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Appendices
This is the Supplementary Material for “Few-shot Domain Adaptation by Causal Mechanism Transfer.” Table 3 summarizes
the abbreviations and the symbols used in the paper.

Table 3: List of abbreviations and symbols used in the paper.

Abbreviation / Symbol Meaning
DA Domain adaptation
TA Transfer assumption
SEM Structural equation model
GCM Graphical causal model
SCM Structural causal model
IC Independent component
ICA Independent component analysis
GCL Generalized contrastive learning
i.i.d. Independent and identically distributed
[N ] {1, 2, . . . , N} where N ∈ N
‖·‖Wk,p The (k, p)-Sobolev norm
X The predictor random vector (RD−1-valued)
Y The predicted random variable (R-valued)
Z = (X,Y ) The joint random variable (RD-valued)
S The independent component vector (RD-valued)
X ⊂ RD−1 The space of X
Y ⊂ R The space of Y
Z ⊂ RD The space of Z = (X,Y )
G ⊂ {g : RD−1 → R} Predictor hypothesis class
` : G × Z → [0, B`] Loss function
R(g) Target domain risk EpTar`(g, Z)
g∗ ∈ G Minimizer of target domain risk
Q The set of independent distributions
f Ground truth mixing function
pTar The target joint distribution
pk The joint distribution of source domain k
qTar ∈ Q The target independent component (IC) distribution
qk ∈ Q The IC distribution of source domain k
D The dimension of Z
K The number of source domains
nTar The size of the target labeled sample
nk The size of the labeled sample from source domain k
DTar = {Zi}nTar

i=1 Target labeled data set
Dk = {ZSrc

k,i }
nk
i=1 Source labeled data set of source domain k

R̂(g) The ordinary empirical risk estimator
Ř(g) The proposed risk estimator (Eq. (2))
f̂ The estimator of f
{ψd}Dd=1 The penultimate layer functions composed with f during GCL

A. Preliminary: Nonlinear ICA
Here, we use the same notation as the main text. The recently developed nonlinear ICA provides an algorithm to estimate
the mixing function f . For the case of nonlinear f , the impossibility of identification (i.e., consistent estimation) of f in the
one-sample i.i.d. case had been established more than two decades ago (Hyvärinen & Pajunen, 1999). However, recently,
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various conditions have been proposed under which f can be identified with the help of auxiliary information (Hyvärinen &
Morioka, 2016; 2017; Hyvärinen et al., 2019; Khemakhem et al., 2019).

The identification condition that is directly relevant to this paper is that of the generalized contrastive learning (GCL)
proposed in Hyvärinen et al. (2019). Hyvärinen et al. (2019) assumes that an auxiliary variable ui from some measurable
set U is obtained for each data point as {(zi, ui)}ni=1 and that the ICs S = (S(1), . . . , S(D)) are conditionally independent
given u:

q(s|u) =

D∏
d=1

q(d)(s(d)|u).

Under such conditions, GCL estimates f by training a classification function

rf̂ ,ψ(z, u) =

D∑
d=1

ψd(f̂
−1(z)d, u) (4)

parametrized by f̂ and {ψd}Dd=1 with the logistic loss for classifying

(z, u) vs. (z, ũ),

where ũ ∈ U \ {u}. The key condition for the identification of f is the following.
Assumption 1 (Assumption of variability; Hyvärinen et al., 2019, Theorem 1). For any z, there exist 2D+ 1 distinct points
in U , denoted by {uj}2Dj=0, such that the set of (2D)-dimensional vectors {w(z|uj)−w(z|u0)}2Dj=1 are linearly independent,
where

w(z|u) :=

(
∂ log q(1)(z1|u)

∂z1
, . . . ,

∂ log q(D)(zD|u)

∂zD
,
∂2 log q(1)(z1|u)

∂z2
1

, . . . ,
∂2 log q(D)(zD|u)

∂z2
D

)
.

Under Assumption 1 and some regularity conditions, Theorem 1 of Hyvärinen et al. (2019) states that the transformation f̂
in Eq. (4) trained by GCL is a consistent estimator of f upto additional dimension-wise invertible transformations. Note that
the assumption is intrinsically difficult to confirm based on data due to the unsupervised nature of the problem setting. In this
paper, we use the source domain index as the auxiliary variable and employ GCL for domain adaptation. The present version
of Assumption 1 requires that we have at least 2D + 1 distinct source domains. Although this condition can be restrictive in
high-dimensional data, we conjecture that there is a possibility for this assumption to be made less stringent in the future
because the identification condition is only known to be a sufficient condition, not a necessary condition. However, pursuing
a refinement of the identification condition is out of the scope of this paper. Among the various methods for nonlinear
ICA, we chose to use GCL (Hyvärinen et al., 2019) because it can operate under a nonparametric assumption on the IC
distributions whereas other nonlinear ICA methods (Hyvärinen & Morioka, 2016; 2017; Khemakhem et al., 2019) may
require parametric assumptions.

B. Experiment Details
Here, we describe more implementation details of the experiment. Our experiment code can be found at https://github.
com/takeshi-teshima/few-shot-domain-adaptation-by-causal-mechanism-transfer.

B.1. Dataset details

Gasoline consumption data. The data was downloaded from http://bcs.wiley.com/he-bcs/Books?
action=resource&bcsId=4338&itemId=1118672321&resourceId=13452.

B.2. Model details: Invertible neural networks

Here, we describe the details of the Glow architecture (Kingma & Dhariwal, 2018) used in our experiments. Glow consists
of three types of layers which are invertible by design, namely affine coupling layers, 1×1 convolution layers, and activation
normalization (actnorm) layers. In our implementation, we use actnorm as the first layer, and each of the subsequent layers
consists of a 1× 1 convolution layer followed by an affine coupling layer.

https://github.com/takeshi-teshima/few-shot-domain-adaptation-by-causal-mechanism-transfer
https://github.com/takeshi-teshima/few-shot-domain-adaptation-by-causal-mechanism-transfer
http://bcs.wiley.com/he-bcs/Books?action=resource&bcsId=4338&itemId=1118672321&resourceId=13452
http://bcs.wiley.com/he-bcs/Books?action=resource&bcsId=4338&itemId=1118672321&resourceId=13452
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Affine coupling layers. The coefficients s and t for affine coupling layers in the notation of Kingma & Dhariwal (2018)
are parametrized by two one-hidden-layer neural networks whose number of hidden units is the same and the first layer
parameter is shared. The activation functions of the first layer, the second layer of s, and the second layer of t are the rectified
linear unit (ReLU) activation (LeCun et al., 2015), the hyperbolic tangent function, and the linear activation function,
respectively. A standard practice of affine coupling layers is to compose the coefficient s with an exponential function
x 7→ exp(x) so as to simplify the computation of the log-determinant of the Jacobian (Kingma & Dhariwal, 2018). In our
implementation, since we do not require the computation of the log-determinant, we omit this device and instead compose
x 7→ (x+ 1). The addition of 1 shifts the parameter space so that (s, t) = (0, 0) corresponds to the the identity map, where
0 denotes the constant zero function. The split of the affine coupling layers is fixed at (bD2 c, D − b

D
2 c).

1 × 1 convolution layers. We initialize the parameters of the neural networks by N (0, 1
m ) where m is the number of

parameters of each layer and N is the normal distribution.

B.3. Model details: Penultimate layer networks

We initialize the parameter for each layer of ψd by U(−
√

1
m ,
√

1
m ), where m is the number of input features and U is the

uniform distribution.

B.4. Training details

During the training of GCL, we fix the batch size at 32.

B.5. Compared methods details

Here, we detail the methods compared through the experiment. Note that the present paper focuses on regression problems
as our approach is based on ICA, hence the methods for classification domain adaptation are not comparable.

TrAdaBoost. As suggested in Pardoe & Stone (2010), we use the linear loss function and set the maximum number of
internal boosting iterations at 30.

GDM. We fix the number of sampling required for approximating the maximization in the generalization discrepancy at
200. This method presumes using hypothesis classes in a reproducing kernel Hilbert space (RKHS).

Copula. For this model, the probabilistic model of non-parametric R-vine copula of depth 1 is used following Lopez-paz
et al. (2012). Kernel density estimators with RBF kernel are used for estimating the marginal distributions and the copulas.
The bandwidths of the RBF kernels are determined using the rule-of-thumb implemented as “normal-reference” in the np
package of R language (Hayfield & Racine, 2008). The predictions are made by numerically aggregating the estimated
conditional distribution over the interval [mini Yi − 2σ,maxi Yi + 2σ] where σ denotes the square root of the unbiased
variance of {Yi}nsrc

i=1 . The aggregation is performed by discretizing the interval into a grid of 300 points. The level of the
two-sample test is fixed at 0.05 for all combination of the two-sample tests following the experiment code of Lopez-paz
et al. (2012). This method is a single-source domain adaptation method and we pool all source domain data for adaptation.

