
Multi-step Greedy Reinforcement Learning Algorithms

Appendix

A. -PI-DQN and -VI-DQN Algorithms

A.1. Detailed Pseudo-codes

In this section, we report the detailed pseudo-codes of -PI-DQN and -VI-DQN algorithms, described in Section 4.3,
side-by-side.

Algorithm 5 -PI-DQN
1: Initialize replay buffer D; Q-networks Q✓ and Q� with random weights ✓ and �;
2: Initialize target networks Q0

✓ and Q
0
� with weights ✓

0 ✓ and �
0 �;

3: for i = 0, . . . , N � 1 do

4: # Policy Improvement
5: for t = 1, . . . , T do

6: Select at as an ✏-greedy action w.r.t. Q✓(st, a);
7: Execute at, observe rt and st+1, and store the tuple (st, at, rt, st+1) in D;
8: Sample a random mini-batch {(sj , aj , rj , sj+1)}Nj=1 from D;
9: Update ✓ by minimizing the following loss function:

10: LQ✓ = 1
N

PN
j=1

⇥
Q✓(sj , aj)�

�
rj(, V�) + � maxaQ0

✓(sj+1, a)
�⇤2, where

11: V�(sj+1) = Q�(sj+1,⇡i�1(sj+1)) and ⇡i�1(sj+1) 2 argmaxa Q0
✓(sj+1, a);

12: Copy ✓ to ✓0 occasionally (✓0 ✓);
13: end for

14: # Policy Evaluation
15: Set ⇡i(s) 2 argmaxa Q0

✓(s, a);
16: for t

0 = 1, . . . , T () do

17: Sample a random mini-batch {(sj , aj , rj , sj+1)}Nj=1 from D;
18: Update � by minimizing the following loss function:
19: LQ� = 1

N

PN
j=1

⇥
Q�(sj , aj)� (rj + �Q

0
�(sj+1,⇡i(sj+1)))

⇤2;
20: Copy � to �0 occasionally (�0 �);
21: end for

22: end for

Algorithm 6 -VI-DQN
1: Initialize replay buffer D; Q-networks Q✓ and Q� with random weights ✓ and �;
2: Initialize target network Q

0
✓ with weights ✓

0 ✓;
3: for i = 0, . . . , N � 1 do

4: # Evaluate TV� and the -greedy policy w.r.t. V�
5: for t = 1, . . . , T do

6: Select at as an ✏-greedy action w.r.t. Q✓(st, a);
7: Execute at, observe rt and st+1, and store the tuple (st, at, rt, st+1) in D;
8: Sample a random mini-batch {(sj , aj , rj , sj+1)}Nj=1 from D;
9: Update ✓ by minimizing the following loss function:

10: LQ✓ = 1
N

PN
j=1

⇥
Q✓(sj , aj)� (rj(, V�) + � maxaQ0

✓(sj+1, a))
⇤2, where

11: V�(sj+1) = Q�(sj+1,⇡(sj+1)) and ⇡(sj+1) 2 argmaxa Q�(sj+1, a);
12: Copy ✓ to ✓0 occasionally (✓0 ✓);
13: end for

14: Copy ✓ to � (� ✓)
15: end for

Multi-step Greedy Reinforcement Learning Algorithms

Hyperparameter Value
Horizon (T) 1000

Adam stepsize 1⇥ 10�4

Target network update frequency 1000
Replay memory size 100000

Discount factor 0.99
Total training time steps 10000000

Minibatch size 32
Initial exploration 1
Final exploration 0.1

Final exploration frame 1000000
#Runs used for plot averages 10

Confidence interval for plot runs ⇠ 95%

Table 3: Hyperparameters for -PI-DQN and -VI-DQN.

A.2. Ablation Test for CFA

Figure 4: Performance of -PI-DQN and -VI-DQN on Breakout for different values of CFA.

A.3. -PI-DQN and -VI-DQN Plots

In this section, we report additional results of the application of -PI-DQN and -VI-DQN on the Atari domains. A summary
of these results has been reported in Table 1 in the main paper.

