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Abstract

We study few-shot supervised domain adaptation
(DA) for regression problems, where only a few la-
beled target domain data and many labeled source
domain data are available. Many of the current
DA methods base their transfer assumptions on
either parametrized distribution shift or apparent
distribution similarities, e.g., identical condition-
als or small distributional discrepancies. However,
these assumptions may preclude the possibility
of adaptation from intricately shifted and appar-
ently very different distributions. To overcome
this problem, we propose mechanism transfer, a
meta-distributional scenario in which a data gen-
erating mechanism is invariant across domains.
This transfer assumption can accommodate non-
parametric shifts resulting in apparently different
distributions while providing a solid statistical
basis for DA. We take the structural equations
in causal modeling as an example and propose
a novel DA method, which is shown to be use-
ful both theoretically and experimentally. Our
method can be seen as the first attempt to fully
leverage the structural causal models for DA.

1. Introduction

Learning from a limited amount of data is a long-standing
yet actively studied problem of machine learning. Domain
adaptation (DA) (Ben-David et al., 2010) tackles this prob-
lem by leveraging auxiliary data sampled from related but
different domains. In particular, we consider few-shot super-
vised DA for regression problems, where only a few labeled
target domain data and many labeled source domain data
are available.

A key component of DA methods is the transfer assump-
tion (TA) to relate the source and the target distributions.
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Figure 2: Our assumption of common generative mechanism. By
capturing the common data generation mechanism, we enable
domain adaptation among seemingly very different distributions
without relying on parametric assumptions.

Many of the previously explored TAs have relied on certain
direct distributional similarities, e.g., identical condition-
als (Shimodaira, 2000) or small distributional discrepancies
(Ben-David et al., 2007). However, these TAs may preclude
the possibility of adaptation from apparently very different
distributions. Many others assume parametric forms of the
distribution shift (Zhang et al., 2013) or the distribution fam-
ily (Storkey & Sugiyama, 2007) which can highly limit the
considered set of distributions. (we further review related
work in Section 5.1).

To alleviate the intrinsic limitation of previous TAs due to
relying on apparent distribution similarities or parametric
assumptions, we focus on a meta-distributional scenario
where there exists a common generative mechanism behind
the data distributions (Figures 1,2). Such a common mech-
anism may be more conceivable in applications involving
structured table data such as medical records (Yadav et al.,
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2018). For example, in medical record analysis for disease
risk prediction, it can be reasonable to assume that there is
a pathological mechanism that is common across regions or
generations, but the data distributions may vary due to the
difference in cultures or lifestyles. Such a hidden structure
(pathological mechanism, in this case), once estimated, may
provide portable knowledge to enable DA, allowing one to
obtain accurate predictors for under-investigated regions or
new generations.

Concretely, our assumption relies on the generative model of
nonlinear independent component analysis (nonlinear ICA;
Figure 1), where the observed labeled data are generated
by first sampling latent independent components (ICs) S
and later transforming them by a nonlinear invertible mixing
Sfunction denoted by f (Hyvirinen et al., 2019). Under
this generative model, our TA is that f representing the
mechanism is identical across domains (Figure 2). This TA
allows us to formally relate the domain distributions and
develop a novel DA method without assuming their apparent
similarities or making parametric assumptions.

Our contributions. Our key contributions can be summa-
rized in three points as follows.

1. We formulate the flexible yet intuitively accessible TA
of shared generative mechanism and develop a few-
shot regression DA method (Section 3). The idea
is as follows. First, from the source domain data,
we estimate the mixing function f by nonlinear ICA
(Hyviérinen et al., 2019) because f is the only assumed
relation of the domains. Then, to transfer the knowl-
edge, we perform data augmentation using the esti-
mated f on the target domain data using the indepen-
dence of the IC distributions. In the end, the augmented
data is used to fit a target predictor (Figure 3).

2. We theoretically justify the augmentation procedure
by invoking the theory of generalized U-statistics (Lee,
1990). The theory shows that the proposed data aug-
mentation procedure yields the uniformly minimum
variance unbiased risk estimator in an ideal case. We
also provide an excess risk bound (Mohri et al., 2012)
to cover a more realistic case (Section 4).

3. We experimentally demonstrate the effectiveness of
the proposed algorithm (Section 6). The real-world
data we use is taken from the field of econometrics, for
which structural equation models have been applied in
previous studies (Greene, 2012).

A salient example of the generative model we consider is the
structural equations of causal modeling (Section 2). In this
context, our method can be seen as the first attempt to fully
leverage the structural causal models for DA (Section 5.2).

2. Problem Setup

In this section, we describe the problem setup and the no-
tation. To summarize, our problem setup is homogeneous,
multi-source, and few-shot supervised domain adapting re-
gression. That is, respectively, all data distributions are
defined on the same data space, there are multiple source
domains, and a limited number of labeled data is available
from the target distribution (and we do not assume the avail-
ability of unlabeled data). In this paper, we use the terms
domain and distribution interchangeably.

