
Supplementary materials for convolutional dictionary learning
based auto-encoders for natural exponential-family distributions

1 Gradient dynamics of shallow exponential auto-encoder (SEA)
Theorem 1.1. (informal). Given a “good” initial estimate of the dictionary from the binomial dictionary
learning problem, and infinitely many examples, the binomial SEA, when trained by gradient descent through
backpropagation, learns the dictionary.

Theorem 1.2. Suppose the generative model satisfies (A1) - (A14). Given infinitely many examples (i.e., J →
∞), the binomial SEA with Sb = ReLUb trained by approximate gradient descent followed by normalization
using the learning rate of κ = O(p/s) (i.e., w(l+1)

i = normalize(w(l)
i − κgi)) recovers A. More formally, there

exists δ∈(0, 1) such that at every iteration l, ∀i ‖w(l+1)
i − ai‖2

2 ≤ (1− δ)‖w(l)
i − ai‖2

2 + κ ·O( max(s2,s3/p
2
3 +2ξ)

p1+6ξ ).

Theorem 1.3. Suppose the generative model satisfies (A1) - (A13). Given infinitely many examples (i.e.,
J →∞), the binomial SEA with Sb = HTb trained by approximate gradient descent followed by normalization
using the learning rate of κ = O(p/s) (i.e., w(l+1)

i = normalize(w(l)
i − κgi)) recovers A. More formally, there

exists δ∈(0, 1) such that at every iteration l, ∀i ‖w(l+1)
i − ai‖2

2 ≤ (1− δ)‖w(l)
i − ai‖2

2 + κ ·O( max(s2,s3/p
2
3 +2ξ)

p1+6ξ ).

In proof of the above theorem, our approach is similar to [Nguyen et al., 2019].

1.1 Generative model and architecture
We have J binomial observations yj =

∑Mj

m=1 1
j
m where yj can be seen as sum of Mj independent Bernoulli

random variables (i.e., 1jm). We can express σ−1(µµµ) = Ax∗, where σ(z) = ez
1+ez is the inverse of the

corresponding link function (sigmoid), A ∈ Rn×p is a matrix dictionary, and x∗ ∈ Rp is a sparse vector.
Hence, we have

E[yj ] = µµµ = eAx∗

1 + eAx∗ = σ(Ax∗). (1)

In this analysis, we assume that there are infinitely many examples (i.e., J → ∞), hence, we use the
expectation of the gradient for backpropagation at every iteration. We also assume that there are infinite
number of Bernoulli observation for each binomial observation (i.e., Mj →∞). Hence, from the Law of Large
Numbers, we have the following convergence in probability

lim
Mj→∞

1
Mj

yj = lim
Mj→∞

1
Mj

Mj∑
m=1

1jm = µµµ = σ(Ax∗), (2)

We drop j for ease of notation. Algorithm 1 shows the architecture when the code is initialized to 0.
W ∈ Rn×p are the weights of the auto-encoder. The encoder is unfolded only once and the step size of the
proximal mapping is set to 4 (i.e., assuming the maximum singular value of A is 1, then 4 is the largest
step size to ensure convergence of the encoder as the first derivative of sigmoid is bounded by 1

4 . For

Algorithm 1: SEA.
Input: y,W,b
Output: c2

1 c1 = 4WT(y− 1
2 )

2 x = Sb(c1)
3 c2 = Wx

Theorem 1.2, Sb(z) is an element-wise operator where Sbi(zi) = ReLUbi(zi) = zi · 1|zi|≥bi , and 1
2 = σ(0)

appears in the first layer as of the initial code estimate is 0. From the definition of ReLU, we can see that
x = Sb(c1) = 1x6=0(c1 − b) where 1x6=0 is an indicator function. For Theorem 1.3, Sb(z) is an element-wise
operator where Sbi(zi) = HTbi(zi) = zi · 1|zi|≥bi , and x = Sb(c1) = 1x6=0c1.

1.2 Assumptions and definitions
Given the following definition and notations,

(D1) W is q-close to A if there is a permutation π and sign flip operator u such that ∀i ‖u(i)wπ(i)−ai‖2 ≤ q.

(D2) W is (q, ε)-near to A if W is q-close to A and ‖W−A‖2 ≤ ε‖A‖2.

(D3) A unit-norm columns matrix A is η-incoherent if for every pair (i, j) of columns, |〈ai,aj〉| ≤ η√
n
.
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(D4) We define column i of W as wi.

(D5) wi is τi-correlated to ai if τi = 〈wi,ai〉 = wT
i ai. Hence, ‖wi − ai‖2

2 = 2(1− τi).

(D6) From the binomial likelihood, the loss would be limM→∞ LW(y,Wx) = limM→∞− 1
M

(
Wx

)Ty +
1T
n log

(
1 + exp

(
Wx

))
.

(D7) We denote the expectation of the gradient of the loss defined in (D6) with respect to wi to be
gi = E[limM→∞

∂LW
∂wi

].

(D8) W\i denotes the matrix W with column i removed, and S\i denotes S excluding i.

(D9) [z]d denotes zd (i.e., the dth element fo the vector z).

(D10) [p] denotes the set {1, . . . , p}, and [p]\i denotes [p] excluding i.

(D11) For A ∈ Rn×p, AS ∈ Rn×s indicates a matrix with columns from the set S. Similarly, for x∗ ∈ Rp,
x∗S ∈ Rs indicates a vector containing only the elements with indices from S.

we assume the generative model satisfies the following assumptions:

(A1) Let the code x∗ be s-sparse and have support S (i.e., supp(x) = S) where each element of S is
chosen uniformly at random without replacement from the set [p]. Hence, pi = P (i ∈ S) = s/p and
pij = P (i, j ∈ S) = s(s− 1)/(p(p− 1)).

(A2) Each code is bounded (i.e., |xi| ∈ [Lx, Cx]) where 0 ≤ Lx ≤ Cx and Cx = O( 1
p

1
3 +ξ ), and ξ > 0. Then

‖x∗S‖2 ≤
√
sCx. For the case when Sb = ReLUb, we assume the code is non-negative.

(A3) Given the support, we assume x∗S is i.i.d, zero-mean, and has symmetric probability density function.
Hence, E[x∗i | S] = 0 and E[x∗SxT

S | S] = νI where ν ≤ Cx.

(A4) From the forward pass of the encoder, supp(x) = supp(x∗) = S with high probability. We call this
code consistency, a similar definition from [Nguyen et al., 2019]. This code consistency enforces some
conditions (i.e., based on Lx and Cx for ReLU and Lx for HT) on the value of b which we do not
explicitly express. For when Sb = ReLUb, Wx = WSxS = 4WSWT

S (y− 1
2 )−WSbS , and for when

Sb = HTb, Wx = 4WSWT
S (y− 1

2 ).

(A5) We assume ∀i ‖ai‖2 = 1.

(A6) Given s < n ≤ p, we have ‖A‖2 = O(
√
p/n) and ‖AS‖2 = O(1).

(A7) W is (q, 2)-near A; thus, ‖W‖2 ≤ ‖W−A‖2 + ‖A‖2 ≤ O(
√
p/n).

(A8) A is η-incoherent.

(A9) wi is τi-correlated to ai.

(A10) For any i 6= j, we have |〈wi,aj〉| = |〈ai,aj〉+ 〈wi − ai,aj〉| ≤ η√
n

+ ‖wi − ai‖2‖aj‖2 ≤ η√
n

+ q.

