
�� �� ������ ��

Choice Set Optimization Under Discrete Choice Models of Group Decisions

A. Hardness proofs
A.1. Disagreement functions from proofs of

Theorems 1 and 2

0 1 2
sZ/t

0.16

0.18

0.20

0.22

D
(Z
)

0 1 2 3 4 5
sZ/t

0.0
0.1
0.2
0.3
0.4

D
(Z
)

t 3t tFigure 4. (Left) Plot of D(Z) = − + −
2t+sZ 5t+sZ 2t+sZ

2t from the proof of Theorem 1. (Right) Plot of D(Z) =
5t+sZ

2t t/2− from the proof of Theorem 2. Both functions
2t+sZ t/2+sZ

are re-parameterized in terms of the ratio sZ /t by dividing through
by t and achieve local optima at sZ /t = 1 (i.e. sZ = t); this can
be verified analytically.

A.2. CDM PROMOTION is hard with |A| = 2, |C| = 2

In the main text, we show CDM PROMOTION is NP-hard
when |A| = 1, |C| = 3 (Theorem 3). Here, we provide
an additonal proof for the case when |A| = 2, |C| = 2.
These are the smallest hard instances of the problem (|A| =
1, |C| = 2 is easy to solve: introduce alternatives that in-

∗ crease utility for x for than its competitor).

Theorem 7. In the CDM model, PROMOTION is NP-hard,
even with just two individuals and two items in C.

Proof. By reduction from SUBSET SUM. Let S, t be an
instance of SUBSET SUM. Let A = {a, b}, C = {x, y},
C = S. Using tuples interpreted entrywise, construct a
CDM with the following parameters.

∗ ua(hx , yi) = ht + ε, 0i
∗ ub(hx , yi) = hε, ti
ua(z) = ub(z) = −∞ ∀z ∈ C
∗ pa(z, hx , yi) = h0, zi ∀z ∈ C
∗ pb(z, hx , yi) = hz, 0i ∀z ∈ C

To promote x ∗, we need to add more than t − ε to b’s utility
∗for x ∗, but add less than t + ε to a’s utility for x . Since all

pulls are integral, the only solution is a set Z whose sum
of pulls is t. If we could efficiently find such a set, then we
could efficiently find the SUBSET SUM solution.

A.3. Proof of Theorem 4

Proof. By reduction from SUBSET SUM. Let S =
{z1, . . . , zn}, t be an instance of SUBSET SUM. Let A =

∗{a, b}, C = {x , y}, C = S, and 0 < ε < 1. The nest
structures and utilities are shown in Fig. 5.

a’s root b’s root

0 log 2 0 log 2

y r ∗ x r
log zn log znlog(t + ε) log(t − ε)

log z1 log z1

x ∗ z1 . . . zn y z1 . . . zn

Figure 5. NL trees used in the proof of Theorem 4. The left tree is
for individual a and the right tree for individual b.

∗Notice that x and y are swapped in the two trees. We
∗wish to promote x . With just the choice set C, a prefers

∗ ∗ x to y, but b does not. To make b prefer x to y, we
need to cannibalize y by adding zi items. However, this

∗simultaneously cannibalizes x in a’s tree, so we need to
be careful not to introduce too much additional utility. To

∗ ensure a prefers x , we need to pick Z such that

Pr(a ← y | C ∪ Z) < Pr(a ← y | C ∪ Z)
log 2 log(t+ε)1 e e ⇐⇒ < · P

1 + elog 2 1 + elog 2 elog(t+ε) + z∈Z e
log z

1 2 t + ε ⇐⇒ < · P
3 3 t + ε + z∈Z z X

⇐⇒ z < t + ε.
z∈Z

∗To ensure b prefers x , we need

∗ Pr(b ← x | C ∪ Z) > Pr(b ← y | C ∪ Z)
log 2 log(t−ε)1 e e ⇐⇒ > · P

1 + elog 2 1 + elog 2 elog(t−ε) + z∈Z e
log z

1 2 t − ε ⇐⇒ > · P
3 3 t − ε + z∈Z z X

⇐⇒ z > t − ε.
z∈Z P

Since the z are all integers, we must then have z∈Z z = t.
∗If we could efficiently promote x , we could efficiently find

such a Z.