Notation. Let us denote the set of real (resp. natural)
numbers by R (resp. N). For N € N, we define [N] :=
{1,2,...,N}. Throughout the paper, we fix D(€ N) > 1
and suppose that the input space X is a subset of RP~!
and the label space ) is a subset of R. As a result, the
overall data space Z := X Xx ) is a subset of RP. We
generally denote a labeled data point by Z = (X,Y"). We
denote by Q the set of independent distributions on R with
absolutely continuous marginals. For a distribution p, we
denote its induced expectation operator by [E,,. Table 3 in
Supplementary Material provides a summary of notation.

Basic setup: Few-shot domain adapting regression.
Let pr.. be a distribution (the target distribution) over
Z,and let G C {g : RP~1 — R} be a hypothesis
class. Let £ : G x RP — [0, By] be a loss function
where B, > 0 is a constant. Our goal is to find a pre-
dictor ¢ € G which performs well for pr,;, i.e., the
target risk R(g) = E,. ¢(g,Z) is small. We denote
g* € arg min g R(g). To this goal, we are given an inde-
pendent and identically distributed (i.i.d.) sample Dy, :=
{Z;}7 ™ i Prar- In a fully supervised setting where ny,
is large, a standard procedure is to select g by empirical risk
minimization (ERM), i.e., § € arg min g R(g) where
R(g) := Y27 {(g, Z;). However, when nr,, is not

M Tar

sufficiently large, R(g) may not accurately estimate R(g),
resulting in a high generalization error of §g. To compen-
sate for the scarcity of data from the target distribution, let
us assume that we have data from K distinct source dis-
tributions {pk}f:1 over Z, that is, we have independent
iid. samples Dy := {Z¢} %, " pu(k € [K],ny, € N)
whose relations to pr., are described shortly. We assume
NTar, Nk > D for simplicity.

Key assumption. In this work, the key transfer as-
sumption is that all domains follow nonlinear ICA mod-
els with identical mixing functions (Figure 2). To be pre-
cise, we assume that there exists a set of IC distributions
qTar, @ € Q(k € [K]) , and a smooth invertible function
f : RP — RP (the transformation or mixing) such that
Z3%e ~ py is generated by first sampling SF¢ ~ g, and



Few-shot Domain Adaptation by Causal Mechanism Transfer

later transforming it by
Zit = F(SF), (M)

and similarly Z; = f(S;), S; ~ @rar for pray. The above
assumption allows us to formally relate py and pr,,. It also
allows us to estimate f when sufficient identification condi-
tions required by the theory of nonlinear ICA are met. Due
to space limitation, we provide a brief review of the nonlin-
ear ICA method used in this paper and the known theoretical
conditions in Supplementary Material A. Having multiple
source domains is assumed here for the identifiability of
f: it comes from the currently known identification condi-
tion of nonlinear ICA (Hyvirinen et al., 2019). Note that
complex changes in ¢ are allowed, hence the assumption of
invariant f can accommodate intricate shifts in the apparent
distribution p. We discuss this further in Section 5.3 by
taking a simple example.

Example: Structural equation models A salient exam-
ple of generative models expressed as Eq. (1) is structural
equation models (SEMs; Pearl, 2009; Peters et al., 2017),
which are used to describe the data generating mechanism
involving the causality of random variables (Pearl, 2009).
More precisely, the generative model of Eq.(1) corresponds
to the reduced form (Reiss & Wolak, 2007) of a Markovian
SEM (Pearl, 2009), i.e., a form where the structural equa-
tions to determine Z from (Z, S) are solved so that Z is ex-
pressed as a function of S. Such a conversion is always pos-
sible because a Markovian SEM induces an acyclic causal
graph (Pearl, 2009), hence the structural equations can be
solved by elimination of variables. This interpretation of
reduced-form SEMs as Eq.(1) has been exploited in methods
of causal discovery, e.g., in the linear non-Gaussian additive-
noise models and their successors (Kano & Shimizu, 2003;
Shimizu et al., 2006; Monti et al., 2019). In the case of
SEMs, the key assumption of this paper translates into the
invariance of the structural equations across domains, which
enables an intuitive assessment of the assumption based on
prior knowledge. For instance, if all domains have the same
causal mechanism and are in the same intervention state
(including an intervention-free case), the modeling choice is
deemed plausible. Note that we do not estimate the original
structural equations in the proposed method (Section™3) but
we only require estimating the reduced form, which is an
easier problem compared to causal discovery.

3. Proposed Method: Mechanism Transfer

In this section, we detail the proposed method, mechanism
transfer (Algorithm 1). The method first estimates the com-
mon generative mechanism f from the source domain data
and then uses it to perform data augmentation of the target
domain data to transfer the knowledge (Figure 3).

Algorithm 1 Proposed method: mechanism transfer

Input: Source domain data sets {Dy, }jc[x], target domain
data set Dy, nonlinear ICA algorithm ICA, and a learn-
ing algorithm Ag to fit the hypothesis class G of predic-
tors.