(A11) We assume the network is trained by approximate gradient descent followed by normalization using the
learning rate of κ. Hence, the gradient update for column i at iteration l is w(l+1)

i = w(l)
i − κgi. At the

normalization step, ∀i, we enforce ‖wi‖2 = 1. Lemma 5 in [Nguyen et al., 2019] shows that descent
property can also be achieved with the normalization step.

(A12) We use the Taylor series of σ(z) around 0. Hence, σ(z) = 1
2 + 1

4z +∇2σ(z̄)(z)2, where 0 ≤ z̄ ≤ z and
∇2 denotes Hessian.

(A13) To simplify notation, we assume that the permutation operator π(.) is identity and the sign flip operator
u(.) is +1.

(A14) When Sb = ReLUb, at every iteration of the gradient descent, given τi, the bias b in the network
satisfies |ντi(τi − 1) + b2

i | ≤ 2τi(1− τi).

1.3 Non-negative sparse coding with Sb = ReLUb

1.3.1 Gradient derivation

First, we derive gi when Sb = ReLUb. In this derivation, by dominated convergence theorem, we interchange
the limit and derivative. We also compute the limit inside σ(.) as it is a continuous function.

lim
M→∞

∂LW
∂wi

= lim
M→∞

∂c1

∂wi

∂LW
∂c1

+ ∂c2

∂wi

∂LW
∂c2

= ∂c1

∂wi

∂x
∂c1

∂c2

∂x
LW
∂c2

+ ∂c2

∂wi

∂LW
∂c2

=

[0, 0, . . . , 4(µµµ− 1
2), . . . , 0]︸ ︷︷ ︸

n×p

diag(S ′b(c1))︸ ︷︷ ︸
p×p

WT + 1xi 6=0(wT
i 4(µµµ− 1

2)I− biI)


×
(
−σ(Ax∗) + σ(4WSWT

S (µµµ− 1
2)−WSbS)

)
=
(
S ′bi(c1,i)4(µµµ− 1

2)wT
i + 1xi 6=0(wT

i 4(µµµ− 1
2)− bi)I

)(
σ(4WSWT

S (µµµ− 1
2)−WSbS)− σ(Ax∗)

)
.

(3)
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We further expand the gradient, by replacing σ(.) with its Taylor expansion. We have

σ(Ax∗) = 1
2 + 1

4Ax∗ + εεε, (4)

where εεε = [ε1, . . . , εn]T, εd = ∇2σ(ud)([Ax∗]d)2, and 0 ≤ ud ≤ [Ax∗]d. Similarly,

σ(4WSWT
S (µµµ− 1

2)−WSbS) = 1
2 + WSWT

S (µµµ− 1
2)− 1

4WSbS + ε̃εε, (5)

where ε̃εε = [ε̃1, . . . , ε̃n]T, ε̃d = ∇2σ(ũd)([4WSWT
S (µµµ − 1

2 ) −WSbS ]d)2 , and 0 ≤ ũd ≤ [4WSWT
S (µµµ − 1

2 ) −
WSbS ]d. Again, replacing µµµ with Taylor expansion of σ(Ax∗), we get

σ(4WSWT
S (µµµ− 1

2)−WSbS) = 1
2 + WSWT

S (1
4Ax∗ + εεε)− 1

4WSbS + ε̃εε. (6)

By symmetry, E[εεε | S] = E [̃εεε | S] = 0. The expectation of gradient gi would be

gi = E[1xi 6=0
(
(Ax∗ + 4εεε)wT

i + (Ax∗ + 4εεε)I− biI
)

(1
4(WSWT

S − I)(Ax∗)− 1
4WSbS + (WSWT

S − I)εεε+ ε̃εε)].
(7)

1.3.2 Gradient dynamics

Given the code consistency from the forward pass of the encoder, we replace 1xi 6=0 with 1x∗
i
6=0 and denote

the error by γ as below which is small for large p [Nguyen et al., 2019].

γ = E[(1x∗
i
6=0−1xi 6=0)

(
(Ax∗ + 4εεε)wT

i + wT
i (Ax∗ + 4εεε)I− biI

)
(1
4(WSWT

S−I)(Ax∗)−1
4WSbS+(WSWT

S−I)εεε+ε̃εε)].
(8)

Now, we write gi as

gi = E[1x∗
i
6=0
(
(Ax∗ + 4εεε)wT

i + wT
i (Ax∗ + 4εεε)I− biI

)
(1
4(WSWT

S−I)(Ax∗)−1
4WSbS+(WSWT

S−I)εεε+ε̃εε)]+γ.
(9)

We can see that if i /∈ S then 1x∗
i

= 0 hence, gi = 0. Thus, in our analysis, we only consider the case i ∈ S.
We decompose gi as below.

gi = g
(1)
i + g

(2)
i + g

(3)
i + γ, (10)

where
g

(1)
i = E[ 14wT

i (Ax∗ + 4εεε)(WSWT
S − I)Ax∗]. (11)

g
(2)
i = E[ 14(Ax∗ + 4εεε)wT

i (WSWT
S − I)Ax∗]. (12)

g
(3)
i = E[

(
(Ax∗ + 4εεε)wT

i + wT
i (Ax∗ + 4εεε)I

)
((WSWT

S − I)εεε+ ε̃εε)]. (13)

g
(4)
i = E[(−bi)((WSWT

S − I)εεε+ ε̃εε)]. (14)

g
(5)
i = E[(−bi)(

1
4(WSWT

S − I)(Ax∗)− 1
4WSbS)]. (15)

g
(6)
i = E[

(
(Ax∗ + 4εεε)wT

i + wT
i (Ax∗ + 4εεε)I

)
(−1

4WSbS)]. (16)

We define
g

(1)
i,S = E[ 14wT

i (Ax∗ + 4εεε)(WSWT
S − I)Ax∗ | S]. (17)

g
(2)
i,S = E[ 14(Ax∗ + 4εεε)wT

i (WSWT
S − I)Ax∗ | S]. (18)

g
(3)
i,S = E[

(
(Ax∗ + 4εεε)wT

i + wT
i (Ax∗ + 4εεε)I

)
((WSWT

S − I)εεε+ ε̃εε) | S]. (19)

g
(4)
i,S = E[(−bi)((WSWT

S − I)εεε+ ε̃εε) | S]. (20)

g
(5)
i,S = E[(−bi)(

1
4(WSWT

S − I)(Ax∗)− 1
4WSbS) | S]. (21)

g
(6)
i,S = E[

(
(Ax∗ + 4εεε)wT

i + wT
i (Ax∗ + 4εεε)I

)
(−1

4WSbS) | S]. (22)

Hence, g(k)
i = E[g(k)

i,S ] for k = 1, . . . , 6, where the expectations are with respect to the support S.

g
(1)
i,S = E[ 14wT

i (Ax∗ + 4εεε)(WSWT
S − I)Ax∗ | S]

=
∑
j,l∈S

E[ 14wT
i ajx∗j (WSWT

S − I)alx∗l | S] + E[wT
i εεε(WSWT

S − I)Ax∗ | S]

= 1
4νwT

i ai(WSWT
S − I)ai +

∑
l∈S\i

1
4νwT

i al(WSWT
S − I)al + e1 = 1

4νwT
i ai(WSWT

S − I)ai + r1 + e1.

(23)
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We denote r1 =
∑
l∈S\i

1
4νwT

i al(WSWT
S − I)al and e1 = E[wT

i εεε(WSWT
S − I)Ax∗ | S]. Similarly for g(2)

i,S ,
we have

g
(2)
i,S = 1

4νaiwT
i (WSWT

S − I)ai + r2 + e2. (24)

We denote r2 =
∑
l∈S\i

1
4νalwT

i (WSWT
S − I)al, e2 = E[εεεwT

i (WSWT
S − I)Ax∗ | S], e3 = g

(3)
i,S , and e4 = g

(4)
i,S .