A.4. Proof of Theorem 5

Proof. By reduction from SUBSET SUM. Let S, t be an
∗instance of SUBSET SUM. Let A = {a, b}, C = {x , y},P

C = S, and s = z∈S z. Make aspects χz , ψz, γz for each
z ∈ S as well as two more aspects χ, ψ. The items have
aspects as follows:

∗0 x = {χ} ∪ {χz | z ∈ S}
0 y = {ψ} ∪ {ψz | z ∈ S}
0 z = {χz, ψz, γz} ∀z ∈ S

��� ���

Choice Set Optimization Under Discrete Choice Models of Group Decisions

The individuals have the following utilities on aspects,
where 0 < ε < 1:

ua(χ) = 0 ub(χ) = s − t/2 + ε

ua(χz) = z ub(χz) = 0 ∀z ∈ S

ua(ψ) = s − t/2 − ε ub(ψ) = 0

ua(ψz) = 0 ub(ψz) = z ∀z ∈ S

ua(γz) = s − z ub(γz) = s − z ∀z ∈ S

∗ ∗We want to promote x . Notice that x and y have disjoint
aspects. Thus the choice probabilities from C are propor-
tional to the sum of the item’s aspects:

∗ Pr(a ← x | C) ∝ s

t
Pr(a ← y | C) ∝ s − − ε

2
t∗ Pr(b ← x | C) ∝ s − + ε
2

Pr(b ← y | C) ∝ s.

∗ ∗To promote x , we need to make b prefer x to y. Adding
∗ a z item cannibalizes from a’s preference for x and b’s

preference for y. As in the NL proof, we want to add just
∗enough z items to make b prefer x to y without making a

∗prefer y to x .

First, notice that the γz aspects have no effect on the indi-
∗viduals’ relative preference for x and y. If we introduce

the alternative z, then if a picks the aspect χz , y will be
eliminated. The remaining aspects of x ∗, namely x∗0 \{χz },
have combined utility s − z, as does γz . Therefore a will

∗be equallly likely to pick x and z. Symmetric reasoning
shows that if b chooses aspect ψz , then b will end up picking
y with probability 1/2. This means that when we include
alternatives Z ⊆ C, each aspect χz , ψz for z ∈ Z effec-

∗tively contributes z/2 to a’s utility for x and b’s utility for
y rather than the full z. The optimal solution is therefore a
set Z of alternatives whose sum is t, since that will cause
a to have effective utility s − t/2 on x ∗, which exceeds its
utility s − t/2 − ε on y. Meanwhile, b’s effective utility
on y will also be s − t/2, which is smaller than its utility

∗ s − t/2 + ε on x . If we include less alternative weight, b
will prefer y. If we include more, a will prefer y. Therefore
if we could efficiently find the optimal set of alternatives

∗to promote x , we could efficiently find a subset of S with
sum t.

B. Restrictions on MNL that make
AGREEMENT and DISAGREEMENT
tractable

As we saw in the proofs of Theorems 1 and 2 that AGREE-
MENT and DISAGREEMENT are hard in the MNL model

even when individuals have identical utilities on alternatives.
This is possible because the individuals have different sums
of utilities on C; one unit of utility on an alternative has
a weaker effect for individuals with higher utility sums on
C. To address the issue of identifiability, we assume each
individual’s utility sum over U is zero in this section. This
allows us to meaningfully compare the sum of utilities of
two different individuals. P
Definition 1. If an individual a has (x) = 0, then x∈U uaP
the stubbornness of a is σa = x∈C e

u(x).

We call this quantity “stubbornness” since it quantifies how
reluctant an individual is to change its probabilities on C
given a unit of utility on an alternative.

Proposition 1. In an MNL model where all individuals are
equally stubborn and have identical utilities on alternatives,
the solution to AGREEMENT is C.