/I Step 1. Estimate the shared transformation.
f « ICA(Dy,...,Dk)
/I Step 2. Extract and shuffle target independent compo-
nents
<§z %fil( )7 (Z* 1 nTar)
{Biticnrar < AllCombmatlons({sZ}"T“)
/1 Step 3. Synthesize target data and fit the predictor.
zi < f(5:)
g Ag({zi}s)
Output: §: the predictor in the target domain.

Yy Yy %
o°°° Oxo%
o 1 .
PN 7, J—X
(a) Labeled . (d) Pseudo
target data (b) Find IC (c) Shuffle target data

Figure 3: Schematic illustration of proposed few-shot domain
adaptation method after estimating the common mechanism f.

With the estimated f , the method augments the small target do-
main sample in a few steps to enhance statistical efficiency: (a)
The algorithm is given labeled target domain data. (b) From la-
beled target domain data, extract the ICs. (c) By shuffling the
values, synthesize likely values of IC. (d) From the synthesized
IC, generate pseudo target data. The generated data is used to fit a
predictor for the target domain.

3.1. Step 1: Estimate f using the source domain data

The first step estimates the common transformation f by
nonlinear ICA, namely via generalized contrastive learning
(GCL; Hyvdrinen et al., 2019). GCL uses auxiliary informa-
tion for training a certain binary classification function, r P

equipped with a parametrized feature extractor f RP —

RP. The trained feature extractor f is used as an estimator
of f. The auxiliary information we use in our problem setup
is the domain indices [K]. The classification function to be
trained in GCLis r; (2, u) := S a(f(2)a, u) con-

sisting of (f, {1a}2 71 ), and the classification task of GCL
is logistic regression to classify (Z}, ore k) as positive and
(Z*, k') (K' # k) as negative. This yields the following
domain-contrastive learning criterion to estimate f:

argmin Z Z( ( Z,?rC k))
f€}' k=1 """ i=1
{va}i—,C¥

+ Epr210 (

).
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where F and ¥ are sets of parametrized functions, Ej/
denotes the expectation with respect to k' ~ U([K] \ {k})
(U denotes the uniform distribution), and ¢ is the logistic
loss ¢(mn) := log(1 + exp(—m)). We use the solution f
as an estimator of f. In experiments, F is implemented
by invertible neural networks (Kingma & Dhariwal, 2018),
¥ by multi-layer perceptron, and ;. is replaced by a
random sampling renewed for every mini-batch.

3.2. Step 2: Extract and inflate the target ICs using f

The second step extracts and inflates the target domain ICs
using the estimated f. We first extract the ICs of the target
domain data by applying the inverse of f as

s =171(2).
After the extraction, we inflate the set of IC values by taking
all dimension-wise combinations of the estimated IC:
s 21 A(D))

Sl—( i 0 Sip i:(il,...,iD)G[nTar]D,

to obtain new plausible IC values 5;. The intuitive motiva-
tion of this procedure stems from the independence of the
IC distributions. Theoretical justifications are provided in
Section 4. In our implementation, we use invertible neural
networks (Kingma & Dhariwal, 2018) to model the function
f to enable the computation of the inverse f L

3.3. Step 3: Synthesize target data from the inflated ICs

The third step estimates the target risk R by the empirical
distribution of the augmented data:

> g [, 2)

i€ [nTar] b

and performs empirical risk minimization. In experiments,
we use a regularization term §2(+) to control the complexity
of G and select
g € argmin {R(g) + Qg)} .
g€eg

The generated hypothesis g is then used to make predictions
in the target domain. In our experiments, we use Q(g) =
Allg||?, where A > 0 and the norm is that of the reproducing
kernel Hilbert space (RKHS) which we take the subset G
from. Note that we may well subsample only a subset of
combinations in Eq. (2) to mitigate the computational cost
similarly to Clémencon et al. (2016) and Papa et al. (2015).

4. Theoretical Insights

In this section, we state two theorems to investigate the
statistical properties of the method proposed in Section 3
and provide plausibility beyond the intuition that we take
advantage of the independence of the IC distributions.

4.1. Minimum variance property: Idealized case

The first theorem provides an insight into the statistical
advantage of the proposed method: in the ideal case, the
method attains the minimum variance among all possible
unbiased risk estimators.

Theorem 1 (Minimum variance property of R). Assume
that f = f. Then, for each g € G, the proposed risk
estimator R(g) is the uniformly minimum variance unbiased
estimator of R(g), i.e., for any unbiased estimator R(g) of

R(g),
Vge Q, Var(R(g)) < Var(R(g))

aswell as B, R(g) =

PTar

R(g) holds.

The proof of Theorem 1 is immediate once we rewrite R(g)
as a D-variate regular statistical functional and R(g) as
its corresponding generalized U-statistic (Lee, 1990). De-
tails can be found in Supplementary Material D. Theorem 1
implies that the proposed risk estimator can have superior
statistical efficiency in terms of the variance over the ordi-
nary empirical risk.