C. Details and Proofs of Theorem 2
Here, we detail the assumptions, the statement, and the proof of Theorem 2.

C.1. Notation

To make the proof self-contained, we first recall some general and problem-specific notation. In the notation here, we omit
the domain identifiers from the distributions and the sample size, such as Tar or Src, because only the target domain data or
their distributions appear in the proofs. The theorem holds regardless of how f̂ is estimated as long as f̂ is independent of
the target domain data. In the proof, we extend the maximal discrepancy bound of U-statistics previously proved for the case
of degree-2 in Rejchel (2012), to allow higher degrees.
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General mathematical notation. We denote the set of natural numbers (resp. real numbers) by N (resp. R). For any
N ∈ N, we define [N ] := {1, 2, . . . , N}. We use

(
a
b

)
to denote the number of b-combinations of a elements. For a finite set

A, the notation
∑
a∈A

denotes the operator to take an average over A, i.e.,
∑
a∈A

h = 1
|A|
∑
a∈A h(a). For a D-dimensional

function h, we denote its j-th dimension (j ∈ [D]) by suffixing hj . For a vector s, we denote its j-th element by s(j).
We denote the Jacobian determinant of a differentiable function ψ at a by Jψ(a) := det dψ(a)

da . We denote the identity
matrix by I regardless of the size of the matrices when there is no ambiguity. For finite dimensional vectors, we denote
the 2-norm by ‖·‖`2 and the 1-norm by ‖·‖`1 . For square matrices, we denote the operator-2 norm by ‖·‖op and the
operator-1 norm by ‖·‖op(1). We use W k,p to denote the Sobolev space (on RD) of order k and define its associated norm by

‖h‖Wk,p :=
(∑

|α|≤k
∥∥h(α)

∥∥p
Lp

)1/p

where α is a multi-index and h(α) denotes the partial derivative ∂|α|h
∂s
α1
1 ···∂s

αD
D

(Adams

& Fournier, 2003, Paragraph 3.1). We let SD be the degree-D symmetric group, GDj := {τ : [D]→ [j] | τ is surjective}
be the set of j grouping of indices in [D], and Inj := {ρ : [j] → [n] | ρ is injective} be the set of all size-j combinations
(without replacement) of indices in [n].

Distributions and expectations. We denote by Q the set of all factorized distributions on RD with absolutely continuous
marginals. For a measure P , we denote its j-product measure by P j := P ⊗ · · · ⊗ P (repeated j times). We assume that
all measures appearing in this proof are absolutely continuous with respect to the Lebesgue measure. The push-forward
of a distribution p by a function h is denoted by h]p. The expectation of a function h with respect to measure P is
denoted by Ph (if it exists) by abuse of notation. We also abuse the notation to use ψ(s, P, . . . , P ) as the shorthand for
PD−1ψ(s, S′2, . . . , S

′
D) where {S′d}Dd=2

i.i.d.∼ P .

C.2. Problem setup

We denote the target domain distribution by p.

We fix a hypothesis class G(⊂ {g : RD−1 → R}), and our goal is to find a g ∈ G such that the risk functional

R(g) :=

∫
p(z)`(g, z)dz

is small, where ` : G × RD → R≥0 is a loss function. We denote by g∗ a minimizer of R (assuming it exists). To this end,

we are given the training data D := {Zi}ni=1
i.i.d.∼ p. Throughout, we assume n ≥ D. To complement the smallness of n, we

assume the existence of a generative mechanism. Concretely, we assume that there exists a diffeomorphism f : RD → RD
such that q := (f−1)]p satisfies q ∈ Q. With this transform, the original risk functional is also expressed as

R(g) =

∫
q(s)`(g, f(s))ds.

As an estimator of f , we are given another diffeomorphism f̂ : RD → RD such that f̂ ' f . With this f̂ , the proposed
method converts the dataset D by Si := f̂(Zi). We can regard Ď := {Si}ni=1

i.i.d.∼ q̌, where q̌ := (f̂−1 ◦ f)]q. We use Q
(resp. Q̌) to denote the probability measure corresponding to the density q (resp. q̌). This conversion results in the relation:

q̌(s) = q(f−1 ◦ f̂(s))
∣∣∣(Jf−1 ◦ f̂)(s)

∣∣∣ .
As a candidate hypothesis g ∈ G, the proposed method selects a minimizer ǧ ∈ G of the proposed risk estimator Ř defined
as

Ř(g) :=
1

nD

∑
(i1,...,iD)∈[n]D

`(g, f̂(ŝ
(1)
i1
, . . . , ŝ

(D)
iD

)). (5)

In the proof, we evaluate its concentration around the expectation ¯̌R(g) := EĎŘ(g). We use EĎ to denote the expectation
with respect to Ď. Let ¯̌g denote a hypothesis which minimizes ¯̌R(g) (assuming it exists).

In what follows, for notational simplicity, we define the D-variate symmetric function ˜̀as

˜̀(s1, . . . , sD) =
∑
π∈SD

`(g, f̂(s
(1)
π(1), . . . , s

(D)
π(D))),
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where
∑

π∈SD
indicates an averaging operation over all permutations (without replacement) of [D]. We use Ên to denote the

sample average operator with respect to D or Ď, depending on the context.

C.3. Assumptions

Assumption 2 (The underlying density function is bounded and Lipschitz continuous). Assume

Bq := sup
s∈RD

q(s) <∞, Lq := sup
s1 6=s2

|q(s1)− q(s2)|
‖s1 − s2‖

<∞.

Assumption 3 (f−1 is Lipschitz continuous and Hölder continuous). We assume f−1 ∈ C1,1 whereC1,1 is the (1, 1)-Hölder
space (Adams & Fournier, 2003, Paragraph 1.29) and

Lf−1 := sup
z1 6=z2

‖f−1(z1)− f−1(z2)‖
‖z1 − z2‖

<∞.

Assumption 4 (Bounded derivatives of f and f−1). Assume that

B∞∂f := sup
s∈RD

∥∥∥∥df

ds
(s)

∥∥∥∥
∞
<∞, B∞∂f−1 := sup

z∈RD

∥∥∥∥df−1

dz
(z)

∥∥∥∥
∞
<∞.

where ‖·‖∞ denotes the maximum absolute value of the elements of a matrix.

Assumption 5 (Loss function is bounded and uniformly Lipschitz continuous in Z). The considered loss function takes
values in a bounded interval:

` : G × Z → [0, B`],

where 0 < B` <∞. Also assume

L`G := sup
g∈G

sup
z1 6=z2

|`(g, z1)− `(g, z2)|
‖z1 − z2‖

<∞.

Assumption 6 (Estimated feature extractor). Assume f̂ is independent ofD and that fj−f̂j ∈W 1,d for all (j, d) ∈ [D]×[D].

Although f̂ and f are assumed to be diffeomorphisms in the classical sense (implying that they are strongly differentiable),
we introduce the Sobolev space because we want to measure their difference and their difference of derivatives in terms of
integration.

Assumption 7 (Entropic condition: Euclidean class (Sherman, 1994)). The function class Φ := {˜̀ : g ∈ G} is Euclidean
for the envelope F and constants A and V (Sherman, 1994), i.e., if µ is a measure for which µF 2 <∞, then

D(t, dµ,Φ) ≤ At−V , 0 < t ≤ 1,

where dµ is the pseudo metric defined by

dµ(φ1, φ2) :=
[
µ|φ1 − φ2|2/µF 2

]1/2
for φ1, φ2 ∈ Φ, and D(t, dµ,Φ) denotes the packing number of Φ with respect to the pseudometric dµ and radius t. Without
loss of generality, we take the envelope F such that F (·) ≤ B`.
Assumption 8. The hypothesis class G is expressive enough so that the model approximation error does not expand due to
f̂ , i.e.,

inf
g∈G

¯̌R(g) ≤ inf
g∈G

R(g)
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The following complexity measure of G, which is a version of Rademacher complexity for our problem setting, is used to
state the theorem.

Definition 1 (Effective Rademacher complexity). Define

R(G) :=
1

n
EĎEσ

[
sup
g∈G

∣∣∣∣∣
n∑
i=1

σiES′2,...,S′D [˜̀(Si, S
′
2, . . . , S

′
D)]

∣∣∣∣∣
]

where {σi}ni=1 are independent uniform sign variables and S′2, . . . , S
′
D

i.i.d.∼ Q̌ are independent of all other random variables.