Proof. Assume utilities are in standard form, withP P
(x) = 0. Let σ = u(x) be each individ-x∈U ua x∈C e

ual’s stubborness and let Z be a set of alternatives. Suppose
all individuals have the same utility u(z) for each alternative
z. The disagreement between two individuals about a single
item x in C is then:

(x)eua eub(x) |eua(x) − eub (x)|P − P = P .
σ + z∈Z e

u(z) σ + z∈Z e
u(z) σ + z∈Z e

u(z)

P
Notice that this strictly decreases if z∈Z e

u(z) increases,
so we minimize D by including all of the alternatives.

The same reasoning also allows us to solve DISAGREEMENT
in this restricted MNL model.

Corollary 3. The solution to DISAGREEMENT in an equal
alternative utilities, equal stubbornness MNL model is ∅.

C. Approximation algorithm details and
extensions

C.1. Proof of Lemma 2

Proof. If a set Z has total exp-utility ta to individual a, then
it is placed in L at position blog1+δ tac in dimension a. So,
if two sets Z, Z 0 with exp-utility totals ta, t0 for individual a
a are mapped to the same cell of L, then for all a ∈ A,
blog1+δ tac = blog1+δ t

0 c. We can therefore bound t0 :a a

0log1+δ ta − 1 < log1+δ t < log1+δ ta + 1.a

Exponentiating both sides with base 1 + δ and simplifying
yields

0ta
< t < ta(1 + δ). (5)a1 + δ

With this fact in hand, we proceed by induction on i. When
i = 0, Ci is empty and the lemma holds. Now suppose that

Choice Set Optimization Under Discrete Choice Models of Group Decisions

i > 0 and that the lemma holds for i − 1. Every set in Ci
was made by adding (a) zero elements or (b) one element to
a set in Ci−1. We consider these two cases separately.

(a) For any set Z ⊆ Ci that is also contained in Ci−1, we
know by the inductive hypothesis that some element in Li−1

satisfied the inequality. Since we never overwrite cells, the
lemma also holds for Z after iteration i.

(b) Now consider sets Z 0 ⊆ Ci that were formed by adding
the new element z to a set Z ⊆ Ci−1. In the inner for loop,
we at some point encountered the cell containing the set
Y ∈ Li−1 satisfying the lemma for set Z by the inductive
hypothesis. Let ya be the exp-utility totals for Y and ta

for Z. Notice that the exp-utility totals of Z 0 are exactly
ta + eaz . Starting with the inductive hypothesis, we see that
the exp-utility totals of Y ∪ {z} satisfy

ta + eaz
< ya + eaz < (ta + eaz)(1 + δ)i−1 .

(1 + δ)i−1

When we go to place Y ∪ {z} in a cell, it might be unoccu-
pied, in which case we place it in Li and the lemma holds
for Z 0 . If it is occupied by some other set, then by applying
Eq. (5) we find that the lemma also holds for Z 0 .

C.2. Polynomial bound on runtime of Algorithm 1

The runtime of Algorithm 1 is O((m + kn2)(1 +
blog1+δ sc)n). We can show that the second part is bounded
by a polynomial in k, m, and 1

ε :� �ln s n

(1 + blog1+δ sc)n ≤ 1 +
ln 1 + δ� �ln s n≤ 1 + (1 + δ)

δ
(since ln(1 + x) ≥ x for x > −11+x)� �ln s n

= 1 + + ln s
δ � �� n �2km ln s n

2 = 1 + + ln s
ε

C.3. Adapting Algorithm 1 for CDM with guarantees
for special cases

We can adapt Algorithm 1 for the CDM model, but we
only maintain the approximation error bounds under special
cases of the structure of the “pulls”. Still, we can use this
algorithm as a principled heuristic and it tends to work well
in practice, as we saw in Fig. 2.

As a first step, we use the alternative parametrization of the
model used by Seshadri et al. (2019, Eq. (1)), which has
fewer parameters. In this description of the model, utilities
and context effects are merged into a single utility-adjusted
pull qa(z, x) = pa(z, x) − ua(x), with the special case

qa(x, x) = 0. We then have P
exp(w∈C qa (w, x))

Pr(a ← x | C) = P P . (6)
y∈C exp(z∈C qa (z, y))

Refer to Seshadri et al. (2019, Appendix C.1) for details of
the equivalence between this formulation and the one we
use in the main text.