4.2. Excess risk bound: More realistic case

In real situations, one has to estimate f. The following
theorem characterizes the statistical gain and loss arising
from the estimation error f — f . The intuition is that the
increased number of points suppresses the possibility of
overfitting because the hypothesis has to fit the majority of
the inflated data, but the estimator f has to be accurate so
that fitting to the inflated data is meaningful. Note that the
theorem is agnostic to how f is obtained, hence it applies to
more general problem setup as long as f can be estimated.

Theorem 2 (Excess risk bound). Let § be a minimizer of
Eq. (2). Under appropriate assumptions (see Theorem 3 in
Supplementary Material), for arbitrary 6,6' € (0,1), we
have with probability at least 1 — (0 4+ ¢'),

R(9) — R(g")

<CZHfJ fJH ~+4DSR )+2DBg\/@

Estimation error

Approximation error
+ k1(6',n) + DByByra(f — f).

Higher order terms

(1,1)-Sobolev norm, and we define the
effective Rademacher complexity R(G) by

Z O'Z]Esl
3)

7E IEa' lsup S [E(éusévﬂle)]

geg
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where {0;}}_, are independent sign variables, Eg is the
expectation with respect to {3;};5", the dummy variables
S4,..., S are i.id. copies of $1, and { is defined by using
the degree-D symmetric group Sp as

1 o
6(517 .. 'asD) = ﬁ Z é(gaf(s-(,rl()l)v o 757(TL()£)))7

’ Te€ESpP

and k1(8',n) and ko(f — f) are higher order terms. The
constants B, and B depend only on q and ¢, respectively,
while C' depends only on f,q, ¥, and D.

Details of the statement and the proof can be found in
Supplementary Material C. The Sobolev norm (Adams &
Fournier, 2003) emerges from the evaluation of the differ-
ence between the estimated IC distribution and the ground-
truth IC distribution. In Theorem 2, the utility of the pro-
posed method appears in the effective complexity measure.
The complexity is defined by a set of functions which are
marginalized over all but one argument, resulting in miti-
gated dependence on the input dimensionality from expo-
nential to linear (Supplementary Material C, Remark 3).

5. Related Work and Discussion

In this section, we review some existing TAs for DA to
clarify the relative position of the paper. We also clarify
the relation to the literature of causality-related transfer
learning.

5.1. Existing transfer assumptions

Here, we review some of the existing work and TAs. See
Table 1 for a summary.

(1) Parametric assumptions. Some TAs assume paramet-
ric distribution families, e.g., Gaussian mixture model in
covariate shift (Storkey & Sugiyama, 2007). Some others
assume parametric distribution shift, i.e., parametric repre-
sentations of the target distribution given the source distri-
butions. Examples include location-scale transform of class
conditionals (Zhang et al., 2013; Gong et al., 2016), linearly
dependent class conditionals (Zhang et al., 2015), and low-
dimensional representation of the class conditionals after
kernel embedding (Stojanov et al., 2019). In some applica-
tions, e.g., remote sensing, some parametric assumptions
have proven useful (Zhang et al., 2013).

(2) Invariant conditionals and marginals. Some meth-
ods assume invariance of certain conditionals or marginals
(Qui, 2009), e.g., p(Y|X) in the covariate shift scenario
(Shimodaira, 2000), p(Y'| 7 (X)) for an appropriate feature
transformation 7 in transfer component analysis (Pan et al.,
2011), p(Y'|T (X)) for a feature selector 7 (Rojas-Carulla

Table 1: Comparison of TAs for DA (Parametric: parametric
distribution family or distribution shift, Invariant dist.: invariant
distribution components such as conditionals, marginals, or copu-
las. Disc. / IPM: small discrepancy or integral probability metric,
Param-transfer: existence of transferable parameter, Mechanism:
invariant mechanism). AD: adaptation among Apparently Dif-
ferent distributions is accommodated. NP: Non-Parametrically
flexible. BCI: Brain computer interface. The numbers indicate the
paragraphs of Section 5.1.

TA AD NP
(1) Parametric v
(2) Invariant dist. -
(3) Disc. / IPM -
(4) Param-transfer v
(Ours) Mechanism v/

Suited app. example
Remote sensing
BCI

Computer vision
Computer vision
Medical records

NN

et al., 2018; Magliacane et al., 2018), p(X|Y") in the tar-
get shift (TarS) scenario (Zhang et al., 2013; Nguyen et al.,
2016), and few components of regular-vine copulas and
marginals in Lopez-paz et al. (2012). For example, the co-
variate shift scenario has been shown to fit well to brain
computer interface data (Sugiyama et al., 2007).

(3) Small discrepancy or integral probability metric.
Another line of work relies on certain distributional similari-
ties, e.g., integral probability metric (Courty et al., 2017) or
hypothesis-class dependent discrepancies (Ben-David et al.,
2007; Blitzer et al., 2008; Ben-David et al., 2010; Kuroki
et al., 2019; Zhang et al., 2019; Cortes et al., 2019). These
methods assume the existence of the ideal joint hypothe-
sis (Ben-David et al., 2010), corresponding to a relaxation
of the covariate shift assumption. These TA are suited for
unsupervised or semi-supervised DA in computer vision
applications (Courty et al., 2017).