We compute g(5)
i,S and g(6)

i,S next.

g
(5)
i,S = E[(−bi)(

1
4(WSWT

S − I)(Ax∗)− 1
4WSbS) | S] = 1

4b
2
iwi + 1

4bi
∑
j∈S\i

wjbj (25)

g
(6)
i,S = E[

(
(Ax∗ + 4εεε)wT

i + wT
i (Ax∗ + 4εεε)I

)
(−1

4WSbS) | S] = 0 (26)

We denote β = E[r1 + r2 + e1 + e2 + e3 + e4] + γ. Combining the terms,

gi = E[ 14νwT
i ai(WSWT

S − I)ai + 1
4νaiwT

i (WSWT
S − I)ai + 1

4b
2
iwi + 1

4bi
∑
j∈S\i

wjbj ] + β

= E[−1
2ντiai + 1

4ντi
∑
j∈S

wjwT
j ai + 1

4νaiwT
i

∑
j∈S

wjwT
j ai + 1

4b
2
iwi + 1

4bi
∑
j∈S\i

wjbj ] + β

= E[−1
2ντiai + 1

4ντ
2
i wi + 1

4ντi
∑
j∈S\i

wjwT
j ai + 1

4ντi‖wi‖2
2ai

+ 1
4ν
(
aiwT

i

) ∑
j∈S\i

wjwT
j ai + 1

4b
2
iwi + 1

4bi
∑
j∈S\i

wjbj ] + β

= −1
4piντiai + pi

1
4(ντ2

i + b2
i )wi + ζ + β,

(27)

where ζ =
∑
j∈[p]\i

1
4pijντiwjwT

j ai + 1
4pijνaiwT

i wjwT
j ai + 1

4pijbibjwj . We continue

gi = 1
4piντi(wi − ai) + v, (28)

where we denote v = 1
4pi(ντi(τi − 1) + b2

i )wi + ζ + β.

Lemma 1.4. Suppose the generative model satisfies (A1)− (A14). Then

‖v‖2 ≤
1
4piτiνq‖wi − ai‖2 +O(max(C3

xs
√
s, C4

xs
2)) (29)

Proof.
‖ζ‖2 = ‖

∑
j∈[p]\i

1
4pijντiwjwT

j ai + 1
4pijνaiwT

i wjwT
j ai + 1

4pijbibjwj‖2

= ‖1
4pijντiW\iWT

\iai + 1
4pijνaiwT

i W\iWT
\iai + 1

4pijbiW\ib\i‖2

≤ 1
4pijντi‖W\i‖2

2‖ai‖2 + 1
4pijν‖wi‖2‖W\i‖2

2‖ai‖2
2 + 1

4pij |bi|‖W\i‖2‖b\i‖2

= 1
4O(ντis2/(np)) + 1

4O(νs2/(np)) + 1
4O(

√
p

n
s2/p2) = O(s2/(np)).

(30)

‖E[r1]‖2 = ‖E[
∑
l∈S\i

1
4νwT

i al(WSWT
S − I)al]‖2 = ‖E[

∑
l∈S\i

1
4νwT

i alWSWT
Sal −

∑
l∈S\i

1
4νwT

i alal]‖2

=‖
∑
l 6=j 6=i

pijl
1
4νwT

i alwjwT
j al +

∑
j 6=i

pij
1
4νwT

i ajwjwT
j aj + pil

1
4νwT

i alwiwT
i al −

∑
l 6=i

pil
1
4νwT

i alal‖2 ≤ O(s2/(np)).

(31)
where each terms is bounded as below

‖
∑
l 6=j 6=i

pijl
1
4νwT

i alwjwT
j al‖2 = 1

4ν(s3/p3)‖W\i‖2 ≤ O(s3/(pn
√
n)). (32)

where zj =
∑
l 6=i,j wT

i alwT
j al, hence, ‖z‖2 ≤ O(p

√
p

n ).

‖
∑
j 6=i

pij
1
4νwT

i ajwjwT
j aj‖2 = ‖1

4ν(s2/p2)‖W\iz‖2 ≤ O(s2/(np)). (33)

where zj = wT
i ajwT

j aj , hence, ‖z‖2 ≤ O(
√
p√
n

).

‖
∑
l 6=j 6=i

pijl
1
4νwT

i alwjwT
j al‖2 = 1

4ν(s3/p3)‖W\i‖2 ≤ O(s3/(pn
√
n)). (34)

‖pil
1
4νwT

i alwiwT
i al‖2 ≤ O(s2/(np2)). (35)
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Following a similar approach for r2, we get

‖E[r2]‖2 = ‖E[
∑
l∈S\i

1
4νalwT

i (WSWT
S − I)al]‖2 = ‖E[

∑
l∈S\i

1
4νalwT

i (WSWT
S )al −

∑
l∈S\i

1
4νalwT

i al]‖2

= ‖
∑
l 6=j 6=i

pijl
1
4νalwT

i wjwT
j al +

∑
j 6=i

pij
1
4νajwT

i wjwT
j aj + pil

1
4νalwT

i wiwT
i al −

∑
l 6=i

pil
1
4νwT

i alal‖2

= ‖
∑
l 6=j 6=i

pijl
1
4νalwT

i wjwT
j al +

∑
j 6=i

pij
1
4νajwT

i wjwT
j aj‖2 ≤ O(s2/(np)).

(36)
Next, we bound ‖εεε‖2. We know that Hessian of sigmoid is bounded (i.e., ‖∇2σ(ut)‖2 ≤ C ≈ 0.1). We denote
row t of the matrix A by ãt.

‖εεε‖2 ≤
n∑
t=1
‖(ãT

t,Sx∗S)2∇2σ(ut)‖2 ≤
n∑
t=1
‖ãT

t,Sx∗S‖2
2‖∇2σ(ut)‖2 ≤ ‖AS‖2

2‖x∗S‖2
2‖∇2σ(ut)‖2 ≤ O(C2

xs). (37)

Following a similar approach, we get

‖ε̃εε‖2 ≤
n∑
t=1
‖[4WSWT

S (µ− 1
2)−WSbS ]2t∇2σ(ut)‖2 ≤ (‖4WSWT

S (µ− 1
2)‖2

2 + ‖WSbS‖2
2)‖∇2σ(ut)‖2

≤ O(C‖WS‖2
2‖ASx∗S + εεε‖2

2) ≤ O(C2
xs)

(38)
So,

‖wT
i εεε(WSWT

S − I)Ax∗‖2 ≤ ‖wi‖2‖εεε‖2(‖WT
S‖2

2 + 1)‖AS‖2‖x∗S‖2 ≤ O(C3
xs
√
s). (39)

Hence,
‖E[e1]‖2 ≤ O(C3

xs
√
s). (40)

Similarly, we have ‖E[e2]‖2 ≤ O(C3
xs
√
s).

‖
(
(Ax∗ + εεε)wT

i + wT
i (Ax∗ + εεε)I

)
((WSWT

S − I)εεε+ ε̃εε)‖2

≤ 2(‖AS‖2‖x∗S‖2 + ‖εεε‖2)‖wi‖2
(
(‖WT

S‖2
2 + 1)‖εεε‖2 + ‖ε̃εε‖2

)
= O((‖x∗S‖2 + ‖εεε‖2)‖εεε‖2) ≤ O(max(C3

xs
√
s, C4

xs
2)).