Matching the notation of the proof of Theorem 6, we useP
the shorthand eax = exp(w∈C qa(w, x)).

To adapt Algorithm 1 to the CDM, we expand Li to have
nk dimensions for each individual-item pair, increasing the
runtime to O((m + kn2)(1 + blog1+δ sc)nk). This is only
practical if nk is small, but as we have seen, AGREEMENT,
DISAGREEMENT, and PROMOTION are all NP-hard even
with n = 2 and k = 2 or 3. Each individual-item dimension
stores eax, the total exp-utility of that item to that individual
given that we have included some set of alternatives. When
we include an additional item from C, we place the new sets
in Li with updated eax values.

This only preserves the ε-additive approximation if alterna-
tives (items in C) have zero context effects on each other;
however, they may still have context effects on items in C.
Formally, we need qa(z, z0) = 0 for all z, z0 ∈ C and a ∈ A.
Although this is a serious restriction, it leaves AGREEMENT,
DISAGREEMENT, and PROMOTION NP-hard, as the CDM
we used in our proofs had this form (see also Appendix C.5
for how to apply Algorithm 1 to PROMOTION). If this ver-
sion of the algorithm is applied to a general CDM, it may
experience higher error. Nonetheless, our real-data experi-
ments show it to be a good heuristic.

For the following analysis, we assume a CDM with zero
context effects between items in C. We need to verify that
if every item’s exp-utility is approximated to within factor
(1 + β)±1 , then the total disagreement of a set is approx-
imated to within ε as we had in the MNL case. The ap-
proximation error guarantee increases to 4ε in the restricted
CDM version—to recover the ε-additive approximation, we
can make δ smaller by a factor of 4 (that is, we could pick � �
δ = ε/(8km n); we instead keep the old δ 2 for simplicity
in the following analysis).

Recall that Z 0 is the representative in Lm of the optimal set
of alternatives Z∗ . For compactness, we define Ta to be the
denominator of Eq. (6), with T 0 and T ∗a a referring to those
denominators under the choice sets C ∪ Z 0 and C ∪ Z∗ ,
respectively. This is where we require zero context effects
between alternatives: if alternatives interact, then storing
every eax in the table (from which we can compute Ta) is
not enough to determine updated choice probabilities when
we add a new alternative.

The difference in the analysis begins when we bound
Pr(a ← x | C ∪ Z 0) on both sides using the fact that

Choice Set Optimization Under Discrete Choice Models of Group Decisions

each exp-utility sum is approximated within a 1 + β factor
(so the probability denomiators Ta are also approximated
within this factor):

∗ e ax ∗
1+β 1 eax = ∗ ∗T (1 + β) (1 + β)2 Ta a

0eax< = Pr(a ← x | C ∪ Z 0)
T 0 a
∗ ∗ e (1 + β)ax ax< = (1 + β)2 e .

T ∗ ∗ a Ta1+β

Based on the lower bound, the difference between Pr(a ←
x | C ∪ Z∗) and Pr(a ← x | C ∪ Z 0) could be as large as

∗ ∗ e 1 e 1ax ax− ≤ 1 − .
T ∗ (1 + β)2 T ∗ (1 + β)2
a a

Now considering the upper bound, the difference between
Pr(a ← x | C ∪ Z∗) and Pr(a ← x | C ∪ Z 0) could be as
large as

∗ ∗ eax ax(1 + β)2 e − ≤ (1 + β)2 − 1.
T ∗ T ∗
a a

Therefore, | Pr(a ← x | C ∪Z 0)−Pr(b ← x | C ∪Z 0)| can
only exceed | Pr(a ← x | C ∪ Z∗) − Pr(b ← x | C ∪ Z∗)|

1 1by at most 1 − + (1 + β)2 − 1 = (1+ β)2 −(1+β)2 (1+β)2 .
This is at most 4β:

1 β2(2 − β2)
4β − (1 + β)2 + =

(1 + β)2 (1 + β)2

√
> 0. (for 0 < β < 2)