(4) Transferable parameter. Some others consider pa-
rameter transfer (Kumagai, 2016), where the TA is the exis-
tence of a parameterized feature extractor that performs well
in the target domain for linear-in-parameter hypotheses and
its learnability from the source domain data. For example,
such a TA has been known to be useful in natural language
processing or image recognition (Lee et al., 2009; Kumagai,
2016).

5.2. Causality for transfer learning

Our method can be seen as the first attempt to fully lever-
age structural causal models for DA. Most of the causality-
inspired DA methods express their assumptions in the level
of graphical causal models (GCMs), which only has much
coarser information than structural causal models (SCMs)
(Peters et al., 2017, Table 1.1) exploited in this paper. Com-
pared to previous work, our method takes one step further
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to assume and exploit the invariance of SCMs. Specifically,
many studies assume the GCM X < Y (the anticausal
scenario) following the seminal meta-analysis of Scholkopf
et al. (2012) and use it to motivate their parametric distri-
bution shift assumptions or the parameter estimation pro-
cedure (Zhang et al., 2013; 2015; Gong et al., 2016; 2018).
Although such assumptions on the GCM have the virtue of
being more robust to misspecification, they tend to require
parametric assumptions to obtain theoretical justifications.
On the other hand, our assumption enjoys a theoretical guar-
antee without relying on parametric assumptions.

One notable work in the existing literature is Magliacane
et al. (2018) that considered the domain adaptation among
different intervention states, a problem setup that comple-
ments ours that considers an intervention-free (or identical
intervention across domains) case. To model intervention
states, Magliacane et al. (2018) also formulated the problem
setup using SCMs, similarly to the present paper. Therefore,
we clarify a few key differences between Magliacane et al.
(2018) and our work here. In terms of the methodology,
Magliacane et al. (2018) takes a variable selection approach
to select a set of predictor variables with an invariant condi-
tional distribution across different intervention states. On
the other hand, our method estimates the SEMs (in the re-
duced form) and applies a data augmentation procedure to
transfer the knowledge. To the best of our knowledge, the
present paper is the first to propose a way to directly use
the estimated SEMs for domain adaptation, and the fine-
grained use of the estimated SEMs enables us to derive an
excess risk bound. In terms of the plausible applications,
their problem setup may be more suitable for application
fields with interventional experiments such as genomics,
whereas ours may be more suited for fields where obser-
vational studies are more common such as health record
analysis or economics. In Appendix E, we provide a more
detailed comparison.

5.3. Plausibility of the assumptions

Checking the validity of the assumption. As is often the
case in DA, the scarcity of data disables data-driven testing
of the TAs, and we need domain knowledge to judge the
validity. For our TA, the intuitive interpretation as invariance
of causal models (Section™2) can be used.

Invariant causal mechanisms. The invariance of causal
mechanisms has been exploited in recent work of causal
discovery such as Xu et al. (2014) and Monti et al. (2019),
or under the name of the multi-environment setting in Ghas-
sami et al. (2017). Moreover, the SEMs are normally as-
sumed to remain invariant unless explicitly intervened in
(Hiinermund & Bareinboim, 2019). However, the invari-
ance assumption presumes that the intervention states do
not vary across domains (allowing for the intervention-free

case), which can be limiting for some applications where
different interventions are likely to be present, e.g., different
treatment policies being put in place in different hospitals.
Nevertheless, the present work can already be of practical
interest if it is combined with the effort to find suitable data
or situations. For instance, one may find medical records in
group hospitals where the same treatment criteria is put in
place or local surveys in the same district enforcing identical
regulations. In future work, relaxing the requirement to fa-
cilitate the data-gathering process is an important area. For
such future extensions, the present theoretical analyses can
also serve as a landmark to establish what can be guaranteed
in the basic case without mechanism alterations.

Fully observed variables. As the first algorithm in the
approach to fully exploit SCMs for DA, we also consider
the case where all variables are observable. Although it is
often assumed in a causal inference problem that there are
some unobserved confounding variables, we leave further
extension to such a case for future work.

Required number of source domains. A potential draw-
back of the proposed method is that it requires a number of
source domains in order to satisfy the identification condi-
tion of the nonlinear ICA, namely GCL in this paper (Sup-
plementary Material A). The requirement solely arises from
the identification condition of the ICA method and therefore
has the possibility to be made less stringent by the future
development of nonlinear ICA methods. Moreover, if one
can accept other identification conditions, one-sample ICA
methods (e.g., linear ICA) can be also used in the proposed
approach in a straightforward manner, and our theoretical
analyses still hold regardless of the method chosen.

Flexibility of the model. The relation between X and
Y can drastically change while f is invariant. For ex-
ample, even in a simple additive noise model (X,Y) =
f(S1,S52) = (51,51 + S2), the conditional p(Y|X) can
shift drastically if the distribution of the independent noise
S2 changes in a complex manner, e.g., becoming multi-
modal from unimodal.

6. Experiment

In this section, we provide proof-of-concept experiments
to demonstrate the effectiveness of the proposed approach.
Note that the primary purpose of the experiments is to con-
firm whether the proposed method can properly perform
DA in real-world data, and it is not to determine which DA
method and TA are the most suited for the specific dataset.