(41)

Hence,
‖E[e3]‖2 ≤ O(max(C3

xs
√
s, C4

xs
2)). (42)

We have
‖(−bi)((WSWT

S − I)εεε+ ε̃εε)‖2 ≤ O(C2
xs) (43)

Hence,
‖E[e4]‖2 ≤ O(max(C2

xs). (44)

Using the above bounds, we have

‖β‖2 ≤ O(max(C3
xs
√
s, C4

xs
2)). (45)

Using (A14), we get

‖v‖2 = ‖1
4pi(ντi(τi − 1) + b2

i )wi + ζ + β‖2 ≤
1
4pi|ντi(τi − 1) + b2

i |‖wi‖2 + ‖ζ‖2 + ‖β‖2

≤ 1
4pi(2ντi(1− τi)) + ‖ζ‖2 + ‖β‖2 ≤

1
4piντiq‖wi − ai‖2 + ‖ζ‖2 + ‖β‖2

≤ 1
4piντiq‖wi − ai‖2 +O(max(C3

xs
√
s, C4

xs
2)).

(46)

Lemma 1.5. Suppose the generative model satisfies (A1)− (A14). Then

2〈gi,wi − ai〉 ≥ (1
4ντis/p)(1− 2q2)‖wi − ai‖2

2 + 1
( 1

4ντis/p)
‖gi‖2

2 −O(C6
xpmax(s2/τi, C

2
xs

3/τi)). (47)

Proof. From Lemma 1.4, we have

‖v‖2 ≤
1
4piτiνq‖wi − ai‖2 +O(max(C3

xs
√
s, C4

xs
2)). (48)

Hence,
‖v‖2

2 ≤ 2(1
4τiνqs/p)

2‖wi − ai‖2
2 +O(max(C6

xs
3, C8

xs
4)). (49)

We have gi = 1
4piντi(wi − ai) + v. Taking the norm,

‖gi‖2
2 = (1

4piντi)
2‖wi − ai‖2

2 + ‖v‖2
2 + 2(1

4piντi)〈v,wi − ai〉. (50)

2〈v,wi − ai〉 = −(1
4piντi)‖wi − ai‖2

2 + 1
( 1

4piντi)
‖gi‖2

2 −
1

( 1
4piντi)

‖v‖2
2. (51)
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2〈gi,wi − ai〉 = 1
4piντi‖wi − ai‖2

2 + 1
( 1

4piντi)
‖gi‖2

2 −
1

( 1
4piντi)

‖v‖2
2

≥ (1
4ντis/p)(1− 2q2)‖wi − ai‖2

2 + 1
( 1

4ντis/p)
‖gi‖2

2 −O(C6
xpmax(s2/τi, C

2
xs

3/τi)).
(52)

Intuitively, Lemma 1.5 suggests that the gradient is approximately along the same direction as wi − ai, so
at every iteration of the gradient descent, wi gets closer and closer to ai. Given Lemma 1.5, rigorously,
from the descent property of Theorem 6 in [Arora et al., 2015], we can see that given the learning rate
κ = maxi( 1

1
4ντis/p

), letting δ = κ( 1
4ντis/p)(1− 2q2) ∈ (0, 1), we have the descent property as follows

‖w(l+1)
i − ai‖2

2 ≤ (1− δ)‖w(l)
i − ai‖2

2 + κ ·O(C6
xpmax(s2/τi, C

2
xs

3/τi)). (53)

Lemma 1.6. Suppose ‖w(l+1)
i − ai‖2

2 ≤ (1 − δ)‖w(l)
i − ai‖2

2 + κ · O(C6
xpmax(s2/τi, C

2
xs

3/τi)) where δ =
κ( 1

4ντis/p)(1− 2q2) ∈ (0, 1) and O(C
4
xp

2 max(s,C4
xs

2)
τ2
i

(1−2q2) ) < ‖w(0)
i − ai‖2

2. Then

‖w(L)
i − ai‖2

2 ≤ (1− δ/2)L‖w(0)
i − ai‖2

2. (54)

Proof. Performing the gradient update L times,

‖w(L)
i − ai‖2

2 ≤ (1− δ)L‖w(0)
i − ai‖2

2 + 1
( 1

4ντis/p)(1− 2q2)
O(C6

xpmax(s2/τi, C
2
xs

3/τi))

≤ (1− δ)L‖w(0)
i − ai‖2

2 +O(C
6
xp

2 max(s, C2
xs

2)
τ2
i (1− 2q2) ).

(55)

From Theorem 6 in [Arora et al., 2015], if O(C
6
xp

2 max(s,C2
xs

2)
τ2
i

(1−2q2) ) < ‖w(0)
i − ai‖2

2, then we have

‖w(L)
i − ai‖2

2 ≤ (1− δ/2)L‖w(0)
i − ai‖2

2. (56)

Corollary 1.6.1. Given (A2), the condition of Lemma 1.6 is simplified to O( max(s,s2/p
2
3 +2ξ)

p6ξτ2
i

(1−2q2) ) < ‖w(0)
i −ai‖2

2.

The intuition behind the bound on the amplitude of x∗ in (A2) is that as Cx gets smaller, the range of
σ(Ax∗) is concentrated around the linear region of the sigmoid function (i.e., around σ(0)); thus εεε, which
is the difference between σ(Ax∗) and the linear region of sigmoid 1

2 + 1
4 Ax∗, is smaller. Hence, the upper

bound on ‖v‖2 would be smaller and O( max(s,s2/p
2
3 +2ξ)

p6ξτ2
i

(1−2q2) ) would get smaller.

1.4 Sparse coding with Sb = HTb

1.4.1 Gradient derivation

This is section, we derive gi for the case when Sb = HTb following a similar approach to the previous section.

lim
M→∞

∂LW
∂wi

= lim
M→∞

∂c1

∂wi

∂LW
∂c1

+ ∂c2

∂wi

∂LW
∂c2

= ∂c1

∂wi

∂x
∂c1

∂c2

∂x
LW
∂c2

+ ∂c2

∂wi

∂LW
∂c2

=

[0, 0, . . . , 4(µµµ− 1
2), . . . , 0]︸ ︷︷ ︸

n×p

diag(S ′b(c1))︸ ︷︷ ︸
p×p

WT + 1xi 6=0wT
i 4(µµµ− 1

2)I

(−σ(Ax∗) + σ(4WSWT
S (µµµ− 1

2))
)

=
(
S ′b(c1,i)4(µµµ− 1

2)wT
i + 1xi 6=0wT

i 4(µµµ− 1
2)I
)(

σ(4WSWT
S (µµµ− 1

2))− σ(Ax∗)
)
.

(57)
We further expand the gradient, by replacing σ(.) with its Taylor expansion. We have

σ(Ax∗) = 1
2 + 1

4Ax∗ + εεε, (58)

where εεε = [ε1, . . . , εn]T, εd = ∇2σ(ud)([Ax∗]d)2, and 0 ≤ ud ≤ [Ax∗]d. Similarly,

σ(4WSWT
S (µµµ− 1

2)) = 1
2 + WSWT

S (µµµ− 1
2) + ε̃εε, (59)

where ε̃εε = [ε̃1, . . . , ε̃n]T, ε̃d = ∇2σ(ũd)([4WSWT
S (µµµ − 1

2 )]d)2 , and 0 ≤ ũd ≤ [4WSWT
S (µµµ − 1

2 )]d. Again,
replacing µµµ with Taylor expansion of σ(Ax∗), we get

σ(4WSWT
S (µµµ− 1

2)) = 1
2 + WSWT

S (1
4Ax∗ + εεε) + ε̃εε. (60)

By symmetry, E[εεε | S] = E [̃εεε | S] = 0. The expectation of gradient gi would be

gi = E[
(
1xi 6=0(Ax∗ + 4εεε)wT

i + 1xi 6=0wT
i (Ax∗ + 4εεε)I

)
(1
4(WSWT

S − I)(Ax∗) + (WSWT
S − I)εεε+ ε̃εε)]. (61)
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1.4.2 Gradient dynamics

Given the code consistency from the forward pass of the encoder, we replace 1xi 6=0 with 1x∗
i
6=0 and denote

the error by γ as below which is small for large p [Nguyen et al., 2019].