� �
nSo D(Z 0) and D(Z∗) are within 4β k = 4ε.2

C.4. Adapting Algorithm 1 for NL with full guarantees

We can also adapt Algorithm 1 for the NL model, and unlike
the CDM, the ε-additive approximation holds in all parame-
ter regimes. Recall that the NL tree has two types of leaves:
choice set items and alternative items. Let Pa be the set
of internal nodes of individual a’s tree that have at least
one alternative item as a child and let p = maxa∈A |Pa|. If
we know the total exp-utility that alternatives contribute as
children of each v ∈ Pa, then we can compute a’s choice
probabilites over items in C in polynomial time.

With this in mind, we modify Algorithm 1 by having dimen-
sions in L for each individual for each of their nodes in Pa.
This results in ≤ np dimensions. The algorithm then keeps
track of the exp-utility sums from alternatives under each
node in Pa for each individual. The exponent in the run-
time increases to (at most) np, but this remains tractable for
some hard instances, such as those in our hardness proofs.
In some cases, we can dramatically improve the runtime of

the algorithm: if the subtree under an internal node contains
only alternatives as leaves in an individuals’s tree, then we
only need one dimension L for that individual’s entire sub-
tree, and it has only two cells: one for sets that contain at
least one alternative in that subtree, and one for sets that do
not. The only factor that affects the choice probabilities of
items in C is whether that subtree is “active” and its root
can be chosen.

We now show how the error from exp-utility sums of al-
ternatives propagates to choice probabilities. In the NL
model, Pr(a ← x | C) is the product of probabilities that
a chooses each ancestor of x as a descends down its tree.
Let v1, . . . , v` be the nodes in a’s tree along the path from
the root to x. For compactness, we use Pr(x, Z) instead of
Pr(a ← x | C ∪ Z) in the following analysis. � �

nPick δ ≤ ([ε/(2k) + 1]1/` − 1)/m and recall that β = 2
2mδ. We can use the same analysis as in the proof of
Theorem 6 to find that for any set Z∗ ⊆ C, there exists
some Z 0 ∈ L such that

Pr(x, Z ∗) = Pr(v1, Z ∗) · · · · · Pr(vx, Z ∗) � � � �
< Pr(v1, Z

0) +
β · · · · · Pr(vx, Z

0) +
β

2 2

≤ Pr(x, Z 0) +
�
1 +

β �` − 1
2

≤ Pr(x, Z 0) +
ε� � . n2k 2

Now for the lower bound, pick δ ≤ (1 − [1 −� �
nε/(2k)]1/`)/m. Again from the proof of Theorem 6:2

Pr(x, Z ∗) = Pr(v1, Z ∗) · · · · · Pr(vx, Z ∗) � � � �
> Pr(v1, Z

0) −
β · · · · · Pr(vx, Z

0) −
β

2 2

≥ Pr(x, Z 0) +
�
1 −

β �` − 1
2

≥ Pr(x, Z 0) −
ε� � . n2k 2

Let h be the maximum height of any indivdual’s NL tree (so� �
n` ≤ h). Then, by picking δ = min{[ε/(2k) + 1]1/h −� � 2

n1, 1 − [1 − ε/(2k)]1/h}/m, we find that Pr(a ← x |2
C ∪ Z∗) and Pr(a ← x | C ∪ Z 0) differ by less than� �

nε/(k) for all x ∈ C and a ∈ A, meaning that the total 2
disagreement between a and b cannot differ by more than ε
as before.

Unfortunately, this means we need to make δ exponentially
(in h) smaller in the NL model. Put another way, our error
bound gets exponentially worse as h increases if we keep
δ constant. However, we have seen that there are NP-hard
families of NL instances in which h is a small constant (e.g.,
h = 2 in our hardness proof), so once again this algorithm
is an exponential improvement over brute force. Moreover,

���� ����

Choice Set Optimization Under Discrete Choice Models of Group Decisions

the error bound here is often far from tight, since we use
the very loose bounds Pr(vi, Z 0) ≤ 1 in the analysis. This
means the algorithm will tend to outperform the worst-case
guarantee by a significant margin.