6.1. Implementation details of the proposed method
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Estimation of f (Step 1). We model f by an 8-layer Glow
neural network (Supplementary Material B.2). We model
14 by a 1-hidden-layer neural network with a varied num-
ber of hidden units, K output units, and the rectified linear
unit activation (LeCun et al., 2015). We use its k-th output
(k € [K]) as the value for ¢4(+, k). For training, we use the
Adam optimizer (Kingma & Ba, 2017) with fixed parame-
ters (1, Ba2,€) = (0.9,0.999,1078), fixed initial learning
rate 1073, and the maximum number of epochs 300. The
other fixed hyperparameters of f and its training process are
described in Supplementary Material B.

Augmentation of target data (Step 3). For each evalua-
tion step, we take all combinations (with replacement) of
the estimated ICs to synthesize target domain data. Af-
ter we synthesize the data, we filter them by applying a
novelty detection technique with respect to the union of
source domain data. Namely, we use one-class support
vector machine (Scholkopf et al., 2000) with the fixed pa-
rameter ¥ = 0.1 and radial basis function (RBF) kernel
k(x,y) = exp(—||z —y||?/7) with v = D. This is because
the estimated transform f is not expected to be trained well
outside the union of the supports of the source distributions.
After performing the filtration, we combined the original
target training data with the augmented data to ensure the
original data points to be always included.

Predictor hypothesis class G.  As the predictor model, we
use the kernel ridge regression (KRR) with RBF kernel. The
bandwidth ~ is chosen by the median heuristic similarly to
Yamada et al. (2011) for simplicity. Note that the choice
of the predictor model is for the sake of comparison with
the other methods tailored for KRR (Cortes et al., 2019),
and that an arbitrary predictor hypothesis class and learn-
ing algorithm can be easily combined with the proposed
approach.

Hyperparameter selection. We perform grid-search for
hyperparameter selection. The number of hidden units for
g4 is chosen from {10, 20} and the coefficient of weight-
decay from 101~2 =1}, The ¢? regularization coefficient \
of KRR is chosen from \ € 2{=10:-10} following Cortes
etal. (2019). To perform hyperparameter selection as well as
early-stopping, we record the leave-one-out cross-validation
(LOOCYV) mean-squared error on the target training data
every 20 epochs and select its minimizer. The leave-one-out
score is computed using the well-known analytic formula
instead of training the predictor for each split. Note that we
only use the original target domain data as the held-out set
and not the synthesized data. In practice, if the target domain
data is extremely few, one may well use percentile-cv (Ng,
1997) to mitigate overfitting of hyperparameter selection.

Computation environment All experiments were con-
ducted on an Intel Xeon(R) 2.60 GHz CPU with 132 GB
memory. They were implemented in Python using the Py-
Torch library (Paszke et al., 2019) or the R language (R Core
Team, 2018).

6.2. Experiment using real-world data

Dataset. We use the gasoline consumption data (Greene,
2012, p.284, Example 9.5), which is a panel data of gaso-
line usage in 18 of the OECD countries over 19 years. We
consider each country as a domain, and we disregard the
time-series structure and consider the data as i.i.d. sam-
ples for each country in this proof-of-concept experiment.
The dataset contains four variables, all of which are log-
transformed: motor gasoline consumption per car (the pre-
dicted variable), per-capita income, motor gasoline price,
and the stock of cars per capita (the predictor variables) (Bal-
tagi & Griffin, 1983). For further details of the data, see Sup-
plementary Material B. We used the dataset because there
are very few public datasets for domain adapting regression
tasks (Cortes & Mohri, 2014) especially for multi-source
DA, and also because the dataset has been used in economet-
ric analyses involving SEMs (Baltagi, 2005), conforming to
our approach.

Compared methods. We compare the following DA
methods, all of which apply to regression problems. Unless
explicitly specified, the predictor class G is chosen to be
KRR with the same hyperparameter candidates as the pro-
posed method (Section 6.1). Further details are described in
Supplementary Material B.5.

e Naive baselines (SrcOnly, TarOnly, and S&TV): Sr-
cOnly (resp. TarOnly) trains a predictor on the source
domain data (resp. target training data) without any
device. SrcOnly can be effective if the source domains
and the target domain have highly similar distributions.
The S&TV baseline trains on both source and target
domain data, but the LOOCYV score is computed only
from the target domain data.

e TrAdaBoost: Two-stage TrAdaBoost.R2; a boosting
method tailored for few-shot regression transfer pro-
posed in Pardoe & Stone (2010). It is an iterative
method with early-stopping (Pardoe & Stone, 2010),
for which we use the leave-one-out cross-validation
score on the target domain data as the criterion. As sug-
gested in Pardoe & Stone (2010), we set the maximum
number of outer loop iterations at 30. The base pre-
dictor is the decision tree regressor with the maximum
depth 6 (Hastie et al., 2009). Note that although TrAd-
aBoost does not have a clarified transfer assumption,
we compare the performance for reference.