We provide the definition of the ordinary Rademacher complexity in Section C.8 and make a comparison of the two
complexity measures in terms of how they depend on the input dimensionality.

C.4. Theorem statement

Our goal is to prove the following theorem. This is a detailed version of the theorem appearing in the main body of the paper.

Theorem 3 (Excess risk bound). Assume Assumptions 2, 3, 4, 5, 6, 7, and 8.

Then for arbitrary δ, δ′ ∈ (0, 1), we have with probability at least 1− (δ + δ′),

R(ǧ)−R(g∗)

≤ C
D∑
j=1

∥∥∥fj − f̂j∥∥∥
W 1,1︸ ︷︷ ︸

Approximation error

+ 4DR(G) + 2DB`

√
log 2/δ

2n︸ ︷︷ ︸
Estimation error

+κ1(δ′, n) +DB`Bqκ2(f − f̂)︸ ︷︷ ︸
Higher order terms

.

where

C := BqL`G +DB`(LqLf−1 +BqDC
′
1),

C ′1 := (D + 1)3/2

(
B∞∂f

(
D∑
k=1

∥∥f−1
k

∥∥
C1,1

)
+B∞∂f−1

)
,

κ1(δ′, n) = O(n−1)/δ′ +O(n−1),

κ2(f − f̂) =

D∑
d=2

(
D

d

)
C ′d

D∑
j=1

∥∥∥fj − f̂j∥∥∥d
W 1,d

.

and C ′d(d = 1, . . . , D) are constants determined in Lemma 11.

Proof of Theorem 3. By adding and subtracting terms, we have

R(ǧ)−R(g∗) = (R− ¯̌R)(ǧ)︸ ︷︷ ︸
(A) Approximation error

+ ¯̌R(ǧ)− ¯̌R(¯̌g)︸ ︷︷ ︸
(B) Pseudo estimation error

+ ¯̌R(¯̌g)−R(g∗)︸ ︷︷ ︸
(C) Additional model misspecification error

.

Applying Lemma 1 to (A), Lemma 2 to (B), and Assumption 8 to (C), we obtain the assertion.

As it can be seen from the proof above, Theorem 3 is proved in two parts, each corresponding to the two lemmas below. The
first lemma evaluates the approximation error which reflects the fact that we are approximating f by f̂ .

Lemma 1 (Approximation error bound). Given Assumptions 2, 3, 4, 5, and 6. we have

(R− ¯̌R)(ǧ) ≤C
D∑
j=1

∥∥∥fj − f̂j∥∥∥
W 1,1

+DB`Bqκ2(f − f̂)
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where C and κ2(f − f̂) are

C := BqL`G +DB`(LqLf−1 +BqDC
′
1),

κ2(f − f̂) :=

D∑
d=2

(
D

d

)
C ′d

D∑
j=1

∥∥∥fj − f̂j∥∥∥d
W 1,d

.

and C ′d(d = 1, . . . , D) are constants determined in Lemma 11.

The second lemma evaluates the pseudo estimation error which reflects the fact that we rely on a finite sample to approximate
the underlying distribution.

Lemma 2 (Pseudo estimation error bound). Assume that Assumptions 2 and 7 hold. Let the Rademacher complexity be
defined as Definition 1. Then for any δ, δ′ ∈ (0, 1), we have with probability at least 1− (δ + δ′) that

¯̌R(ǧ)− ¯̌R(¯̌g) ≤ 4DwDR(G) + 2DB`wD

√
log 2/δ

2n
+ 2wD(D − 1)

D∑
j=2

Cj
δ′
n−j/2 + 4B`

D−1∑
j=1

wj︸ ︷︷ ︸
O(n−1)

where {wj}Dj=1 are universal constants determined in Lemma 3, and {Cj}Dj=2 are constants determined in Lemma 6. Note

that wj = O(n−(D−j)) and wD = n(n−1)···(n−D+1)
nD

< 1.

In what follows, we first present some basic facts in Section C.5 and provide the proofs for the lemmas. We provide the
proof of Lemma 1 in Section C.7, and that of Lemma 2 in Section C.6.

C.5. V-statistic and U-statistic

The theoretical analysis is performed by interpreting the proposed risk estimator Eq. (5) as a V-statistic (explained shortly).
The proofs will be based on applying the following facts in order:

1. V-statistic can be represented as a weighted average of U-statistics with degrees from 1 to D, and only the degree-D)
term is the leading term.

2. The degree-D term is again decomposed into a degree-1 U-statistic and a set of degenerate U-statistics.

3. The degree-1 U-statistic is an i.i.d. sum admitting a Rademacher complexity bound.

4. The degenerate terms concentrate around zero following an exponential inequality under appropriate entropy conditions.

To consolidate the strategy given above, we describe what are V- and U-statistics, and how they relate to each other. These
estimators emerge when we allow re-using the same data point repeatedly from a single sample to estimate a function which
takes multiple data points.

V-statistic. For a given regular statistical functional of degree D (Lee, 1990):

Q̌D ˜̀ :=

∫
˜̀(s1, · · · , sD)q̌(s1) · · · q̌(sD)ds1 · · · dsD, (6)

its associated von-Mises statistic (V-statistic) is the following quantity (Lee, 1990):

V Dn
˜̀ :=

1

nD

n∑
i1=1

· · ·
n∑

iD=1

˜̀(Si1 , . . . , SiD ).

Note that Eq. (6) does not coincide with the expectation of V Dn ˜̀ in general, i.e., the V-statistic is generally not an unbiased
estimator. However, it is known to be a consistent estimator of Eq. (6) (Lee, 1990).
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U-statistic. Similarly, for a j-variate symmetric and integrable function h(x1, . . . , xj), its corresponding U-statistic (Lee,
1990) of degree j is

U jnh :=
∑
ρ∈Inj

h(sρ(1), . . . , sρ(j)).

The V- and U-statistics are generalizations of the sample mean (which is the U- and V-statistics of degree 1). The important
difference from the sample mean in higher degrees is that the summands may not be independent. To deal with the
dependence, the following standard decompositions have been developed (Lee, 1990).

Lemma 3 (Decomposition of a V-statistic (Lee, 1990)). A V-statistic can be expressed as a sum of U-statistics of degrees
from 1 to D (Lee, 1990, Section 4.2, Theorem 1):

V Dn
˜̀=

D∑
j=1

wjU
j
n

˜̀(j)

where the weights wj and j-variate functions ˜̀(j) are

wj :=
1

nD
|GDj |

(
n

j

)
, ˜̀(j)(s1, . . . , sj) :=

∑
τ∈GDj

˜̀(sτ(1), . . . , sτ(D)).

Proof. See (Lee, 1990, Section 4.2, Theorem 1 (p.183)).

Remark 1. The weights {wj}Dj=1 satisfy
∑
j wj = 1 (Lee, 1990, Section 4.2, Theorem 1 (p.183)). We can also find the

order of wj with respect to n as:

wD =
1

nD
|GDj |︸︷︷︸
D!

(
n

D

)
=
n(n− 1) · · · (n−D + 1)

nD
= O(1), wj = O(n−(D−j)), ˜̀(D) = ˜̀.

Lemma 4 (Hoeffding decomposition of a U-statistic (Sherman, 1994, p.449)). A U-statistic with a symmetric kernel ψ can
be decomposed as a sum of U-statistics of degrees from 1 to D as

UDn ψ − EĎU
D
n ψ =

D∑
j=1

U jnψj

= Ênψ1 +

D∑
j=2

U jnψj

(7)

where {ψj}Dj=1 are j-variate, symmetric and degenerate functions. Note that EĎUDn ψ = Q̌Dψ. Here, a j-variate symmetric
function ψj is said degenerate when

∀s2, . . . , sj , ψj(Q̌, s2, . . . , sj) = 0.

Specifically, ψ1 is

ψ1(s) = ψ(s, Q̌, . . . , Q̌) + · · ·+ ψ(Q̌, . . . , Q̌, s)−DQ̌Dψ
= D · (ψ(s, Q̌, . . . , Q̌)− Q̌Dψ) (by symmetry).