C.5. Adapting Algorithm 1 for PROMOTION

C.5.1. CDM PROMOTION WITH SPECIAL CASE
GUARANTEES

Algorithm 1 can be applied to PROMOTION in the (re-
stricted) CDM model with only a small modification to
the CDM version described in Appendix C.3: at the end
of the algorithm, we return the set that results in the maxi-

∗ mum number of individuals having x as an ε-favorite item.
Additionally, we choose δ = ε/(10m) (we don’t need the � �

nfactors or k since we aren’t optimizing D(Z)).2

Following the analysis in Appendix C.3 (with β = 2mδ =
ε/5), we find that Pr(a ← x | C ∪ Z∗) and Pr(a ← x |

1C ∪Z 0) differ by at most max{1− (1+ε/5)2 , (1+ε/5)2 −1}
for all x. On the interval [0, 1], this is bounded by ε/2. Thus,
if x ∗ is the favorite item for a given the optimal choice set
C ∪ Z∗, then it must be an ε-favorite of individual a given
C ∪ Z 0 (as always, Z 0 is the representative of Z∗ in Lm).
This is because when we go from C ∪ Z∗ to C ∪ Z 0 , the

∗choice probability of x can shrink by at most ε/2 and the
choice probability for any other item can grow by at most
ε/2. Thus, including Z 0 makes at least as many individuals

∗have x as an ε-favorite item as including Z∗ makes have
∗ x as a favorite item.

This is exactly what it means for Algorithm 1 to ε-
approximate PROMOTION in the CDM (when items in C
do not exert context effects on each other). Moreover, not
having to compute D(Z) makes the runtime of Algorithm 1
O(m(1 + blog1+δ sc)nk) when applied to PROMOTION in
the CDM. In the general CDM, this algorithm is only a
heuristic.

C.5.2. NL PROMOTION WITH FULL GUARANTEES

A very similar idea allows us to apply the NL version of
Algorithm 1 from Appendix C.4 to PROMOTION and retain
an approximation guarantee. As before, use the NL version
and return the set that results in the maximum number of

∗individuals having x as an ε-favorite item. However, we
instead use δ = min{(ε/4+1)1/h −1, 1−(1−ε/4)1/h}/m,
which by the analysis in Appendix C.4 results in Pr(a ←
x | C ∪ Z∗) and Pr(a ← x | C ∪ Z 0) differing by at most

∗ε/2. As in the CDM case, this guarantees that if x is the
favorite item for a given the optimal choice set C ∪ Z∗, then
it must be an ε-favorite of a given C ∪ Z 0 . Therefore this
version of Algorithm 1 ε-approximates PROMOTION in the
NL model with runtime O(m(1 + blog1+δ sc)np).

D. Mixed-integer bilinear programs for MNL
agreement and disagreement optimization

D.1. AGREEMENT

Let xi be a decision variable indicating whether we add in P
uathe ith item in C. Let eya = e (y) and eCa = y∈C eya.

We can write AGREEMENT as the following 0-1 optimiza-
tion problem. X X eya eyb
min P − P
x eCa + i∈C xieia eCb + i∈C xieiba,b∈A y∈C

s.t. xi ∈ {0, 1}

We can rewrite this with no absolute values by introducing
new variables δyab that represent the absolute disagreement
about item y between individuals a and b. We then use the
standard trick for minimizing an absolute value in linear
programs:

X X
min δyab x

a,b∈A y∈C

eya eyb
s.t. P − P ≤ δyab

eCa + i∈C xieia eCb + i∈C xieib

∀y ∈ C, {a, b} ⊂ A ,
eyb eya P − P ≤ δyab

eCb + i∈C xieib eCa + i∈C xieia

∀y ∈ C, {a, b} ⊂ A ,

xi ∈ {0, 1} ∀i ∈ C,

δyab ∈ R ∀y ∈ C, {a, b} ⊂ A

To get rid of the fractions, we introduce the new variables
1 za = P for each individual a and add corre-eCa + i xieia

sponding constraints enforcing the definition of za: X X
min δyab x

a,b∈A y∈C

s.t.

