we might not see com-
putational savings. Running with larger ε yielded similar 
results, even for ε > 2, when our bounds are vacuous. 

The results still highlight two important points. First, 
even on small datasets, Greedy can be sub-optimal. 
For example, for AGREEMENT under CDM with C = 
{drive alone, transit}, Algorithm 1 found the optimal Z = 
{bike, walk}, inferring that both sub-populations agree on 
both driving less and taking transit less. However, Greedy 
just introduced a carpool option, which has a lower effect 
on discouraging driving alone or taking transit, resulting in 
lower agreement between city and suburban residents. 

Second, our theoretical bounds can be more pessimistic than 
what happens in practice. Thus, we can consider larger val-
ues of ε to reduce the search space; Algorithm 1 remains a 
principled heuristic, and we can measure how much of the 
search space Algorithm 1 considers. This is the approach we 
take for the ALLSTATE and YOOCHOOSE data, where we 
find that Algorithm 1 far outperforms its theoretical worst-
case bound. We again considered all 2-item choice sets C 
and tested our method under MNL and CDM,3 setting ε so 
that the experiment took about 30 minutes to run for ALL-
STATE and 2 hours for YOOCHOOSE (of that time, Greedy 
takes 5 seconds to run; the rest is taken up by Algorithm 1). 
Algorithm 1 consistently outperforms Greedy (Fig. 2), even 
with ε > 2 for CDM. Moreover, Algorithm 1 only computes 
a small fraction of possible sets of alternatives, especially 
for YOOCHOOSE. Algorithm 1 does not perform as well 
with the rank-2 CDM as it does with MNL, which is to 
be expected as we only have approximation guarantees for 
CDM under particular parameter regimes (in which these 
data do not lie). The worse performance on CDM is due to 
the context effects that items from C exert on each other. 
Greedy does fairly well for DISAGREEMENT under CDM 
with YOOCHOOSE, but even in this case, Algorithm 1 per-
forms significantly better in enough instances for the mean 
(but not median) performance to be better than Greedy. We 
repeated the experiment with 500 choice sets of size up to 5 
sampled from data with similar results (Appendix E.3). We 

3In this case, we did not have available tree structures for NL, 
which are difficult to derive from data (Benson et al., 2016). 

also ran the MIBLP approach for MNL, which performed 
as well as Algorithm 1 and was about 12x faster on YOO-
CHOOSE and 240x faster on ALLSTATE (Appendix E.2). 

PROMOTION. We applied the CDM PROMOTION version 
of Algorithm 1 to ALLSTATE, since this dataset is small 
enough to compute brute-force solutions. For each 2-item 
choice set C, we attempted to promote the less-popular 
item of the pair using brute-force, Greedy, and Algorithm 1. 
Algorithm 1 performed optimally up to ε = 32, above which 
it failed in only 2–26 of 252 feasible instances (Fig. 3, left). 
(Here, successful promotion means that the item becomes 
the true favorite among C.) On the other hand, Greedy 
failed in 37% of the feasible instances. As in the previous 
experiment, our algorithm’s performance in practice far 
exceeds the worst-case bounds. The number of sets tested 
by Algorithm 1 falls dramatically as ε increases (Fig. 3, 
right). With more items (or a smaller range of utilities), the 
value of ε required to achieve the same speedup over brute 
force would be smaller (as with YOOCHOOSE). In tandem, 
these results show that we get near-optimal PROMOTION 
performance with far fewer computations than brute force. 

Figure 3. PROMOTION results on ALLSTATE 2-item choice sets. 
(Left) Success rate comparison; Algorithm 1 has near-optimal per-
formance (about 9% of instances have no PROMOTION solution). 
(Right) Number of subsets of C computed by Algorithm 1 (dashed 
gray line at 222 = 2m for brute force computation). 

10−1 100 101 102 103

Approximation ε

0.0

0.5

1.0

Pr
op

or
tio

n 
So

lv
ed

Algorithm 1
Greedy
Brute force

10−1 100 101 102 103

Approximation ε

102
103
104
105
106
107

# 
Se

ts
 C

om
pu

te
d

7. Discussion 
Our decisions are influenced by the alternatives that are 
available, the choice set. In collective decision-making, 
altering the choice set can encourage agreement or create 
new conflict. We formulated this as an algorithmic question: 
how can we optimize the choice set for some objective? 

We showed that choice set optimization is NP-hard for natu-
ral objectives under standard choice models; however, we 
also found that model restrictions makes promoting a choice 
easier than encouraging a group to agree or disagree. We de-
veloped approximation algorithms for these hard problems 
that are effective in practice, although there remains a gap 
between theoretical approximation bounds and performance 
on real-world data. Future work could address choice set 
optimization in interactive group decisions, where group 
members can communicate their preferences to each other 
or must collaborate to reach a unified decision. Lastly, Ap-
pendix F discusses the ethical considerations of this work. 
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