Few-shot Domain Adaptation by Causal Mechanism Transfer

o [W:Importance weighted KRR using RuLSIF (Yamada
et al., 2011). The method directly estimates a rela-
tive joint density ratio function apSm(Z)If(rf (_Z()X)me(z)

for @ € [0,1), where pg,c is a hypothetical source

distribution created by pooling all source domain
data. Following Yamada et al. (2011), we experi-
ment on « € {0,0.5,0.95} and report the results sep-
arately. The regularization coefficient ) is selected
from \ € 2{10:-+10} yging importance-weighted
cross-validation (Sugiyama et al., 2007).

e GDM: Generalized discrepancy minimization (Cortes
et al.,, 2019). This method performs instance-
weighted training on the source domain data with
the weights that minimize the generalized discrep-
ancy (via quadratic programming). We select the
hyper-parameters A, from 2{=10---10} a5 suggested
by Cortes et al. (2019). The selection criterion is the
performance of the trained predictor on the target train-
ing labels as the method trains on the source domain
data and the target unlabeled data.

e Copula: Non-parametric regular-vine copula method
(Lopez-paz et al., 2012). This method presumes us-
ing a specific joint density estimator called regular-
vine (R-vine) copulas. Adaptation is realized in two
steps: the first step estimates which components of the
constructed R-vine model are different by performing
two-sample tests based on maximum mean discrep-
ancy (Lopez-paz et al., 2012), and the second step
re-estimates the components in which a change is de-
tected using only the target domain data.

e LOO (reference score): Leave-one-out cross-validated
error estimate is also calculated for reference. It is
the average prediction error of predicting for a single
held-out test point when the predictor is trained on the
rest of the whole target domain data including those in
the test set for the other algorithms.

Evaluation procedure. The prediction accuracy was mea-
sured by the mean squared error (MSE). For each train-test
split, we randomly select one-third (6 points) of the target
domain dataset as the training set and use the rest as the test
set. All experiments were repeated 10 times with different
train-test splits of target domain data.

Results. The results are reported in Table 2. We report
the MSE scores normalized by that of LOO to facilitate the
comparison, similarly to Cortes & Mohri (2014). In many
of the target domain choices, the naive baselines (SrcOnly
and S&TV) suffer from negative transfer, i.e., higher av-
erage MSE than TarOnly (in 12 out of 18 domains). On
the other hand, the proposed method successfully performs
better than 7arOnly or is more resistant to negative transfer

than the other compared methods. The performances of
GDM, Copula, and IW are often inferior even compared
to the baseline performance of SrcAndTarValid. For GDM
and /W, this can be attributed to the fact that these meth-
ods presume the availability of abundant (unlabeled) target
domain data, which is unavailable in the current problem
setup. For Copula, the performance inferior to the naive
baselines is possibly due to the restriction of the predictor
model to its accompanied probability model (Lopez-paz
etal., 2012). TrAdaBoost works reasonably well for many
but not all domains. For some domains, it suffered from
negative transfer similarly to others, possibly because of
the very small number of training data points. Note that
the transfer assumption of TrAdaBoost has not been stated
(Pardoe & Stone, 2010), and it is not understood when the
method is reliable. The domains on which the baselines
perform better than the proposed method can be explained
by the following two cases: (1) easier domains allow naive
baselines to perform well and (2) some domains may have
deviated f. Case (1) implies that estimating f is unneces-
sary, hence the proposed method can be suboptimal (more
likely for JPN, NLD, NOR, and SWE, where SrcOnly or
S&TYV improve upon TrgOnly). On the other hand, case (2)
implies that an approximation error was induced as in The-
orem 2 (more likely for IRL and ITA). In this case, others
also perform poorly, implying the difficulty of the problem
instance. In either case, in practice, one may well perform
cross-validation to fallback to the baselines.

7. Conclusion

In this paper, we proposed a novel few-shot supervised DA
method for regression problems based on the assumption
of shared generative mechanism. Through theoretical and
experimental analysis, we demonstrated the effectiveness
of the proposed approach. By considering the latent com-
mon structure behind the domain distributions, the proposed
method successfully induces positive transfer even when
a naive usage of the source domain data can suffer from
negative transfer. Our future work includes making an ex-
perimental comparison with extensively more datasets and
methods as well as an extension to the case where the un-
derlying mechanism are not exactly identical but similar.
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Table 2: Results of the real-world data experiments for different choices of the target domain. The evaluation score is MSE normalized
by that of LOO (the lower the better). All experiments were repeated 10 times with different train-test splits of target domain data, and
the average performance is reported with the standard errors in the brackets. The target column indicates abbreviated country names.
Bold-face indicates the best score (Prop: proposed method, TrAda: TrAdaBoost, the numbers in the brackets of IW indicate the value
of ). The proposed method often improves upon the baseline TarOnly or is relatively more resistant to negative transfer, with notable
improvements in DEU, GBR, and USA.