γ = E[(1x∗
i
6=0−1xi 6=0)

(
(Ax∗ + 4εεε)wT

i + wT
i (Ax∗ + 4εεε)I

)
(1
4(WSWT

S−I)(Ax∗)+(WSWT
S−I)εεε+ε̃εε)]. (62)

Now, we write gi as

gi = E[1x∗
i
6=0
(
(Ax∗ + 4εεε)wT

i + wT
i (Ax∗ + 4εεε)I

)
(1
4(WSWT

S − I)(Ax∗) + (WSWT
S − I)εεε+ ε̃εε)] + γ. (63)

We can see that if i /∈ S then 1x∗
i

= 0 hence, gi = 0. Thus, in our analysis, we only consider the case i ∈ S.
We decompose gi as below.

gi = g
(1)
i + g

(2)
i + g

(3)
i + γ, (64)

where
g

(1)
i = E[ 14wT

i (Ax∗ + 4εεε)(WSWT
S − I)Ax∗]. (65)

g
(2)
i = E[ 14(Ax∗ + 4εεε)wT

i (WSWT
S − I)Ax∗]. (66)

g
(3)
i = E[

(
(Ax∗ + 4εεε)wT

i + wT
i (Ax∗ + 4εεε)I

)
((WSWT

S − I)εεε+ ε̃εε)]. (67)
We define

g
(1)
i,S = E[ 14wT

i (Ax∗ + 4εεε)(WSWT
S − I)Ax∗ | S]. (68)

g
(2)
i,S = E[ 14(Ax∗ + 4εεε)wT

i (WSWT
S − I)Ax∗ | S]. (69)

g
(3)
i,S = E[

(
(Ax∗ + 4εεε)wT

i + wT
i (Ax∗ + 4εεε)I

)
((WSWT

S − I)εεε+ ε̃εε) | S]. (70)

Hence, g(k)
i = E[g(k)

i,S ] for k = 1, . . . , 3 where the expectations are with respect to the support S.

g
(1)
i,S = E[ 14wT

i (Ax∗ + 4εεε)(WSWT
S − I)Ax∗ | S]

=
∑
j,l∈S

E[ 14wT
i ajx∗j (WSWT

S − I)alx∗l | S] + E[wT
i εεε(WSWT

S − I)Ax∗ | S]

= 1
4νwT

i ai(WSWT
S − I)ai +

∑
l∈S\i

1
4νwT

i al(WSWT
S − I)al + e1 = 1

4νwT
i ai(WSWT

S − I)ai + r1 + e1.

(71)
We denote r1 =

∑
l∈S\i

1
4νwT

i al(WSWT
S − I)al and e1 = E[wT

i εεε(WSWT
S − I)Ax∗ | S]. Similarly for g(2)

i,S ,
we have

g
(2)
i,S = 1

4νaiwT
i (WSWT

S − I)ai + r2 + e2. (72)

We denote r2 =
∑
l∈S\i

1
4νalwT

i (WSWT
S − I)al, e2 = E[εεεwT

i (WSWT
S − I)Ax∗ | S], and e3 = g

(3)
i,S . We also

denote β = E[r1 + r2 + e1 + e2 + e3] + γ. Combining the terms,

gi = E[ 14νwT
i ai(WSWT

S − I)ai + 1
4νaiwT

i (WSWT
S − I)ai] + β

= E[−1
2ντiai + 1

4ντi
∑
j∈S

wjwT
j ai + 1

4νaiwT
i

∑
j∈S

wjwT
j ai] + β

= E[−1
2ντiai + 1

4ντ
2
i wi + 1

4ντi
∑
j∈S\i

wjwT
j ai + 1

4ντi‖wi‖2
2ai + 1

4ν
(
aiwT

i

) ∑
j∈S\i

wjwT
j ai] + β

= −1
4piντiai + pi

1
4ντ

2
i wi + ζ + β,

(73)

where ζ =
∑
j∈[p]\i

1
4pijντiwjwT

j ai + 1
4pijνaiwT

i wjwT
j ai. We continue

gi = 1
4piντi(wi − ai) + v, (74)

where we denote v = 1
4piντi(τi − 1)wi + ζ + β.

Lemma 1.7. Suppose the generative model satisfies (A1)− (A13). Then

‖v‖2 ≤
1
8piντiq‖wi − ai‖2 +O(max(C3

xs
√
s, C4

xs
2)) (75)

Proof.

‖ζ‖2 = ‖
∑
j∈[p]\i

1
4pijντiwjwT

j ai + 1
4pijνaiwT

i wjwT
j ai‖2 = ‖1

4pijντiW\iWT
\iai + 1

4pijνaiwT
i W\iWT

\iai‖2

≤ 1
4pijντi‖W\i‖2

2‖ai‖2 + 1
4pijν‖wi‖2‖W\i‖2

2‖ai‖2
2 = 1

4O(ντis2/(np)) + 1
4O(νs2/(np)) = O(s2/(np)).

(76)
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‖E[r1]‖2 = ‖E[
∑
l∈S\i

1
4νwT

i al(WSWT
S − I)al]‖2 = ‖E[

∑
l∈S\i

1
4νwT

i alWSWT
Sal −

∑
l∈S\i

1
4νwT

i alal]‖2

=‖
∑
l 6=j 6=i

pijl
1
4νwT

i alwjwT
j al +

∑
j 6=i

pij
1
4νwT

i ajwjwT
j aj + pil

1
4νwT

i alwiwT
i al −

∑
l 6=i

pil
1
4νwT

i alal‖2 ≤ O(s2/(np)).

(77)
where each terms is bounded as below

‖
∑
l 6=j 6=i

pijl
1
4νwT

i alwjwT
j al‖2 = 1

4ν(s3/p3)‖W\i‖2 ≤ O(s3/(pn
√
n)). (78)

where zj =
∑
l 6=i,j wT

i alwT
j al, hence, ‖z‖2 ≤ O(p

√
p

n ).

‖
∑
j 6=i

pij
1
4νwT

i ajwjwT
j aj‖2 = ‖1

4ν(s2/p2)‖W\iz‖2 ≤ O(s2/(np)). (79)

where zj = wT
i ajwT

j aj , hence, ‖z‖2 ≤ O(
√
p√
n

).

‖
∑
l 6=j 6=i

pijl
1
4νwT

i alwjwT
j al‖2 = 1

4ν(s3/p3)‖W\i‖2 ≤ O(s3/(pn
√
n)). (80)

‖pil
1
4νwT

i alwiwT
i al‖2 ≤ O(s2/(np2)). (81)

Following a similar approach for r2, we get

‖E[r2]‖2 = ‖E[
∑
l∈S\i

1
4νalwT

i (WSWT
S − I)al]‖2 = ‖E[

∑
l∈S\i

1
4νalwT

i (WSWT
S )al −

∑
l∈S\i

1
4νalwT

i al]‖2

= ‖
∑
l 6=j 6=i

pijl
1
4νalwT

i wjwT
j al +

∑
j 6=i

pij
1
4νajwT

i wjwT
j aj + pil

1
4νalwT

i wiwT
i al −

∑
l 6=i

pil
1
4νwT

i alal‖2

= ‖
∑
l 6=j 6=i

pijl
1
4νalwT

i wjwT
j al +

∑
j 6=i

pij
1
4νajwT

i wjwT
j aj‖2 ≤ O(s2/(np)).