(8)

For further details, see (Sherman, 1994, p.449). Note that in (Sherman, 1994, p.449), Eq. (7) is written using Q̌Dψ in place
of EĎUDn ψ. This is because

EĎU
D
n ψ = UDn EĎψ = UDn Q̌

Dψ = Q̌Dψ

holds by linearity and symmetry.
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Remark 2 (Connecting the lemmas to Section C.6). It can be easily checked by definition that the proposed risk estimator
Eq. (5) takes the form of a V-statistic: Ř(g) = V Dn

˜̀ for each g ∈ G. Let us denote ˜̀∗(s) := ˜̀(s, Q̌, . . . , Q̌). Then
EĎ ˜̀∗ = Q̌D ˜̀holds by definition. Substituting these into Eq. (8), we have that Eq. (7) applied to ψ = ˜̀ is equivalent to

UDn
˜̀− EĎU

D
n

˜̀= D · (Ên ˜̀∗ − EĎ ˜̀∗) +

D∑
j=2

U jn
˜̀
j .

where {˜̀j}Dj=2 are symmetric degenerate functions. In Section C.6, we first decompose Ř(g) into a sum of U-statistics.
After such conversion, we take a closer look at the leading term, Ên ˜̀∗.

C.6. Proof of pseudo estimation error bound

(Proof of Lemma 2). First, we have

¯̌R(ǧ)− ¯̌R(¯̌g) = ¯̌R(ǧ)− Ř(ǧ) + Ř(ǧ)− ¯̌R(¯̌g) ≤ ¯̌R(ǧ)− Ř(ǧ) + Ř(¯̌g)− ¯̌R(¯̌g)

≤ 2 sup
g∈G

∣∣∣Ř(g)− ¯̌R(g)
∣∣∣ .

Now the right-most expression can be decomposed as

sup
g∈G
|Ř(g)− ¯̌R(g)| = sup

g∈G
|V Dn ˜̀− EĎV

D
n

˜̀|

≤ wD sup
g∈G

∣∣∣UDn ˜̀− EĎU
D
n

˜̀
∣∣∣+

D−1∑
j=1

wj sup
g∈G

∣∣∣U jn ˜̀(j) − EĎU
j
n

˜̀(j)
∣∣∣ (∵ Lemma 3)

≤ wD sup
g∈G
|UDn ˜̀− EĎU

D
n

˜̀|+ 2B`

D−1∑
j=1

wj

≤ wD

sup
g∈G
|Ên ˜̀

1|+
D∑
j=2

sup
g∈G
|U jn ˜̀

j |

+ 2B`

D−1∑
j=1

wj (∵ Lemma 4)

= wD

sup
g∈G
|ÊnD(˜̀∗ − EĎ ˜̀∗)|︸ ︷︷ ︸

Addressed in Lemma 5

+

D∑
j=2

sup
g∈G
|U jn ˜̀

j |︸ ︷︷ ︸
Addressed in Lemma 6

+ 2B`

D−1∑
j=1

wj .

where ˜̀
j are symmetric degenerate functions and ˜̀∗ is defined as in Remark 2. Applying Lemma 5 to the first term and

Lemma 6 to the second term with the union bound, we obtain the assertion.

In the last part of the proof we used the following lemmas. Because the leading term is an i.i.d. sum, the following
Rademacher complexity bound can be proved.

Lemma 5 (U-process bound: the leading term). Assume Assumption 2 holds. Then, we have with probability at least 1− δ,

sup
g∈G
|Ên(˜̀∗ − EĎ ˜̀∗)| ≤ 2R(G) +B`

√
log(2/δ)

2n
,

where R is defined in Definition 1.

Proof. Applying the standard one-sided Rademacher complexity bound based on McDiarmid’s inequality (Mohri et al.,
2012, Theorem 3.1) twice with the union bound, we obtain the lemma.

The other terms than the leading term are degenerate U-statistics, hence the following holds under appropriate entropy
assumptions.
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Lemma 6 (U-process bound: degenerate terms (Sherman, 1994, Corollary 7)). Assume Assumption 7. Then for each
j = 2, . . . , D, there exist constants Cj such that for any δ ∈ (0, 1), we have with probability at least 1− δ′/(D − 1),

sup
g∈G
|U jn ˜̀

j | ≤
(D − 1)

δ′
Cjn

−j/2

where Cj depends only on A, V , and B`.

Proof. The proof follows a similar path as that of (Sherman, 1994, Corollary 7), but we provide more explicit expressions
to inspect the order with respect to n. Let Φ

(j)

G,f̂
:= {˜̀j : g ∈ G}. Then Φ

(j)

G,f̂
is Euclidean for an envelope Fj satisfying

Q̌jF 2
j < ∞ by Lemma 6 in Sherman (1994) and Assumption 7. In addition, Φ

(j)

G,f̂
is a set of functions degenerate with

respect to Q̌. Without loss of generality, we can take Fj such that Fj ≤ B`. Similarly to the proof of (Sherman, 1994,
Corollary 4), we can apply (Sherman, 1994, Main Corollary) with p = 1 in their notation to obtain

EĎ sup
g∈G
|nj/2U jn ˜̀

j | ≤ ΓA1/2mp(Q̌jF 2
j )(ε+α)/2 ≤ ΓA1/2mp(B`)

ε+α︸ ︷︷ ︸
=: Cj

where Γ is a universal constant (Sherman, 1994, Main Corollary), ε ∈ (0, 1) and m are chosen to satisfy 1− V/2m > 1− ε,
and α = 1− V/2m. By applying Markov inequality, we have for arbitrary u > 0,

PĎ

(
sup
g∈G
|nj/2U jn ˜̀

j | > u

)
≤ Cj

u
,

where PĎ(E) denotes the probability of the event E with respect to Ď. Equating the right hand side with δ′/(D − 1) and
solving for u, we obtain the result.

C.7. Proof of approximation error bound

(Proof of Lemma 1). Due to Lemma 3, we have

sup
g∈G

(
R(g)− ¯̌R(g)

)
= sup

g∈G

(
R(g)− EĎV

D
n

˜̀
)

= sup
g∈G

 D∑
j=1

wj(R(g)− EĎU
j
n

˜̀(j))


≤ wD sup

g∈G

(
R(g)− EĎU

D
n

˜̀(D)
)

+ 2B`

D−1∑
j=1

wj︸︷︷︸
O(n−(D−j))

≤ wD sup
g∈G

(
R(g)− EĎU

D
n

˜̀(D)
)

+ 2B`O(n−1)

By applying Lemmas 7 (with j = D), we obtain

sup
g∈G

(
R(g)− EĎU

D
n

˜̀(D)
)
≤ sup

g∈G

∥∥∥`(f(g, ·))− `(g, f̂(·))
∥∥∥
L1(q)

+DB` ‖q − q̌‖L1 .

The right-hand side can be further bounded by applying Lemmas 9 and 8 by

BqL`G

D∑
j=1

∥∥∥fj − f̂j∥∥∥
W 1,1

+DB`

(LqLf−1 +BqDC
′
1)

D∑
j=1

∥∥∥fj − f̂j∥∥∥
W 1,1

+Bqκ2(f − f̂)


≤ (BqL`G +DB`(LqLf−1 +BqDC

′
1))

D∑
j=1

∥∥∥fj − f̂j∥∥∥
W 1,1

+DB`Bqκ2(f − f̂)

and hence the assertion of the lemma.
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The above proof combined three approximation bounds, which are shown in the following lemmas. The following lemma
reduces the difference in the expectation of U-statistic into the differences in the loss function and the density function.
Although we apply the following Lemma 7 only with j = D, we prove its general form for j ∈ [D].

Lemma 7 (Approximation bound for U-statistic of degree-j). Fix j ∈ [D]. Assume Assumption 2. Then we have for any
g ∈ G,

R(g)− EĎU
j
n

˜̀(j) ≤
∥∥∥`(g, f(·))− `(g, f̂(·))

∥∥∥
L1(q)

+ jB` ‖q − q̌‖L1

Proof. Let us define a D-variate function `† and a j-variate function `†(j) (similarly to ˜̀and ˜̀(j), respectively) by

`†(s1, . . . , sD) :=
∑
π∈SD

`(g, f(s
(1)
π(1), . . . , s

(D)
π(D))),

`†(j)(s1, . . . , sj) :=
∑
τ∈GDj

`†(sτ(1), . . . , sτ(D)).