zaeya − zbeyb ≤ δyab ∀y ∈ C, {a, b} ⊂ A,

zbeyb − zaeya ≤ δyab ∀y ∈ C, {a, b} ⊂ A,X
zaeCa + za xieia = 1 ∀a ∈ A,

i∈C

xi ∈ {0, 1} ∀i ∈ C,

δyab ∈ R ∀y ∈ C, {a, b} ⊂ A,

za ∈ R ∀a ∈ A

This is a mixed-integer bilinear program (MIBLP) with� � � �
n n m binary variables, n + k real variables, 2k linear2 2

constraints, and n bilinear constraints. We plug this form
of the problem directly into a branch-and-bound solver (we
use Gurobi).

Choice Set Optimization Under Discrete Choice Models of Group Decisions

D.2. DISAGREEMENT

A similar technique works for DISAGREEMENT, but maxi-
mizing an absolute value is slightly trickier than minimizing.
In addition to the variables δyab that we used before, we also
add new binary variables gyab indicating whether each dif-
ference in choice probabilities is positive or negative. With
these new variables (and following the same steps as above),
DISAGREEMENT can be written as the following MIBLP: X X
max δyab x

a,b∈A y∈C

s.t.

zaeya − zbeyb ≤ δyab ∀y ∈ C, {a, b} ⊂ A,

zbeyb − zaeya ≤ δyab ∀y ∈ C, {a, b} ⊂ A,

2gyab + zaeya − zbeyb ≥ δyab ∀y ∈ C, {a, b} ⊂ A,

2(1 − gyab) + zbeyb − zaeya ≥ δyab ∀y ∈ C, {a, b} ⊂ A,X
zaeCa + za xieia = 1 ∀a ∈ A,

i∈C

xi ∈ {0, 1} ∀i ∈ C,

gyab ∈ {0, 1} ∀y ∈ C, {a, b} ⊂ A,

δyab ∈ R ∀y ∈ C, {a, b} ⊂ A,

za ∈ R ∀a ∈ A

E. Additional experiment details
E.1. Simple example of poor performance for Greedy

As we saw in experimental data, Greedy can perform poorly
even in small instances of AGREEMENT. Below we provide
an MNL instance with n = m = k = 2 for which the error
of the greedy solution is approximately 1. With only two
individuals, 0 ≤ D(Z) ≤ 2, so an error of 1 is very large.

In the bad instance for greedy, A = {a, b}, C = {x, y},
C = {p, q}, and the utilities are as follows.

ua(x) = 8 ub(x) = 8

ua(y) = 2 ub(y) = 8

ua(p) = 10 ub(p) = 0

ua(q) = 0 ub(q) = 15

In this instance of AGREEMENT, the greedy solution is
D(∅) ≈ 0.9951 (including either p or q alone increases
disagreement), while the optimal solution is D({p, q}) ≈
0.0009.

E.2. All-pairs agreement results for MIBLP

Figure 6 shows the comparison in performance between
Algorithm 1 and the MIBLP approach for the all-pairs
AGREEMENT and DISAGREEMENT experiment. The meth-
ods perform nearly identically on both ALLSTATE and YOO-
CHOOSE. The MIBLP approach performs marginally better

in some cases of YOOCHOOSE AGREEMENT. As noted in
the paper, the MIBLP heuristic is considerably faster (12x
and 240x on YOOCHOOSE and ALLSTATE, respectively),
but provides no a priori performance guarantee and cannot
be applied to CDM or NL. Nonetheless, we can see that it
performs very competitively and would be a good approach
to use in practice for MNL AGREEMENT and DISAGREE-
MENT.

-2e-08

-1e-08

0e+00

1e-08

Al
lst

at
e

Al
g.

 1
 D

(Z
) -

 M
IB

LP
 D

(Z
)

Agreement Disagreement
0.0e+00

5.0e-05

1.0e-04

1.5e-04

2.0e-04

YO
OC

HO
OS

E
Al

g.
 1

 D
(Z

) -
 M

IB
LP

 D
(Z

)

Figure 6. MIBLP vs. Algorithm 1 performance box plots when
applied to all 2-item choice sets in ALLSTATE and YOOCHOOSE

under MNL. Each point is the difference in D(Z) when MIBLP
and Algorithm 1 are run on a choice set, and Xs mark means.