(82)
Next, we bound ‖εεε‖2. We know that Hessian of sigmoid is bounded (i.e., ‖∇2σ(ut)‖2 ≤ C ≈ 0.1). We denote
row t of the matrix A by ãt.

‖εεε‖2 ≤
n∑
t=1
‖(ãT

t,Sx∗S)2∇2σ(ut)‖2 ≤
n∑
t=1
‖ãT

t,Sx∗S‖2
2‖∇2σ(ut)‖2 ≤ ‖AS‖2

2‖x∗S‖2
2‖∇2σ(ut)‖2 ≤ O(C2

xs). (83)

Following a similar approach, we get

‖ε̃εε‖2 ≤
n∑
t=1
‖[4WSWT

S (µ− 1
2)]2t∇2σ(ut)‖2 ≤ ‖4WSWT

S (µ− 1
2)‖2

2‖∇2σ(ut)‖2

≤ O(C‖WS‖2
2‖ASx∗S + εεε‖2

2) ≤ O(C2
xs)

(84)

So,
‖wT

i εεε(WSWT
S − I)Ax∗‖2 ≤ ‖wi‖2‖εεε‖2(‖WT

S‖2
2 + 1)‖AS‖2‖x∗S‖2 ≤ O(C3

xs
√
s). (85)

Hence,
‖E[e1]‖2 ≤ O(C3

xs
√
s). (86)

Similarly, we have ‖E[e2]‖2 ≤ O(C3
xs
√
s).

‖
(
(Ax∗ + εεε)wT

i + wT
i (Ax∗ + εεε)I

)
((WSWT

S − I)εεε+ ε̃εε)‖2

≤ 2(‖AS‖2‖x∗S‖2 + ‖εεε‖2)‖wi‖2
(
(‖WT

S‖2
2 + 1)‖εεε‖2 + ‖ε̃εε‖2

)
= O((‖x∗S‖2 + ‖εεε‖2)‖εεε‖2) ≤ O(max(C3

xs
√
s, C4

xs
2)).

(87)

Hence,
‖E[e3]‖2 ≤ O(max(C3

xs
√
s, C4

xs
2)). (88)

Using the above bounds, we have

‖β‖2 ≤ O(max(C3
xs
√
s, C4

xs
2)). (89)

Hence,

‖v‖2 = ‖1
4piντi(τi − 1)wi + ζ + β‖2 ≤

1
4piντi|(τi − 1)|‖wi‖2 + ‖ζ‖2 + ‖β‖2

≤ 1
4piντi(

1
2q‖wi − ai‖2) + ‖ζ‖2 + ‖β‖2 ≤

1
8piντiq‖wi − ai‖2 +O(max(C3

xs
√
s, C4

xs
2)).

(90)
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Lemma 1.8. Suppose the generative model satisfies (A1)− (A13). Then

2〈gi,wi − ai〉 ≥ (1
4ντis/p)(1−

q2

2 )‖wi − ai‖2
2 + 1

( 1
4ντis/p)

‖gi‖2
2 −O(C6

xpmax(s2/τi, C
2
xs

3/τi)). (91)

Proof. From Lemma 1.7, we have

‖v‖2 ≤
1
8piντiq‖wi − ai‖2 +O(max(C3

xs
√
s, C4

xs
2)). (92)

Hence,
‖v‖2

2 ≤ 2(1
8τiνqs/p)

2‖wi − ai‖2
2 +O(max(C6

xs
3, C8

xs
4)). (93)

We have gi = 1
4piντi(wi − ai) + v. Taking the norm,

‖gi‖2
2 = (1

4piντi)
2‖wi − ai‖2

2 + ‖v‖2
2 + 2(1

4piντi)〈v,wi − ai〉. (94)

2〈v,wi − ai〉 = −(1
4piντi)‖wi − ai‖2

2 + 1
( 1

4piντi)
‖gi‖2

2 −
1

( 1
4piντi)

‖v‖2
2. (95)

2〈gi,wi − ai〉 = 1
4piντi‖wi − ai‖2

2 + 1
( 1

4piντi)
‖gi‖2

2 −
1

( 1
4piντi)

‖v‖2
2

≥ (1
4ντis/p)(1−

q2

2 )‖wi − ai‖2
2 + 1

( 1
4ντis/p)

‖gi‖2
2 −O(C6

xpmax(s2/τi, C
2
xs

3/τi)).
(96)

Lemma 1.8 suggests that the gradient is approximately along the same direction as wi − ai, so at every
iteration of the gradient descent, wi gets closer and closer to ai. Given Lemma 1.8 from the descent property
of Theorem 6 in [Arora et al., 2015], we can see that given the learning rate κ = maxi( 1

1
4ντis/p

), letting

δ = κ( 1
4ντis/p)(1−

q2

2 ) ∈ (0, 1), we have the descent property as follows

‖w(l+1)
i − ai‖2

2 ≤ (1− δ)‖w(l)
i − ai‖2

2 + κ ·O(C6
xpmax(s2/τi, C

2
xs

3/τi)). (97)

Lemma 1.9. Suppose ‖w(l+1)
i − ai‖2

2 ≤ (1 − δ)‖w(l)
i − ai‖2

2 + κ · O(C6
xpmax(s2/τi, C

2
xs

3/τi)) where δ =
κ( 1

4ντis/p)(1−
q2

2 ) ∈ (0, 1) and O(C
4
xp

2 max(s,C4
xs

2)
τ2
i

(1− q2
2 )

) < ‖w(0)
i − ai‖2

2. Then

‖w(L)
i − ai‖2

2 ≤ (1− δ/2)L‖w(0)
i − ai‖2

2. (98)

Proof. Performing the gradient update L times,

‖w(L)
i − ai‖2

2 ≤ (1− δ)L‖w(0)
i − ai‖2

2 + 1
( 1

4ντis/p)(1−
q2

2 )
O(C6

xpmax(s2/τi, C
2
xs

3/τi))

≤ (1− δ)L‖w(0)
i − ai‖2

2 +O(C
6
xp

2 max(s, C2
xs

2)
τ2
i (1− q2

2 )
).

(99)

From Theorem 6 in [Arora et al., 2015], if O(C
6
xp

2 max(s,C2
xs

2)
τ2
i

(1− q2
2 )

) < ‖w(0)
i − ai‖2

2, then we have

‖w(L)
i − ai‖2

2 ≤ (1− δ/2)L‖w(0)
i − ai‖2

2. (100)

Corollary 1.9.1. Given (A2), the condition of Lemma 1.9 is simplified to O( max(s,s2/p
2
3 +2ξ)

p6ξτ2
i

(1− q2
2 )

) < ‖w(0)
i −ai‖2

2.