Then, recalling Q ∈ Q, we can show R(g) = Qn(U jn`
†(j)) because

Qn(U jn`
†(j)) = Qn(

∑
ρ∈Inj

`†(j)(Sρ(1), . . . , Sρ(j)))

= Qn(
∑
ρ∈Inj

∑
τ∈GDj

`†(Sρ◦τ(1), . . . , Sρ◦τ(D)))

= Qn(
∑
ρ∈Inj

∑
τ∈GDj

∑
π∈SD

`(g, f(S
(1)
ρ◦τ◦π(1), . . . , S

(D)
ρ◦τ◦π(D))))

=
∑
ρ∈Inj

∑
τ∈GDj

∑
π∈SD

Qn`(g, f(S
(1)
ρ◦τ◦π(1), . . . , S

(D)
ρ◦τ◦π(D)))

=
∑
ρ∈Inj

∑
τ∈GDj

∑
π∈SD

Q[`(g, f(S(1), . . . , S(D)))] (∵ Q ∈ Q)

=
∑
ρ∈Inj

∑
τ∈GDj

∑
π∈SD

R(g) = R(g).

Combining this expression with Lemma 3,

R(g)− EĎU
j
n

˜̀(j) = Qn(U jn`
†(j))− Q̌n(U jn

˜̀(j))

= Qn(U jn`
†(j) − U jn ˜̀(j))︸ ︷︷ ︸
A

+ (Qn − Q̌n)(U jn
˜̀(j))︸ ︷︷ ︸

B

Now, A can be bounded from above as

A = Qn(U jn`
†(j) − U jn ˜̀(j))

=
∑
ρ∈Inj

∑
τ∈GDj

∑
π∈SD

Qn(`(g, f(S
(1)
ρ◦τ◦π(1), . . . , S

(D)
ρ◦τ◦π(D)))− `(g, f̂(S

(1)
ρ◦τ◦π(1), . . . , S

(D)
ρ◦τ◦π(D))))

=
∑
ρ∈Inj

∑
τ∈GDj

∑
π∈SD

Q(`(g, f(S(1), . . . , S(D)))− `(g, f̂(S(1), . . . , S(D)))) (∵ Q ∈ Q)

≤
∥∥∥`(g, f(·))− `(g, f̂(·))

∥∥∥
L1(q)
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Then recalling Assumption 2, we can bound B from above as

B = (Qn − Q̌n)(U jn
˜̀(j)) = (Qn − Q̌n)

∑
ρ∈Inj

˜̀(j)(Sρ(1), . . . , Sρ(j))


=
∑
ρ∈Inj

(Qn − Q̌n)
(

˜̀(j)(Sρ(1), . . . , Sρ(j))
)

= (Qj − Q̌j)(˜̀(j)(S1, . . . , Sj)) (∵ symmetry)

≤ B`
∫ ∣∣∣∣∣

j∏
i=1

q(si)−
j∏
i=1

q̌(si)

∣∣∣∣∣ds1 · · · dsj

= B`

∫ ∣∣∣∣∣
j∑
i=1

q(s1) · · · q(si−1) · (q(si)− q̌(si)) · q̌(si+1) · · · q̌(sj)

∣∣∣∣∣ds1 · · · dsj

≤ B`
j∑
i=1

∫
q(s1) · · · q(si−1) · |q(si)− q̌(si)| · q̌(si+1) · · · q̌(sj)ds1 · · · dsj

= B`

j∑
i=1

∫
|q(si)− q̌(si)|dsi = B` · j ‖q − q̌‖L1 ,

which proves the assertion.

Now the following lemmas bound each approximation terms in terms of the difference between f and f̂ .

Lemma 8 (Loss difference approximation). Assume Assumption 5. Then we have for any g ∈ G,

∥∥∥`(g, f(·))− `(g, f̂(·))
∥∥∥
L1(q)

≤ BqL`G
D∑
j=1

∥∥∥fj − f̂j∥∥∥
W 1,1

Proof.

∥∥∥`(g, f(·))− `(g, f̂(·))
∥∥∥
L1(q)

=

∫
|`(g, f(s))− `(g, f̂(s))|q(s)ds

≤ Bq
∫
L`G

∥∥∥f(s)− f̂(s)
∥∥∥
`2

ds

≤ BqL`G
∫ ∥∥∥f(s)− f̂(s)

∥∥∥
`1

ds ≤ BqL`G
D∑
j=1

∥∥∥fj − f̂j∥∥∥
W 1,1

.

Lemma 9 (Density difference approximation). Assume Assumptions 2, 3, and 4. Then we have

‖q − q̌‖L1 ≤ (LqLf−1 +BqDC
′
1)

D∑
j=1

∥∥∥fj − f̂j∥∥∥
W 1,1

+Bqκ2(f − f̂)

where C ′1 and κ2(f − f̂) are defined as in Lemma 11.
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Proof. Since q̌(s) = q(f−1 ◦ f̂(s))
∣∣∣(Jf−1 ◦ f̂)(s)

∣∣∣, we have

‖q − q̌‖L1 =

∫ ∣∣∣q(s)− q(f−1 ◦ f̂(s))
∣∣∣(Jf−1 ◦ f̂)(s)

∣∣∣∣∣∣ds
≤
∫
|q(s)− q(f−1 ◦ f̂(s))|ds+

∫
q(f−1 ◦ f̂(s))

∣∣∣1− ∣∣∣(Jf−1 ◦ f̂)(s)
∣∣∣∣∣∣ ds

≤
∫
|q(s)− q(f−1 ◦ f̂(s))|ds︸ ︷︷ ︸

(A)

+Bq

∫ ∣∣∣1− (Jf−1 ◦ f̂)(s)
∣∣∣ds︸ ︷︷ ︸

(B)

where the last line follows from the triangle inequality. Applying Lemma 10 to (A) and Lemma 11 to (B) yields the
assertion.

Lemma 10. Assume Assumptions 2 and 3. Then,∫
|q(s)− q(f−1 ◦ f̂(s))|ds ≤ LqLf−1

D∑
j=1

∥∥∥fj − f̂j∥∥∥
W 1,1

Proof. We have ∫
|q(s)− q(f−1 ◦ f̂(s))|ds =

∫
|q(f−1 ◦ f(s))− q(f−1 ◦ f̂(s))|ds

≤ LqLf−1

∫ ∥∥∥f(s)− f̂(s)
∥∥∥
`2

ds ≤ LqLf−1

∫ ∥∥∥f(s)− f̂(s)
∥∥∥
`1

ds

≤ LqLf−1

D∑
j=1

∥∥∥fj − f̂j∥∥∥
W 1,1

Lemma 11 (Jacobian difference approximation). Assume Assumptions 2 and 4. Then,∫ ∣∣∣1− (Jf−1 ◦ f̂)(s)
∣∣∣ ds ≤ DC ′1 D∑

j=1

∥∥∥fj − f̂j∥∥∥
W 1,1

+ κ2(f − f̂),

where

C ′d := (D + 1)
7
2d−2

(B∞∂f )d

(
D∑
k=1

∥∥f−1
k

∥∥
C1,1

)d
+ (B∞∂f−1)d

 ,

κ2(f − f̂) :=

D∑
d=2

(
D

d

)
C ′d

D∑
j=1

∥∥∥fj − f̂j∥∥∥d
W 1,d

.

Proof. Applying Lemma 12 with A := (Jf−1 ◦ f)(s) = I , we obtain∫ ∣∣∣1− (Jf−1 ◦ f̂)(s)
∣∣∣ ds =

∫ ∣∣∣(Jf−1 ◦ f)(s)− (Jf−1 ◦ f̂)(s)
∣∣∣ds

≤
∫ D∑

d=1

(
D

d

)∥∥∥∥∥df−1 ◦ f
ds

(s)− df−1 ◦ f̂
ds

(s)

∥∥∥∥∥
d

op

ds.
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Now, each term in the integrand can be bounded from above as

∥∥∥∥∥df−1 ◦ f
ds

(s)− df−1 ◦ f̂
ds

(s)

∥∥∥∥∥
op

=

∥∥∥∥∥
(

df−1

dz
(f(s))

)(
df

ds
(s)

)
−
(

df−1

dz
(f̂(s))

)(
df̂

ds
(s)

)∥∥∥∥∥
op

≤
∥∥∥∥(df−1

dz
(f(s))− df−1

dz
(f̂(s))

)(
df

ds
(s)

)∥∥∥∥
op

+

∥∥∥∥∥
(

df−1

dz
(f̂(s))

)(
df

ds
(s)− df̂

ds
(s)

)∥∥∥∥∥
op

≤
∥∥∥∥df−1

dz
(f(s))− df−1

dz
(f̂(s))

∥∥∥∥
op

∥∥∥∥df

ds
(s)

∥∥∥∥
op

+

∥∥∥∥df−1

dz
(f̂(s))

∥∥∥∥
op

∥∥∥∥∥df

ds
(s)− df̂

ds
(s)

∥∥∥∥∥
op

(∵ submultiplicativity (Golub & Van Loan, 2013, Section 2.3.2))