E.3. Choice sets sampled from data

We repeated the all-pairs agreement experiment with 500
choice sets of size up to 5 sampled uniformly from each
dataset, allowing us to evaluate the performance of Algo-
rithm 1 on realistic choice sets. We limited the size of
sampled choice sets since the CDM version of Algorithm 1
scales poorly with |C| (see Appendix C.3). For this ver-
sion of the experiment, we fixed larger values of ε (2 for
MNL, 500 for CDM) to handle larger choice sets and to
keep running time down. Again, Algorithm 1 has better
mean performance in every case (Fig. 7), showing that it
performs well on real choice sets.

F. A note on ethical considerations
Influencing the preferences of decision-makers has the po-
tential for malicious applications, so it is important to ad-
dress the ethical context of this work.

Choice Set Optimization Under Discrete Choice Models of Group Decisions

−10−1

−10−2

−10−3

0
10−3

10−2

10−1

Al
g.

 1
 D

(Z
) -

 G
re

ed
y
D

(Z
) ε= 2

0.7% sets

MNL
ε= 500
0.8% sets

Allstate

Rank-2 CDM

Agreement Disagreement

−10−1

−10−2

−10−3

0
10−3

10−2

10−1

100

Al
g.

 1
 D

(Z
) -

 G
re

ed
y
D

(Z
) ε= 2

0.000060% sets

Agreement Disagreement

ε= 500
0.000660% sets YOOCHOOSE

Figure 7. Results of the agreement experiment with 500 choice sets
sampled uniformly from each dataset. Compare with Fig. 2 in the
main text. Again, Algorithm 1 has better mean performance in all
cases. The larger values of ε result in slightly worse performance
on the margins than in Fig. 2, but also fewer sets computed.

Any problem with positive social applications (e.g., AGREE-
MENT: encouraging consensus, PROMOTION: promot-
ing environmentally-friendly transportation options, DIS-
AGREEMENT: increasing diversity of opinions) has the
potential to be used for ill. This should not prevent us
from seeking methods to acheive these positive ends, but
we should certainly be cognizant of the possibility of un-
intended applications. In a different vein, understanding
when a group is susceptible to undesired interventions (or
detecting such interventions) makes problems like DIS-
AGREEMENT worth studying from an adversarial perspec-
tive. Along these lines, our hardness results are encouraging
since optimal malicious interventions are difficult.

Finally, we note that all of the theoretical problems we study
presuppose access to choice data from which preferences
can be learned and the ability to influence choice sets. Any
entity which has both of these (such as an online retailer, a
government deciding transportation policy, etc.) already has
significant power to influence choosers. If such an entity
had malicious intent, then near-optimal DISAGREEMENT
solutions would be the least of our concerns.

To summarize, these problems are worth studying because
of (1) their purely theoretical value in furthering the field
of discrete choice, (2) their potential for positive applica-
tions, (3) insight into the potential for harmful manipulation
by an adversary, and (4) the minimal additional risk from
undesired use of our methods.

	Hardness proofs
	Disagreement functions from proofs of thm:mnlagreehard,thm:mnldisagreehard
	CDM Promotion is hard with |A|=2, |C|=2
	Proof of thm:nestedlogitpromohard
	Proof of thm:ebapromohard

	Restrictions on MNL that make Agreement and Disagreement tractable
	Approximation algorithm details and extensions
	Proof of lemma:exputilitybounds
	Polynomial bound on runtime of alg:approx
	Adapting alg:approx for CDM with guarantees for special cases
	Adapting alg:approx for NL with full guarantees
	Adapting alg:approx for Promotion
	CDM Promotion with special case guarantees
	NL Promotion with full guarantees

	Mixed-integer bilinear programs for MNL agreement and disagreement optimization
	Agreement
	Disagreement

	Additional experiment details
	Simple example of poor performance for Greedy
	All-pairs agreement results for MIBLP
	Choice sets sampled from data

	A note on ethical considerations