2 BCOMP algorithm
We implement binomial convolutional orthogonal matching pursuit (BCOMP) as a baseline for ECDL task,
as mentioned in the Experiments section. BCOMP solves Eq. (2) with `0 psuedo-norm ‖xj‖0, instead of
‖xj‖1, and combines the idea of convolutional greedy pursuit [Mailhé et al., 2011] and binomial greedy
pursuit [Vincent and Bengio, 2002, Lozano et al., 2011]. BCOMP is a computationally efficient algorithm
for ECDL, as 1) the greedy algorithms are generally considered faster than algorithms for `1-regularized
problems [Tropp and Gilbert, 2007] and 2) it exploits the localized nature of hc to speed up the computation
of both CSC and CDU steps.

The superscript g refers to one iteration of the the alternating-minimization procedure, for g = 1, · · · , G. We
assume sparsity level of T for BCOMP, which means that there are at most T non-zeros values for xj , set
differently according to the application. The subscript t refers to a single iteration of the CSC step, where
additional support for xj is identified. The set Rt contains indices of the columns from H that were chosen
up to iteration t. The notation Hi refers to the ith column of H. The index njc,i denotes the occurrence of
the ith event from filter c (the nonzero entries of xj corresponding to filter c) in the jth observation. The
optimization problems in line 10 and 17 are both constrained convex optimization problems that can be
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Algorithm 2: ECDL by BCOMP
Input: {yj}Jj=1 ∈ RN , {h(0)

c }Cc=1 ∈ RK

Output: {xj,(G)}Jj=1 ∈ RC(N−K+1), {h(G)
c }Cc=1 ∈ RK

1 for g = 1 to G do
2 (CSC step)
3 for j = 1 to J do
4 R0 = ∅, xj,(g−1)

1 = 0
5 for t = 1 to T do
6 ỹjt = yjt − f−1(H(g−1)xj,(g−1)

t−1
)

7 c∗, n∗ = arg maxc,n{(h
(g−1)
c ? ỹjt )[n]}C,N−K+1

c,n=1
8 i = c∗(N −K + 1) + n∗

9 Rt = Rt−1 ∪H(g−1)
i

10 xj,(g)
t = arg minxj − log p(yj |{h(g−1)

c }Cc=1,xj), s.t.
{

xj [n] ≥ 0 for n ∈ Rt
xj [n] = 0 for n /∈ Rt
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12 (CDU step)
13 for j = 1 to J do
14 for c = 1 to C do
15 for i = 1 to N j

c do

16 Xj,(g)
c,i =

(
0nj

c,i
×K xc,(g)[njc,i] · IK×K 0(N−K−nj

c,i
)×K

)T

17 {h(g)
c }Cc=1 = arg min{hc}Cc=1

−
∑J
j=1 log p(yj |{hc}Cc=1, {X

j,(g)
c,i }c,i,j=1), s.t. ||hc||2 = 1

solved using standard convex programming packages.

We found that BCOMP converged in G = 5 alternating-minimization iterations in the simulations, and
G = 10 iterations in the analyses of the real data. After convergence, the CSC step of the BCOMP can be
used for inference on the test dataset, similar to using the encoder of DCEA for inference. Algorithm 3 shows
the forward pass of the DCEA architecture. For notational convenience, we have dropped the superscript j
indexing the J inputs.

Algorithm 3: DCEA(y,h, b): Forward pass of DCEA architecture.
Input: y,h, b, α
Output: w

1 x0 = 0
2 for t = 1 to T do
3 xt = Sb

(
xt−1 + αHT

(
y− f−1(Hxt−1

)))
4 w = HxT

3 DCEA architecture
Implementation of the DCEA encoder We implemented the DCEA architecture in PyTorch. In the
case of 1D, we accelerate the computations performed by the DCEA encoder by replacing ISTA with its
faster version FISTA [Beck and Teboulle, 2009]. FISTA uses a momentum term to accelerate the converge
of ISTA. The resulting encoder is similar to the one from [Tolooshams et al., 2020]. We trained it using
backpropagation with the ADAM optimizer [Kingma and Ba, 2014], on an Nvidia GPU (GeForce GTX 1060).

Hyperparameters used for training the DCEA architecture in using the simulated and real
neural spiking data In these experiments, we treat λ as hyperparameter where b = αλ. λ is tuned by grid
search in the interval of [0.1, 1.5]. Following the grid search, we used λ = 0.38 in the simulations and λ = 0.12
for the real data. The DCEA encoder performs T = 250 and T = 5,000 iterations of FISTA, respectively
for the simulated and for the real data. We found that such large numbers, particularly for the real data,
were necessary for the encoder to produce sparse codes. We used α = 0.2 in the simulations and α = 0.5 for
the real data. We used batches of size 256 neurons in the simulations, and a single neuron per batch in the
analyses of the real data.

Processing of the output of the DCEA encoder after training in neural spiking experiment
The encoder of the DCEA architecture performs `1-regularized logistic regression using the convolutional
dictionary H, the entries of which are highly correlated because of the convolutional structure. Suppose a
binomial observation yj is generated according to the binomial generative model with mean of µµµj = f−1(Hxj

)
,

where f−1(·) is a sigmoid function. We observed that the estimate xjT of xj obtained by feeding the group
of observations to the DCEA encoder is a vector whose nonzero entries are clustered around those of xj .
This is depicted in black in Fig. 1, and is a well-known issue with `1-regularized regression with correlated
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dictionaries [Bhaskar et al., 2013]. Therefore, for the neural spiking data, after training the DCEA architecture,
we processed the output of the encoder as follows

1. Clustering: We applied k-means clustering to xjT to identify 16 clusters.

2. Support identification: For each cluster, we identified the index of the largest entry from xjT in the
cluster. This yielded a set of indices that correspond to the estimated support of xj .

3. Logistic regression: We performed logistic regression using the group of observations and H restricted
to the support identified in the previous step. Note that this is a common procedure for `1-regularized
problems [Tang et al., 2013, Mardani et al., 2018]. This yielded a new set of codes xj that were used to
re-estimate H, similar to a single iteration of BCOMP.

The outcome of these three steps is shown in red circle in the supplementary Fig. 1.
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15

20

25
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Figure 1: Output of the the DCEA encoder before and after post-processing.

4 Generalized linear model (GLM) for whisker experiment
In this section, for ease of notation, we consider the simple case of Mj = 1 (Bernoulli). However, the detail
can be generalized to the binomial generative model.

We describe the GLM [Truccolo et al., 2005] used for analyzing the neural spiking data from the whisker
experiment [Ba et al., 2014], and which we compared to BCOMP and DCEA in Fig. 4. Fig. 4(b) depicts a
segment of the periodic stimulus used in the experiment to deflect the whisker. The units are in mm

10 . The
full stimulus lasts 3000 ms and is equal to zero (whisker at rest) during the two baseline periods from 0
to 500 ms and 2500 to 3000 ms. In the GLM analysis, we used whisker velocity as a stimulus covariate,
which corresponds to the first difference of the position stimulus s ∈ R3000. The blue curve in Fig. 4(c)
represents one period of the whisker-velocity covariate. We associated a single stimulus coefficient βββstim ∈ R
to this covariate. In addition to the stimulus covariate, we used history covariates in the GLM. We denote by
βββjH ∈ RLj the coefficients associated with these covariates, where j = 1, · · · , J is the neuron index. We also
define aj to be the base firing rate for neuron j. The GLM is given by

yj [n] ∼ Bernoulli(pj [n])

s.t. pj [n] =
(

1 + exp
(
− aj − βββstim · (s[n]− s[n− 1])︸ ︷︷ ︸

whisker velocity

−
Lj∑
l=1

βββjH [l] · yj [n− l]
))−1 (101)

The parameters {aj}Jj=1, βββstim, and {βββjH}Jj=1 are estimated by minimizing the negative likelihood of the
neural spiking data {yj}10

j=1 with Mj = 30 from all neurons using IRLS. We picked the order Lj (in ms) of
the history effect for neuron j by fitting the GLM to each of the 10 neurons separately and finding the value
of ≈ 5 ≤ Lj ≤ 100 that minimizes the Akaike Information Criterion [Truccolo et al., 2005].