≤
∥∥∥∥df−1

dz
(f(s))− df−1

dz
(f̂(s))

∥∥∥∥
op

(
D ·
∥∥∥∥df

ds
(s)

∥∥∥∥
∞

)
+

(
D ·
∥∥∥∥df−1

dz
(f̂(s))

∥∥∥∥
∞

)∥∥∥∥∥df

ds
(s)− df̂

ds
(s)

∥∥∥∥∥
op

(∵ ‖·‖op ≤ D ‖·‖∞ (Golub & Van Loan, 2013, Section 2.3.2))

≤
∥∥∥∥df−1

dz
(f(s))− df−1

dz
(f̂(s))

∥∥∥∥
op

·
(
DB∞∂f

)
+
(
DB∞∂f−1

)
·

∥∥∥∥∥df

ds
(s)− df̂

ds
(s)

∥∥∥∥∥
op

≤ DB∞∂f
√
D

∥∥∥∥df−1

dz
(f(s))− df−1

dz
(f̂(s))

∥∥∥∥
op(1)

+DB∞∂f−1

√
D

∥∥∥∥∥df

ds
− df̂

ds

∥∥∥∥∥
op(1)

(∵ ‖·‖op ≤
√
D ‖·‖op(1) (Golub & Van Loan, 2013, Section 2.3.1))

= D
3
2B∞∂f max

k∈[D]

D∑
j=1

∣∣∣∣∣∂f
−1
j

∂zk
(f(s))−

∂f−1
j

∂zk
(f̂(s))

∣∣∣∣∣+D
3
2B∞∂f−1 max

k∈[D]

D∑
j=1

∣∣∣∣∣∂fj∂sk
(s)− ∂f̂j

∂sk
(s)

∣∣∣∣∣
≤ D 3

2B∞∂f max
k∈[D]

D∑
j=1

∥∥f−1
j

∥∥
C1,1

∥∥∥f(s)− f̂(s)
∥∥∥
`2

+D
3
2B∞∂f−1

D∑
k=1

D∑
j=1

∣∣∣∣∣∂fj∂sk
(s)− ∂f̂j

∂sk
(s)

∣∣∣∣∣
≤ D 3

2B∞∂f

 D∑
j=1

∥∥f−1
j

∥∥
C1,1

∥∥∥f(s)− f̂(s)
∥∥∥
`1

+D
3
2B∞∂f−1

D∑
k=1

D∑
j=1

∣∣∣∣∣∂fj∂sk
(s)− ∂f̂j

∂sk
(s)

∣∣∣∣∣
(∵ ‖·‖`2 ≤ ‖·‖`1 (Golub & Van Loan, 2013, Section 2.2.2)).

When powered to d, this yields

∥∥∥∥∥df−1 ◦ f
ds

(s)− df−1 ◦ f̂
ds

(s)

∥∥∥∥∥
d

op

≤ (D2 +D)d−1

[ D∑
j=1

(
D3/2B∞∂f

(
D∑
k=1

∥∥f−1
k

∥∥
C1,1

)
|fj(s)− f̂j(s)|

)d

+

D∑
k=1

D∑
j=1

(
D3/2B∞∂f−1

∣∣∣∣∣∂fj∂sk
(s)− ∂f̂j

∂sk
(s)

∣∣∣∣∣
)d]
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where we used (
∑L
i=1 ai)

d ≤ Ld−1(
∑L
i=1 a

d
i ) for ai ≥ 0, which follows from Hölder inequality. Hence,∫ ∥∥∥∥∥df−1 ◦ f

ds
(s)− df−1 ◦ f̂

ds
(s)

∥∥∥∥∥
d

op

ds

≤ D 5
2d−1(D + 1)d−1

[(
B∞∂f

D∑
k=1

∥∥f−1
k

∥∥
C1,1

)d D∑
j=1

∫
|fj(s)− f̂j(s)|dds

+ (B∞∂f−1)d
D∑
j=1

 D∑
k=1

∫ ∣∣∣∣∣∂fj∂sk
(s)− ∂f̂j

∂sk
(s)

∣∣∣∣∣
d

ds

]

≤ (D + 1)
7
2d−2

(B∞∂f )d

(
D∑
k=1

∥∥f−1
k

∥∥
C1,1

)d D∑
j=1

∥∥∥fj − f̂j∥∥∥d
W 1,d

+ (B∞∂f−1)d
D∑
j=1

∥∥∥fj − f̂j∥∥∥d
W 1,d


≤ C ′d

D∑
j=1

∥∥∥fj − f̂j∥∥∥d
W 1,d

.

Therefore, ∫ ∣∣∣1− (Jf−1 ◦ f̂)(s)
∣∣∣ ds

≤
D∑
d=1

(
D

d

)∫ ∥∥∥∥∥df−1 ◦ f
ds

(s)− df−1 ◦ f̂
ds

(s)

∥∥∥∥∥
d

op

ds

≤ DC ′1
D∑
j=1

∥∥∥fj − f̂j∥∥∥
W 1,1

+

D∑
d=2

(
D

d

)
C ′d

D∑
j=1

∥∥∥fj − f̂j∥∥∥d
W 1,d︸ ︷︷ ︸

κ2(f − f̂)

Lemma 11 used the following lemma to bound the difference in Jacobian determinants.
Lemma 12 (Determinant perturbation bound (Ipsen & Rehman, 2008, Corollary 2.11)). Let A and E be D ×D complex
matrices. Then,

|det(A)− det(A+ E)| ≤
D∑
d=1

(
D

d

)
‖A‖D−dop ‖E‖dop .

C.8. Comparison of Rademacher complexities

The following consideration demonstrates how the effective complexity measure R in Theorem 3 resulting from the proposed
method may enjoy a relaxed dependence on the input dimensionality compared to the ordinary empirical risk minimization.
To do so, we first recall the definition of the ordinary Rademacher complexity and a standard performance guarantee derived
based on it.
Definition 2 (Ordinary Rademacher complexity). The ordinary empirical risk minimization finds the candidate hypothesis
by

ĝ ∈ argmin
g∈G

R̂(g),

where

R̂(g) :=
1

n

n∑
i=1

`(g, Zi) =
1

n

n∑
i=1

`(g, f̂(S
(1)
i , . . . , S

(D)
i ))
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and the corresponding ordinary Rademacher complexity Rord(G) is

Rord(G) :=
1

n
EĎEσ

[
sup
g∈G

∣∣∣∣∣
n∑
i=1

σi`(S
(1)
i , . . . , S

(D)
i )

∣∣∣∣∣
]

where {σi}ni=1 are independent uniform sign variables and we denoted `(s(1), . . . , s(D)) = `(g, f̂(s(1), . . . , s
(D)
i )) by abuse

of notation. This yields the standard Rademacher complexity based bound. Applying Lemma 5 and using the same proof
technique, we have that with probability at least 1− δ,

R(ĝ)−R(g∗) ≤ 2 sup
g∈G
|R(g)− R̂(g)| ≤ 4Rord(G) + 2B`

√
log(2/δ)

2n
.

Therefore, we the corresponding complexity terms are Rord(G) and DR(G). In Remark 3, we make a comparison of these
two complexity measures by taking an example. To recall, the effective Rademacher complexity can be written as, in terms of
the notation in this section,

R(G) =
1

n
EĎEσ

[
sup
g∈G

∣∣∣∣∣
n∑
i=1

σiES′2,...,S′D
˜̀(Si, S

′
2, . . . , S

′
D)

∣∣∣∣∣
]

=
1

n
EĎEσ

[
sup
g∈G

∣∣∣∣∣
n∑
i=1

σiES′1,...,S′D
1

D

(
`(S

(1)
i , S

′(2)
2 , . . . , S

′(D)
D ) + · · ·+ `(S

′(1)
1 , S

′(2)
2 , . . . , S

(D)
i )

)∣∣∣∣∣
]

Remark 3 (Comparison of Radmacher complexities). As an example, considerH, the set of L-Lipschitz functions (with
respect to infinity norm) on the unit cube [0, 1]d. It is well-known that there exists a constant C > 0 such that the following
holds (Wainwright, 2019, Example 5.10, p.129) for sufficiently small t > 0:

logN (t,H, ‖·‖∞) � (C/t)d. (9)

Here, a(t) � b(t) indicates that there exist k1, k2 > 0 such that, for sufficiently small t, it holds that k1b(t) ≤ a(t) ≤ k2b(t).
On the other hand, the well-known discretization argument implies that there exist constants c and B such that for any
t ∈ (0, B], the following relation between the Rademacher complexity and the metric entropy holds:

Rord(H) ≤ t+ c

√
logN (t,H, ‖·‖∞)

n
. (10)

Substituting Eq. (9) into Eq. (10), we can find that, for large enough n, the right hand side is minimized at t = (c · C d
2 ·

d
2 )

2
2+d · n−

1
2+d . This yields

Rord(H) ≤ C̃ · n−
1

2+d (11)

with a new constant C̃ =
(
c · C d

2 · d2
) 2

2+d

+ c · C d
2

(
c · C d

2 · d2
)− d

2+d

. Therefore, by substituting d = D in Eq. (11), the
metric-entropy based bound on the ordinary Rademacher complexity exhibits exponential dependence on the input dimension
as

Rord(H) ≤ O
(
n−

1
2+D

)
,

which is a manifestation of the curse of dimensionality. On the other hand, by following a similar calculation, we can
see that the effective Rademacher complexity R(H) avoids an exponential dependence on the input dimension D. By
substituting d = 1 in Eq. (11), we can see

DR(H) ≤ Rord(H1) + · · ·+ Rord(HD) ≤ O
(
n−

1
3

)
,
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where Hj := {ES′1,...,S′Dh(S′1
(1)
, . . . , S′j−1

(j−1)
, (·)(j), S′j+1

(j+1)
, . . . , S′D

(D)
) : h ∈ H}. This is because the Lipschitz

constant of functions inHj is at most L (i.e., the Lipschitz constant does not increase by the marginalization procedure)
because for any h ∈ Hj ,

|h(x)− h(y)|

= |ES′1,...,S′D [h(S
′(1)
1 , . . . , S

′(j−1)
j−1 , x, S

′(j+1)
j+1 , . . . , S

′(D)
D )− h(S

′(1)
1 , . . . , S

′(j−1)
j−1 , y, S

′(j+1)
j+1 , . . . , S

′(D)
D )]|

≤ ES′1,...,S′D |h(S
′(1)
1 , . . . , S

′(j−1)
j−1 , x, S

′(j+1)
j+1 , . . . , S

′(D)
D )− h(S

′(1)
1 , . . . , S

′(j−1)
j−1 , y, S

′(j+1)
j+1 , . . . , S

′(D)
D )|

≤ ES′1,...,S′DL · ‖(S
′(1)
1 , . . . , S

′(j−1)
j−1 , x, S

′(j+1)
j+1 , . . . , S

′(D)
D )− (S

′(1)
1 , . . . , S

′(j−1)
j−1 , y, S

′(j+1)
j+1 , . . . , S

′(D)
D )‖

= ES′1,...,S′DL · ‖(0, . . . , 0, x− y, 0, . . . , 0)‖
= L · |x− y|.

C.9. Remark on higher order Sobolev norms

Here, we comment on how the term κ2(f − f̂) is treated as a higher order term of f − f̂ .

Remark 4 (Higher order Sobolev norms). Let us assume that supp q ∪ supp q̌ is contained in a compact set S̃ for all f̂
considered. Note that for d ∈ [D], ∫

S̃
|h(s)|dds ≤ (VS̃)

d
d−D

(∫
S̃
|h(s)|Dds

)d/D
by Hölder ’s inequality, where we defined VS̃ :=

∫
S̃ 1ds, hence we have ‖·‖Ld(S̃) ≤ (VS̃)

1
d−D ‖·‖LD(S̃). By applying the

relation to each term in the definition of ‖·‖W 1,d , we obtain

‖f‖dW 1,d ≤ (VS̃)
d

d−D ‖f‖dW 1,D

Thus we obtain

κ2(f − f̂) =

D∑
d=2

(
D

d

)
C ′d

D∑
j=1

∥∥∥fj − f̂j∥∥∥d
W 1,d

≤
D∑
d=2

(
D

d

)
(VS̃)

d
d−DC ′d

D∑
j=1

∥∥∥fj − f̂j∥∥∥d
W 1,D

≤ O

 D∑
j=1

∥∥∥fj − f̂j∥∥∥2

W 1,D

 (f̂ → f).

By also replacing
∑D
j=1

∥∥∥fj − f̂j∥∥∥
W 1,1

with
∑D
j=1

∥∥∥fj − f̂j∥∥∥
W 1,D

in Theorem 3, we can see more clearly that κ2(f − f̂)

is a higher order term of
∑D
j=1

∥∥∥fj − f̂j∥∥∥
W 1,D

.

D. Details and Proofs of Theorem 1
Here, we provide the proof of Theorem 1. We reuse the notation and terminology from Section C of this Supplemen-
tary Material. We prove the uniformly minimum variance property of the proposed risk estimator under the ideal situation of
f̂ = f .

Theorem 4 (Known causal mechanism case). Assume f̂ = f . Then, for all g ∈ G, we have that Ř(g) is the uniformly
minimum variance unbiased estimator of R(g). As a special case, it has a smaller variance than the ordinary empirical risk
estimator: ∀q ∈ Q,∀g ∈ G,Var(Ř(g)) ≤ Var(R̂(g)).

Proof. The proof is a result of the following two facts. When q̌ ∈ Q, the estimator Ř(g) becomes the generalized U-statistic
of the statistical functional Eq. (6). Furthermore, when f̂ = f , Eq. (6) coincides with R(g) because the approximation error
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is zero. Since we assume f̂ = f we have q̌ = q ∈ Q and hence both of the statements above hold. Therefore, by Lemma 13,
the first assertion of the theorem follows. The last assertion of the theorem follows as a special case as R̂(g) is an unbiased
estimator of R(g) for q ∈ Q.

From here, we confirm the above statements by calculation. We first show that Ř(g) is the generalized U-statistic. To see
this, observe that the statistical functional Eq. (6) allows the following expression given q̌ ∈ Q:∫

˜̀(s1, . . . , sD)q̌(s1) · · · q̌(sD)ds1 · · · dsD

=

∫ ∑
π∈SD

`(g, f̂(s
(1)
π(1), . . . , s

(D)
π(D)))q̌(s1) · · · q̌(sD)ds1 · · · dsD

=

∫ ∑
π∈SD

`(g, f̂(s
(1)
π(1), . . . , s

(D)
π(D)))

∏
d

q̌(d)(s
(d)
1 ) · · ·

∏
d

q̌(d)(s
(d)
D )ds1 · · · dsD

=

∫ ∑
π∈SD

`(g, f̂(s
(1)
1 , . . . , s

(D)
1 ))

∏
d

q̌(d)(s1)ds1

=

∫
`(g, f̂(s(1), . . . , s(D)))q̌1(s(1)) · · · q̌D(s(D))ds(1) · · · ds(D).

This is a regular statistical functional of degrees (1, . . . , 1) with the kernel `(g, f̂(·, . . . , ·)). On the other hand, we have

Ř(g) =
1

nD

∑
(i1,...,iD)∈[n]D

˜̀(Si1 , . . . , SiD ) =
1

nD

∑
(i1,...,iD)∈[n]D

`(g, f̂(S
(1)
i1
, . . . , S

(D)
iD

))

because the summations run through all combinations with replacement. This combined with the fact that {S(d)
i }i,d are

jointly independent when q̌ ∈ Q yields that Ř(g) is the generalized U-statistic for Eq. (6).

Now we show that Eq. (6) coincides R(g). Given f̂ = f , we have

R(g) =

∫
q(s)`(g, f(s))ds

=

∫
q(s)`(g, f̂(s))ds (By f = f̂ .)

=

∫
q1(s(1)) · · · qD(s(D))`(g, f̂(s(1), . . . , s(D)))ds(1) · · · ds(D) (by q ∈ Q)

=

∫
q̌1(s(1)) · · · q̌D(s(D))`(g, f̂(s(1), . . . , s(D)))ds(1) · · · ds(D) (by q = q̌)

=

∫
˜̀(s1, . . . , sD)q̌(s1) · · · q̌(sD)ds1 · · · dsD. (∵ symmetry)

The following well-known lemma states that a generalized U-statistic is a uniformly minimum variance unbiased estimator.
Lemma 13 (Uniformly minimum variance property of a generalized U-statistic). Let θ : Q → R be a regular statistical
functional with kernel ψ : Rk1 × · · · × RkL → R (Clémençon et al., 2016), i.e.,

θ(q) =

∫
ψ((x

(1)
1 , . . . , x

(1)
k1

), . . . , (x
(L)
1 , . . . , x

(L)
kL

))

k1∏
j=1

q1(x
(1)
j )dx

(1)
j · · ·

kL∏
j=1

qL(x
(L)
j )dx

(L)
j .