Target || (LOO)|| TarOnly| Prop SrcOnly| S&TV | TrAda | GDM Copula | IW(.0) | IW(.5) | TW(.95)
AUT 1 5.88 5.39 9.67 9.84 5.78 31.56 27.33 39.72 39.45 39.18
(1.60) | (1.86) | (0.57) | (0.62) | (2.15) | (1.39) | (0.77) | (0.74) | (0.72) | (0.76)
BEL 1 10.70 7.94 8.19 9.48 8.10 89.10 119.86 | 105.15 | 105.28 | 104.30
(7.50) | (2.19) | (0.68) | (0.91) | (1.88) | (4.12) | (2.64) | (2.96) | (2.95) | (2.95)
CAN || 1 5.16 3.84 157.74 | 156.65 | 51.94 516.90 | 406.91 | 592.21 | 591.21 | 589.87
(1.36) | (0.98) | (8.83) | (10.69) | (30.06) | (4.45) | (1.59) | (1.87) | (1.84) | (1.91)
DNK || 1 3.26 3.23 30.79 28.12 25.60 16.84 14.46 22.15 22.11 21.72
(0.61) | (0.63) | (0.93) | (1.67) | (13.11) | (0.85) | (0.79) | (1.10) | (1.10) | (1.07)
FRA 1 2.79 1.92 4.67 3.05 52.65 91.69 156.29 | 116.32 | 116.54 | 115.29
(1.10) | (0.66) | (0.41) | (0.11) | (25.83) | (1.34) | (1.96) | (1.27) | (1.25) | (1.28)
DEU 1 16.99 6.71 229.65 | 210.59 | 341.03 | 739.29 | 929.03 | 817.50 | 818.13 | 812.60
(8.04) | (1.23) | (9.13) | (14.99) | (157.80)| (11.81) | (4.85) | (4.60) | (4.55) | (4.57)
GRC 1 3.80 3.55 5.30 5.75 11.78 26.90 23.05 47.07 45.50 45.72
2.21) | (1.79) | (0.90) | (0.68) | (2.36) | (1.89) | (0.53) | (1.92) | (1.82) | (2.00)
IRL 1 3.05 4.35 135.57 | 12.34 23.40 3.84 26.60 6.38 6.31 6.16
0.34) | (1.25) | (5.64) | (0.58) | (17.50) | (0.22) | (0.59) | (0.13) | (0.14) | (0.13)
ITA 1 13.00 14.05 35.29 39.27 87.34 226.95 | 343.10 | 244.25 | 244.84 | 242.60
4.15) | (4.81) | (1.83) | (2.52) | (24.05) | (11.14) | (10.04) | (8.50) | (8.58) | (8.46)
JPN 1 10.55 12.32 8.10 8.38 18.81 95.58 71.02 135.24 | 134.89 | 134.16
4.67) | 495 | (1.05) | (1.07) | (4.59) | (7.89) | (5.08) | (13.57) | (13.50) | (13.43)
NLD 1 3.75 3.87 0.99 0.99 9.45 28.35 29.53 33.28 33.23 33.14
(0.80) | (0.79) | (0.06) | (0.05) | (1.43) | (1.62) | (1.58) | (1.78) | (1.77) | (1.77)
NOR || 1 2.70 2.82 1.86 1.63 24.25 23.36 31.37 27.86 27.86 27.52
(0.51) | (0.73) | (0.29) | (0.11) | (12.50) | (0.88) | (1.17) | (0.94) | (0.93) | (0.91)
ESP 1 5.18 6.09 5.17 4.29 14.85 33.16 152.59 | 53.53 52.56 52.06
(1.05) | (1.53) | (1.14) | (0.72) | (4.20) | (6.99) | (6.19) | 247) | 2.42) | (2.40)
SWE || 1 6.44 5.47 2.48 2.02 2.18 15.53 2706.85| 118.46 | 118.23 | 118.27
(2.66) | (2.63) | (0.23) | (0.21) | (0.25) | (2.59) | (17.91) | (1.64) | (1.64) | (1.64)
CHE 1 3.51 2.90 43.59 7.48 38.32 8.43 29.71 9.72 9.71 9.79
0.46) | (0.37) | (1.77) | (0.49) | (9.03) | (0.24) | (0.53) | (0.29) | (0.29) | (0.28)
TUR 1 1.65 1.06 1.22 0.91 2.19 64.26 142.84 | 159.79 | 157.89 | 157.13
0.47) | (0.15) | (0.18) | (0.09) | (0.34) | (5.71) | (2.04) | (2.63) | (2.63) | (2.69)
GBR 1 5.95 2.66 15.92 10.05 7.57 50.04 68.70 70.98 70.87 69.72
(1.86) | (0.57) | (1.02) | (1.47) | (5.10) | (1.75) | (1.25) | (1.01) | (0.99) | (1.01)
USA 1 4.98 1.60 21.53 12.28 2.06 308.69 | 24490 | 462.51 | 464.75 | 465.88
(1.96) | (0.42) | (3.30) | (2.52) | (0.47) | (5.20) | (1.82) | (2.14) | (2.08) | (2.16)
#Best || - 2 10 2 4 0 0 0 0 0 0
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