Figure 5: Training performance of the ‘naive’ baseline N = T and -PI-DQN, -VI-DQN for CFA = 0.05 on SpaceInvaders

Multi-step Greedy Reinforcement Learning Algorithms

Figure 6: Training performance of the ‘naive’ baseline N = T and -PI-DQN, -VI-DQN for CFA = 0.05 on Seaquest

Figure 7: Training performance of the ‘naive’ baseline N = T and -PI-DQN, -VI-DQN for CFA = 0.05 on Enduro

Figure 8: Training performance of the ‘naive’ baseline N = T and -PI-DQN, -VI-DQN for CFA = 0.05 on BeamRider

Figure 9: Training performance of the ‘naive’ baseline N = T and -PI-DQN, -VI-DQN for CFA = 0.05 on Qbert

Multi-step Greedy Reinforcement Learning Algorithms

B. -PI-TRPO and -VI-TRPO Algorithms

B.1. Detailed Pseudo-codes

In this section, we report the detailed pseudo-codes of the -PI-TRPO and -VI-TRPO algorithms, described in Section 4.4,
side-by-side.

Algorithm 7 -PI-TRPO
1: Initialize V -networks V✓ and V� with random weights ✓ and �; policy network ⇡ with random weights ;
2: for i = 0, . . . , N � 1 do

3: for t = 1, . . . , T do

4: Simulate the current policy ⇡ for M time-steps;
5: for j = 1, . . . ,M do

6: Calculate Rj(, V�) =
PM

t=j(�)
t�j

rt(, V�) and ⇢j =
PM

t=j �
t�j

rt;
7: end for

8: Sample a random mini-batch {(sj , aj , rj , sj+1)}Nj=1 from the simulated M time-steps;
9: Update ✓ by minimizing the loss function: LV✓ = 1

N

PN
j=1(V✓(sj)�Rj(, V�))2;

10: # Policy Improvement
11: Sample a random mini-batch {(sj , aj , rj , sj+1)}Nj=1 from the simulated M time-steps;
12: Update using TRPO with advantage function computed by {(Rj(, V�), V✓(sj))}Nj=1;
13: end for

14: # Policy Evaluation
15: Sample a random mini-batch {(sj , aj , rj , sj+1)}Nj=1 from the simulated M time-steps;
16: Update � by minimizing the loss function: LV� = 1

N

PN
j=1(V�(sj)� ⇢j)2;

17: end for

Algorithm 8 -VI-TRPO
1: Initialize V -networks V✓ and V� with random weights ✓ and �; policy network ⇡ with random weights ;
2: for i = 0, . . . , N � 1 do

3: # Evaluate TV� and the -greedy policy w.r.t. V�
4: for t = 1, . . . , T do

5: Simulate the current policy ⇡ for M time-steps;
6: for j = 1, . . . ,M do

7: Calculate Rj(, V�) =
PM

t=j(�)
t�j

rt(, V�);
8: end for

9: Sample a random mini-batch {(sj , aj , rj , sj+1)}Nj=1 from the simulated M time-steps;
10: Update ✓ by minimizing the loss function: LV✓ = 1

N

PN
j=1(V✓(sj)�Rj(, V�))2;

11: Sample a random mini-batch {(sj , aj , rj , sj+1)}Nj=1 from the simulated M time-steps;
12: Update using TRPO with advantage function computed by {(Rj(, V�), V✓(sj))}Nj=1;
13: end for

14: Copy ✓ to � (� ✓);
15: end for

Multi-step Greedy Reinforcement Learning Algorithms

Hyperparameter Value
Horizon (T) 1000

Adam stepsize 1⇥ 10�3

Number of samples per Iteration 1024
Entropy coefficient 0.01

Discount factor 0.99
Number of Iterations 2000

Minibatch size 128
#Runs used for plot averages 10

Confidence interval for plot runs ⇠ 95%

Table 4: Hyper-parameters of -PI-TRPO and -VI-TRPO on the MuJoCo domains.

B.2. Ablation Test for CFA

Figure 10: Performance of -PI-TRPO and -VI-TRPO on Walker2d-v2 for different values of CFA.

B.3. -PI-TRPO and -VI-TRPO Plots

In this section, we report additional results of the application of -PI-TRPO and -VI-TRPO on the MuJoCo domains. A
summary of these results has been reported in Table 2 in the main paper.

Figure 11: Performance of GAE, ‘Naive’ baseline and -PI-TRPO, -VI-TRPO on Ant-v2.

Multi-step Greedy Reinforcement Learning Algorithms

Figure 12: Performance of GAE, ‘Naive’ baseline and -PI-TRPO, -VI-TRPO on HalfCheetah-v2.

Figure 13: Performance of GAE, ‘Naive’ baseline and -PI-TRPO, -VI-TRPO on HumanoidStandup-v2.

Figure 14: Performance of GAE, ‘Naive’ baseline and -PI-TRPO, -VI-TRPO on Swimmer-v2.

Figure 15: Performance of GAE, ‘Naive’ baseline and -PI-TRPO, -VI-TRPO on Hopper-v2.