Given samples {x(l)
i }

nl
i=1

i.i.d.∼ ql(nl ≥ kl and l = 1, . . . , L), let GU
(k1,...,kL)
(n1,...,nL)ψ be the corresponding generalized U-statistic

GU
(k1,...,kL)
(n1,...,nL)ψ :=

1∏
l

(
nl
kl

) ∑ψ

((
x

(1)

i
(1)
1

, . . . , x
(1)

i
(1)
k1

)
, . . . ,

(
x

(L)

i
(L)
1

, . . . , x
(L)

i
(L)
kL

))
.

where
∑

denotes that the indices run through all possible combinations (without replacement) of the indices. Then,
GU

(k1,...,kL)
(n1,...,nL)ψ is the uniformly minimum variance unbiased estimator of θ on Q.
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Proof. The assertion can be proved in a parallel manner as the proof of (Lee, 1990, Section 1.1, Lemma B)

Remark 5 (Relation to the UMVUE property of R̂(g)). The result in Theorem 4 is not contradictory to the fact that the
sample average R̂(g) is a U-statistic of degree-1 and hence the minimum variance among all unbiased estimator of R(g) on
P , where P is a set of distributions containing all absolutely continuous distributions (Lee, 1990). Specifically, Ř(g) is not
generally an unbiased estimator of R(g) on P \ Q, even if f̂ = f . While Ř(g) satisfies the D-sample symmetry condition,
the same does not hold for R̂(g). By restricting the attention to Q, the estimator Ř(g) achieves a smaller variance than
R̂(g).

E. Further Comparison with Related Work
Here, we provide an additional detailed comparison with the related work to complement Section 5 of the main text.

E.1. Comparison with Magliacane et al. (2018)

Magliacane et al. (2018) considered domain adaptation among different interventional states by using SCMs. Their problem
setting and ours do not strictly include each other (the two settings are somewhat complementary), and their assumption may
be more suitable for application fields with interventional experiments such as genomics, while ours may be more suited for
fields with observational data such as health record analysis or economics. At the methodological level, Magliacane et al.
(2018) takes a variable selection approach to find a subset so that the conditional distribution is invariant, whereas our paper
takes a data augmentation approach via the estimation of the SEMs (in the reduced form).

The essential assumptions of Magliacane et al. (2018) are the existence of a separating set (with small “incomplete
information bias”) and the identifiability of such a set (yielded from Proposition 1, Assumption 1, and Assumption 2 (iii)
in Magliacane et al. (2018)). A particularly plausible application conforming to the assumptions is, for example (but not
limited to), genomics experiments. Part of the reason is that Assumption 2 (ii) and (iii) are likely to hold for well-targeted
experiments (Magliacane et al., 2018). The following is a detailed comparison.

(1) Modeling assumption and problem setup. The two problem settings do not strictly include one another, and they are
of complementing relations where ours corresponds to the intervention-free case and Magliacane et al. (2018) corresponds
to the intervention case. If we try to express the problem setting of Magliacane et al. (2018) within our formulation, we
would be expressing the interventions as alterations to the SEMs. We assume that such alterations do not occur in our setting
since our focus is on observational data; therefore, the problem formulation of Magliacane et al. (2018) is not a subset of
ours. On the other hand, if we try to express our problem setting within the formulation of Magliacane et al. (2018), our
problem setup would only have C1 as the context variable, and C1 would be a parent of all observed variables, e.g., C1

switches the distribution of S by switching different quantile functions to perform inverse transform. This potentially allows
the existence of the effect C1 → Y and diverges from Assumption 2 (iii) in Magliacane et al. (2018). Also, even if such an
edge does not exist, it is acceptable that there are no separating sets (in the extreme case) if Y is a parent of all Xi’s. In this
case, conditioning on any of the Xi’s would result in making C1 and Y dependent. From this consideration, our problem
setting is not a subset of that of Magliacane et al. (2018), either.

(2) Plausible applications. The problem setup of Magliacane et al. (2018) is suitable especially for applications in which
various experiments are conducted such as genomics (Magliacane et al., 2018), whereas our problem setting may be more
suitable for some fields with observational data such as health record analysis or economics.

(3) Methodology. Our proposed method actually estimates the SEMs (though in the reduced-form) and exploits the
estimated SEMs in the domain adaptation algorithm. In fact, directly using the estimated SEMs as a tool to realize domain
adaptation can be seen as the first attempt to fully leverage the structural causal models in the DA algorithm. On the other
hand, Magliacane et al. (2018) approaches the problem of domain adaptation via variable selection to find a subset so that
the conditional distribution is invariant.

E.2. Comparison with Gong et al. (2018)

In the present paper, we assumed an invariance of structural equations between domains. Here, we clarify the difference
from a related but different assumption considered by Causal Generative Domain Adaptation Network (CG-DAN; Gong
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et al., 2018).

(1) Problem setup. Gong et al. (2018) presumes the anticausal scenario (i.e., Y is the cause of X) and that X given Y
follows a structural equation model, whereas our paper considers more general SEMs of X and Y .

(2) Theoretical justification. The approach of Gong et al. (2018) does not have a theoretical guarantee in terms of the
identifiability of f , i.e., there has been no known theoretical condition under which the learned generator is applicable across
different domains. On the other hand, our method enjoys a strong theoretical justification of nonlinear ICA including the
identifiability of f under known theoretical conditions.

(3) Methodology. The method of Gong et al. (2018) estimates the GCM of X given Y using source domain data and uses
it to design a generator neural network. On the other hand, we more directly exploit the estimated reduced-form SEM in the
method.

E.3. Comparison with Arjovsky et al. (2020)

Arjovsky et al. (2020) proposed invariant risk minimization (IRM) for the out-of-distribution (OOD) generalization problem.
The IRM approach tries to learn a feature extractor that makes the optimal predictor invariant across domains, and its
theoretical validity is argued based on SCMs. Here, we compare it with the present work in terms of the problem setup,
theoretical justification, and the methodology.

(1) Basic assumption and problem setup. The OOD generalization problem tackled in Arjovsky et al. (2020) assumes
no access to the target domain data. In this respect, the problem is different and intrinsically more difficult than the one
considered in this paper, where a small labeled sample from the target domain is assumed to be available. In order to solve
the OOD generalization problem, in a nutshell, Arjovsky et al. (2020) essentially assumes the existence of a feature extractor
that elicits an invariant predictor, i.e., one that makes the optimal predictors of the different domains to be identical after the
feature transformation. This can be seen as a variant of the representation learning approach for domain adaptation where
we assume there exists T such that p(Y |T (X)) is invariant across domains. Indeed, for example, when the loss function
is the cross-entropy, the condition corresponds to the invariance of P (Y |T (X)) across domains (Arjovsky et al., 2020).
More technically, in addition, (Arjovsky et al., 2020, Definition 7(ii)) requires the condition E1[Y |Pa(Y )] = E2[Y |Pa(Y )],
which can be violated when the latent factors corresponding to Y have different distributions across domains. On the other
hand, our assumption can be seen as the existence of a feature extractor that can simultaneously estimate the independent
components in all domains, which does not necessarily imply the existence of a common feature transformer that induces a
unique optimal predictor.

(2) Theoretical justification. Arjovsky et al. (2020) formulated a condition under which the IRM principle leads to an
appropriate predictor for OOD generalization, but only under a certain linearity assumption which is essentially a relaxation
of linear SEMs. Furthermore, in the theoretical guarantee, the feature extractor is restricted to be linear. In addition,
Arjovsky et al. (2020) only provides the population-level analysis that the solution of the IRM objective formulated using
the underlying distributions enjoys OOD generalization, and it does not discuss the condition under which the ideal feature
extractor can be properly estimated by the empirical IRM. The requirement for the strong assumption of linearity likely
stems from the intrinsic difficulty of the OOD problem in Arjovsky et al. (2020), namely, its formulation does not assume
specific types of interventions. On the other hand, our method enjoys a stronger theoretical guarantee of an excess risk
bound without such parametric assumptions on the models or the data generating process, by focusing on the case that the
causal mechanisms are indifferent across the domains.

(3) Methodology. The methodology of IRM estimates a single predictor that generalizes well to all domains by finding a
feature extractor that makes the predictor optimal in all domains. The approach shares the same spirit as the representation
learning approaches to domain adaptation, which try to find a feature extractor that induces invariant conditional distributions,
such as transfer component analysis (Pan et al., 2011). On the other hand, our method estimates the SEMs (in the reduced-
form) and exploits it to make the training on the few target domain data more efficient through data augmentation.