Interpretation of the GLM as a convolutional model Because whisker position is periodic with
period 125 ms, so is whisker velocity. Letting h1 denote whisker velocity in the interval of length 125 ms
starting at 500 ms (blue curve in Fig. 4(c)), we can interpret the GLM in terms of the convolutional model
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of Eq. 8. In this interpretation, H is the convolution matrix associated with the fixed filter h1 (blue curve
in Fig. 4(c)), and xj is a sparse vector with 16 equally spaced nonzero entries all equal to βββstim. The first
nonzero entry of xj occurs at index 500. The number of indices between nonzero entries is 125. The blue
dots in Fig. 4(d) reflect this interpretation.

Incorporating history dependence in the generative model GLMs of neural spiking data [Truccolo
et al., 2005] include a constant term that models the baseline probability of spiking aj , as well as a term that
models the effect of spiking history. This motivates us to use the model

log p(yj,m | {hc}Cc=1,xj ,x
j
H)

1− p(yj,m | {hc}Cc=1,xj ,x
j
H)

= aj + Hxj + YjxjH , (102)

where yj,m ∈ {0, 1}N refers to mth trial of the binomial data yj . The nth row of Yj ∈ RN×Lj contains
the spiking history of neuron j at trial m from n − Lj to n, and xjH ∈ RLj are coefficients that capture
the effect of spiking history on the propensity of neuron j to spike. We use the same Lj estimated from
GLM. We estimate aj from the average firing probability during the baseline period. The addition of the
history term simply results in an additional set of variables to alternate over in the alternating-minimization
interpretation of ECDL. We estimate it by adding a loop around BCOMP or backpropagation through DCEA.
Every iteration of this loop first assumes xjH are fixed. Then, it updates the filters and xj . Finally, it solves
a convex optimization problem to update xjH given the filters and xj . In the interest of space, we do not
describe this algorithm formally.

5 Kolmogorov-smirnov plots and the time-rescaling theorem
Loosely, the time-rescaling theorem states that rescaling the inter-spike intervals (ISIs) of the neuron using
the (unknown) underlying conditional intensity function (CIF) will transform them into i.i.d. samples from
an exponential random variable with rate 1. This implies that, if we apply the CDF of an exponential random
variable with rate 1 to the rescaled ISIs, these should look like i.i.d. draws from a uniform random variable in
the interval [0, 1]. KS plots are a visual depiction of this result. They are obtained by computing the rescaled
ISIs using an estimate of the underlying CIF and applying the CDF of an exponential random variable with
rate 1 to them. These are then sorted and plotted against ideal uniformly-spaced empirical quantiles from a
uniform random variable in the interval [0, 1]. The CIF that fits the data the best is the one that yields a
curve that is the closest to the 45-degree diagonal. Fig. 4(e) depicts the KS plots obtained using the CIFs
estimated using DCEA, BCOMP and the GLM.

6 Image denoising
This section visualizes several test images for Poisson image denoising.
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(a) Original (b) Noisy peak= 4 (c) DCEA-C (d) DCEA-UC

Figure 2: Denoising performance on test images with peak= 4. (a) Original, (b) noisy, (c) DCEA-C, and (d)
DCEA-UC.
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(a) Original (b) Noisy peak= 2 (c) DCEA-C (d) DCEA-UC

Figure 3: Denoising performance on test images with peak= 2. (a) Original, (b) noisy, (c) DCEA-C, and (d)
DCEA-UC.
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(a) Original (b) Noisy peak= 1 (c) DCEA-C (d) DCEA-UC

Figure 4: Denoising performance on test images with peak= 1. (a) Original, (b) noisy, (c) DCEA-C, and (d)
DCEA-UC.

15



References
[Arora et al., 2015] Arora, S., Ge, R., Ma, T., and Moitra, A. (2015). Simple, efficient, and neural algorithms

for sparse coding. In Proc. the 28th Conference on Learning Theory, volume 40 of Proceedings of Machine
Learning Research, pages 113–149, Paris, France. PMLR.

[Ba et al., 2014] Ba, D., Temereanca, S., and Brown, E. (2014). Algorithms for the analysis of ensemble neural
spiking activity using simultaneous-event multivariate point-process models. Frontiers in Computational
Neuroscience, 8:6.

[Beck and Teboulle, 2009] Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202.

[Bhaskar et al., 2013] Bhaskar, B. N., Tang, G., and Recht, B. (2013). Atomic norm denoising with applica-
tions to line spectral estimation. IEEE Transactions on Signal Processing, 61(23):5987–5999.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. In
Proc. the 3rd International Conference on Learning Representations (ICLR), pages 1–15.

[Lozano et al., 2011] Lozano, A., Swirszcz, G., and Abe, N. (2011). Group orthogonal matching pursuit for
logistic regression. Journal of Machine Learning Research, 15:452–460.

[Mailhé et al., 2011] Mailhé, B., Gribonval, R., Vandergheynst, P., and Bimbot, F. (2011). Fast orthogonal
sparse approximation algorithms over local dictionaries. Signal Processing, 91:2822–2835.

[Mardani et al., 2018] Mardani, M., Sun, Q., Vasawanala, S., Papyan, V., Monajemi, H., Pauly, J., and
Donoho, D. (2018). Neural proximal gradient descent for compressive imaging. In Proc. Advances in Neural
Information Processing Systems 31, pages 9573–9683.

[Nguyen et al., 2019] Nguyen, T. V., Wong, R. K. W., and Hegde, C. (2019). On the dynamics of gradient
descent for autoencoders. In Proc. Machine Learning Research, volume 89, pages 2858–2867. PMLR.

[Tang et al., 2013] Tang, G., Bhaskar, B. N., and Recht, B. (2013). Sparse recovery over continuous
dictionaries-just discretize. In 2013 Asilomar Conference on Signals, Systems and Computers, pages
1043–1047.

[Tolooshams et al., 2020] Tolooshams, B., Dey, S., and Ba, D. (2020). Deep residual autoencoders for
expectation maximization-inspired dictionary learning. IEEE Transactions on Neural Networks and
Learning Systems, pages 1–15.

[Tropp and Gilbert, 2007] Tropp, J. A. and Gilbert, A. C. (2007). Signal recovery from random measurements
via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12):4655–4666.

[Truccolo et al., 2005] Truccolo, W., Eden, U. T., Fellows, M., Donoghue, J., and Brown, E. N. (2005). A
Point Process Framework for Relating Neural Spiking Activity to Spiking History, Neural Ensemble, and
Extrinsic Covariate Effects. Journal of Neurophysiology, 93(2):1074–1089.

[Vincent and Bengio, 2002] Vincent, P. and Bengio, Y. (2002). Kernel matching pursuit. Machine Learning,
48(1):165–187.

16


	Gradient dynamics of shallow exponential auto-encoder (SEA)
	Generative model and architecture
	Assumptions and definitions
	Non-negative sparse coding with Sb = ReLUb
	Gradient derivation
	Gradient dynamics

	Sparse coding with Sb = HTb
	Gradient derivation
	Gradient dynamics


	BCOMP algorithm
	DCEA architecture
	Generalized linear model (GLM) for whisker experiment
	Kolmogorov-smirnov plots and the time-rescaling theorem
	Image denoising

